FAKTOR - FAKTOR YANG MEMPENGARUHI PEMILIHAN SARANA TRANSPORTASI KE KAMPUS MENGGUNAKAN ANALYTIC HIERARCHY PROCESS (AHP)

(Studi Kasus di Kampus Universitas Brawijaya Malang)

ABSTRAK

Pemilihan sarana transportasi ke kampus dipengaruhi oleh faktor-faktor tertentu. Faktor-faktor yang mempengaruhi antara lain faktor keamanan, kenyamanan, biaya dan waktu. Di dalam skripsi ini *Analytic Hierarchy Process* (AHP) digunakan untuk menentukan prioritas faktor-faktor yang mempengaruhi pemilihan sarana transportasi ke kampus. Data diperoleh dari hasil survei kuisioner dengan responden mahasiswa, dosen dan karyawan Universitas Brawijaya. Data kuisioner kemudian diolah menjadi matriks perbandingan berpasang sehingga diperoleh prioritas dari kriteria. Langkah selanjutnya yaitu mencari konsistensi kriteria. Hasil akhir yang diperoleh adalah *global priority* untuk mengetahui peringkat dari setiap alternatif.

Dari hasil pengolahan data diperoleh bahwa faktor utama yang mempengaruhi pemilihan sarana transportasi ke kampus adalah faktor keamanan sebesar 68,69 %, faktor kenyamanan sebesar 6,10 %, faktor biaya sebesar 8,22 % dan faktor waktu sebesar 16,99 %. Sementara itu alternatif jalan kaki menempati prioritas utama sebesar 42,87 %, kemudian diikuti oleh sepeda motor sebesar 17,40 %, antar jemput sebesar 17,37 %, mobil sebesar 11,32 % dan terakhir angkutan umum sebesar 11,05 %.

Kata kunci: Analytic Hierarchy Process (AHP), global priority

FACTORS THAT INFLUENCE THE CHOOSE OF TRANSPORTATION TO CAMPUS USING THE ANALYTIC HIERARCHY PROCESS (AHP)

(Case Study in College of Brawijaya University Malang)

ABSTRACT

The choosing of transportation to campus influenced by certain factors. The factors that influence were safety factor, freshness factor, expense factor and time factor. In this report *Analytic Hierarchy Process* (AHP) was use for knowing factors that influence the choose of transportation to campus. Data was got from the result of questionnair survey with college student, lectureror and employ Brawijaya University as respondents. Data of questionnair was prepared to be pairwise comparison matrices so that can got the priority of criteria. The next step was searched the consistency of criteria. The last result was the global priority to know degree of each alternative.

From the result of data preparation, the main factor that influence the choose of transportation to campus was safety factor as big as 68,69 percent, freshness factor as big as 6,10 percent, expense factor as big as 8,22 percent and time factor as big as 16,99 percent. Meanwhile, the alternative of walking was the primary priority as big as 42,87 percent, than followed by motor bike as big as 17,40 percent, accompany pinch as big as 17,37, private car's transportation as big as 11,32 percent and the last was public transportation as big as 11,05 percent.

Key words: Analytic Hierarchy Process (AHP), global priority

viii

BAB I PENDAHULUAN

1.1 Latar Belakang

Perjalanan ke kampus dipengaruhi oleh sarana transportasi yang digunakan. Alternatif perjalanan ke kampus menggunakan beberapa sarana transportasi, misalnya mobil, sepeda motor, angkutan umum, antar jemput dan jalan kaki. Pemilihan sarana transportasi tersebut dipengaruhi oleh faktor-faktor tertentu diantaranya faktor keamanan, kenyamanan, biaya dan waktu. Untuk menentukan prioritas dari faktor-faktor pemilihan sarana transportasi ke kampus dapat digunakan metoda *Analytic Hierarchy Process* (AHP).

Menurut Kosasi (2002), *Analytic Hierarchy Process* (AHP) merupakan metode untuk pengambilan keputusan multikriteria. Saaty (1993) menyatakan bahwa pada dasarnya metode AHP memecah-mecah situasi kompleks dan tak terstruktur ke dalam bagian-bagian komponennya, kemudian menatanya ke dalam hirarki, memberikan nilai numerik pada pertimbangan subyektif tentang pentingnya setiap variabel. Akhirnya, melakukan pertimbangan untuk menetapkan variabel dengan prioritas paling tinggi. Hirarki adalah gambaran dari permasalahan yang kompleks dalam struktur banyak tingkat. Hasil akhir dari AHP adalah prioritas bagi alternatifalternatif yang ada untuk memenuhi tujuan dari permasalahan yang dihadapi.

1.2 Perumusan Masalah

- 1. Bagaimana penggunaan *Analytic Hierarchy Process* (AHP) dalam menentukan prioritas faktor-faktor yang mempengaruhi pemilihan sarana transportasi ke kampus?
- 2. Bagaimana menentukan prioritas masing-masing alternatif dari setiap faktor yang mempengaruhi pemilihan sarana transportasi ke kampus ?

1.3 Batasan Masalah

1. Metode penelitian adalah metode survei dengan kuisioner. Sampel diambil sebanyak 150, yang terdiri dari mahasiswa, dosen serta karyawan Universitas Brawijaya.

- 2. Sarana transportasi yang digunakan dibatasi hanya mobil, sepeda motor, angkutan umum, antar jemput dan jalan kaki.
- 3. Faktor-faktor yang diperhitungkan terdiri atas empat faktor yaitu keamanan, kenyamanan, biaya dan waktu.

1.4 Tujuan

- 1. Menentukan prioritas faktor-faktor yang mempengaruhi pemilihan sarana transportasi ke kampus menggunakan *Analytic Hierarchy Process* (AHP).
- 2. Menentukan prioritas masing-masing alternatif dari setiap faktor yang mempengaruhi pemilihan sarana transportasi ke kampus.

1.5 Manfaat

Manfaat yang bisa diperoleh dari tugas akhir ini adalah memahami konsep *Analytic Hierarchy Process* (AHP) serta penerapannya sehingga diketahui prioritas faktor-faktor dan prioritas alternatif yang mempengaruhi pemilihan sarana transportasi ke kampus.

,

BAB II TINJAUAN PUSTAKA

2.1 Gambaran Umum Analytic Hierarchy Process (AHP)

2.1.1 Definisi Analytic Hierarchy Process (AHP)

Analytic Hierarchy Process (AHP) pertama kali dikemukakan oleh seorang matematikawan dari Universitas Pittsburgh Amerika Serikat Thomas L. Saaty sekitar tahun 1970. Menurut Saaty (1993), Analytic Hierarchy Process (AHP) adalah suatu model luwes yang memungkinkan mengambil keputusan dengan mengkombinasikan pertimbangan dan nilai-nilai pribadi secara logis.

Menurut Mulyono (1991), pada AHP, pembuat keputusan membagi kriteria dari masalah keputusan ke dalam suatu hirarki subkriteria dan menggunakan perbandingan berpasang untuk mengevaluasi kriteria dan alternatif keputusan tersebut. Ada beberapa prinsip yang harus dipahami dalam menyelesaikan persoalan dengan menggunakan *Analytic Hierarchy Process* (AHP), diantaranya adalah :

1. Decomposition

Setelah persoalan didefinisikan, maka perlu dilakukan dekomposisi yaitu memecahkan persoalan yang utuh menjadi unsur-unsur. Untuk mendapatkan hasil yang lebih akurat, pemecahan juga dilakukan terhadap unsur-unsurnya sampai tidak mungkin dilakukan pemecahan lebih lanjut, sehingga diperoleh beberapa tingkatan persoalan yang telah didefinisikan.

2. Comparative Judgment

Prinsip ini berarti membuat penilaian tentang kepentingan relatif dua elemen pada suatu tingkat tertentu dalam kaitannya dengan tingkat di atasnya. Penilaian ini merupakan inti dari AHP, karena akan berpengaruh terhadap prioritas elemen-elemen. Hasil penilaian akan lebih baik jika disajikan dalam bentuk matriks pairwise comparison (matriks perbandingan berpasang).

3. Synthesis of Priority

Dari setiap matriks *pairwise comparison* kemudian dicari eigen vektornya untuk mendapatkan *local priority*. Karena matriks *pairwise comparison* terdapat pada setiap tingkat, maka untuk mendapatkan *global priority* harus dilakukan sintesis diantara

BRAWIJAYA

local priority. Pengurutan elemen-elemen menurut kepentingan relatif melalui sintesis dinamakan *priority setting*.

4. Logical Consistency

Konsistensi logis merupakan prinsip rasional AHP. Konsistensi memiliki dua makna, yaitu :

a. Pemikiran atau objek yang serupa dikelompokkan menurut keseragaman dan relevansinya.

Contoh: Semangka dan bola.

Kriteria : bulat (dapat dikelompokkan).

Kriteria: rasa (tidak dapat dikelompokkan).

b. Tingkat hubungan antara obyek didasarkan pada kriteria tertentu, saling membenarkan secara logis.

Contoh: Kriteria: kemanisan.

Jika madu 2 kali lebih manis daripada gula pasir. Jika gula pasir 3 kali lebih manis daripada molasa. Maka madu harus 6 kali lebih manis daripada molasa.

2.1.2 Keuntungan Analytic Hierarchy Process (AHP)

Menurut Saaty (1993), keuntungan *Analytic Hierarchy Process* (AHP) adalah :

- 1. Kesatuan, AHP memberi satu model tunggal yang mudah dimengerti, luwes untuk aneka ragam persoalan tak terstruktur.
- 2. Kompleksitas, AHP memadukan ancangan deduktif dan ancangan berdasarkan sistem dalam memecahkan persoalan kompleks.
- 3. Saling ketergantungan, AHP dapat menangani saling ketergantungan elemen-elemen dalam suatu sistem dan tidak memaksakan pemikiran linier.
- 4. Penyusunan hirarki, AHP mencerminkan kecenderungan alami pikiran untuk memilah-milah elemen-elemen suatu sistem dalam berbagai tingkat berlainan dan mengelompokkan unsur yang serupa dalam setiap tingkat.
- 5. Pengukuran, AHP memberi suatu skala untuk mengukur hal-hal yang tidak berwujud dan suatu metode untuk menetapkan prioritas.
- 6. Konsistensi, AHP melacak konsistensi logis dari pertimbanganpertimbangan yang digunakan dalam menetapkan berbagai prioritas.

- 7. Sintesis, AHP menuntun ke suatu taksiran menyeluruh tentang kebaikan setiap alternatif.
- 8. Tawar menawar, AHP mempertimbangkan prioritas-prioritas relatif dari berbagai faktor sistem dan memungkinkan orang memilih alternatif terbaik berdasarkan tujuan-tujuannya.
- 9. Penilaian dan konsensus, AHP tidak memaksakan konsensus tetapi mensintesis suatu hasil yang representatif dari berbagai penilaian yang berbeda-beda.
- 10. Pengulangan proses, AHP memungkinkan untuk memperhalus definisi pada suatu persoalan dan memperbaiki pertimbangan dan pengertian melalui pengulangan.

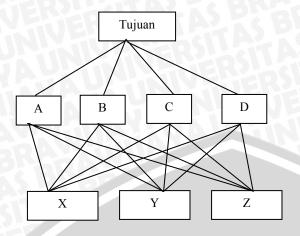
2.1.3 Langkah-langkah Dasar Analytic Hierarchy Process (AHP)

Pada Analytic Hierarchy Process elemen-elemen persoalan ditata dalam bentuk hirarki. Kemudian dibuat perbandingan berpasang antar elemen dari suatu tingkat sesuai dengan yang diperlukan oleh kriteria-kriteria yang berada setingkat lebih tinggi. Berbagai perbandingan ini menghasilkan prioritas dan akhirnya, melalui sintesis, menghasilkan prioritas menyeluruh, kemudian diukur konsistensi dan interdependensinya. Secara umum langkah-langkah dasar dalam mengerjakan AHP adalah memeriksa persoalan, menyusun hirarki, melakukan perbandingan berpasangan, menetapkan prioritas, mensintesis prioritas menyeluruh dan memeriksa konsistensi (Saaty, 1993).

2.2 Hirarki

2.2.1 Definisi Hirarki

Menurut Saaty (1993), hirarki melibatkan pengidentifikasian elemen-elemen suatu persoalan, mengelompokkan elemen-elemen ke dalam beberapa kumpulan yang homogen, dan menata kumpulan-kumpulan itu pada tingkat-tingkat yang berbeda. Hirarki yang sederhana berbentuk linier, yang naik atau turun dari tingkat yang satu ke tingkat yang lain.


Definisi hirarki menurut Saaty (1994) adalah gambaran dari permasalahan yang kompleks dalam struktur banyak tingkat dimana tingkat paling atas adalah tujuan dan diikuti tingkat kriteria, sub kriteria dan seterusnya ke bawah sampai tingkat yang paling bawah adalah tingkat alternatif.

2.2.2 Penggolongan Hirarki

Hirarki digolongkan menjadi dua yaitu hirarki struktural dan fungsional. Pada hirarki struktural sistem yang kompleks disusun ke dalam komponen-komponen pokoknya dalam urutan menurun menurut sifat strukturalnya. Hirarki struktural sangat erat kaitannya dengan cara otak menganalisis hal yang kompleks, yaitu dengan memecah-mecah obyek yang ditangkap oleh indera menjadi sejumlah gugusan, sub gugusan dan gugusan yang lebih kecil lagi. Sebaliknya hirarki fungsional menguraikan sistem yang kompleks menjadi elemen-elemen pokoknya menurut hubungan esensialnya (Saaty, 1993).

2.2.3 Penyusunan Hirarki

Menurut Saaty (1993), tidak ada aturan yang pantang dilanggar untuk menyusun hirarki. Rancangan dalam menyusun hirarki bergantung pada jenis keputusan yang perlu diambil. Jika persoalannya adalah memilih alternatif, maka dapat dimulai dari tingkat dasar dengan menderetkan semua alternatif itu. Tingkat berikutnya harus terdiri dari kriteria untuk mempertimbangkan berbagai alternatif sebelumnya, dan tingkat puncak haruslah satu elemen saja, yaitu fokus atau tujuan menyeluruh. Didalam membuat hirarki tidak ada batasan untuk jumlah tingkat. Bila elemen-elemen suatu tingkat sulit dibandingkan, suatu tingkat baru dengan perbedaan yang lebih halus harus diciptakan. Hirarki harus bersifat luwes, selalu dapat diubah guna menampung adanya kriteria baru yang muncul. Contoh sistem hirarki permasalahan tiga tingkat dapat dilihat pada Gambar 2.1.

Gambar 2.1. Hirarki tiga tingkat AHP

Keterangan: Kriteria = A, B, C, D Alternatif = X, Y, Z

2.3 Matriks *Pairwise Comparison* (Matriks Perbandingan Berpasang)

Langkah awal dalam menetapkan susunan prioritas elemen adalah dengan membuat perbandingan berpasang, yaitu membandingkan elemen-elemen berpasangan dengan kriteria yang telah ditentukan. Kemudian perbandingan tersebut ditransformasikan dalam bentuk matriks yang digunakan untuk analisis numerik. Menurut Anton (1998), sebuah matriks adalah susunan segiempat siku-siku dari bilangan-bilangan. Bilangan ini disebut sebagai entri di dalam matriks. Sementara itu Saaty (1993) mengatakan matriks merupakan alat sederhana yang biasa digunakan dan memberi kerangka untuk menguji konsistensi. Selain itu juga dapat diperoleh informasi tambahan dengan jalan membuat segala perbandingan yang mungkin, dan menganalisis kepekaan prioritas menyeluruh terhadap perubahan dalam pertimbangan.

Proses perbandingan berpasang dimulai pada puncak hirarki untuk memilih kriteria C, atau sifat yang akan digunakan untuk

melakukan perbandingan yang pertama. Kemudian satu tingkat dibawahnya, diambil elemen-elemen yang akan dibandingkan : A_1 , A_2 , ..., A_n . Tabel matriks *pairwise comparison* dapat dilihat pada Tabel 2.1.

Tabel 2.1 Contoh tabel matriks *pairwise comparison* (a_{ij})

C	A_1	A_2	 \mathbf{A}_{n}
A_1	1	a_{12}	 a_{1n}
A_2	a_{21}	1	 a_{2n}
A _n	a_{n1}	a_{n2}	 1

Semua entri pada diagonal matriks bernilai sama dengan 1, karena $a_{11}, a_{22}, \ldots, a_{nn}$ merupakan nilai perbandingan elemen operasi A_1, A_2, \ldots, A_n dengan elemennya sendiri, sehingga dengan sendirinya nilai $a_{11}, a_{22}, \ldots, a_{nn}$ sama dengan 1. Nilai a_{12} merupakan perbandingan kepentingan elemen operasi A_1 dengan elemen A_2 . Besarnya nilai a_{21} merupakan $1/a_{12}$ yang menyatakan tingkat intensitas kepentingan elemen operasi A_2 terhadap elemen A_1 . Menurut Saaty (1994), matriks *pairwise comparison* harus memenuhi sifat *reciprocal* (sifat berkebalikan) sehingga memenuhi persamaan :

$$a_{ij} = 1/a_{ji}, i, j = 1, 2, ..., n$$

Langkah selanjutnya setelah semua elemen matriks untuk tiaptiap subkriteria atau unsur-unsur terisi adalah

1. Menormalisasi matriks *pairwise comparison* untuk mencari eigen vektornya sebagai vektor prioritas. Cara menormalisasi matriks adalah dengan membagi setiap entri dengan hasil penjumlahan kolom dari entri tersebut

(
$$z_j = \int_{i=1}^{n} a_{ij}$$
, $j = 1, 2, ..., n$), yang dapat digambarkan sebagai matriks berikut:

C	\mathbf{A}_1	A_2		A_n	
A_1	a_{11}/z_1	a_{12}/z_{2}		a_{1n}/z_n	
A_2	a_{21}/z_{1}	a_{22}/z_2		a_{2n}/z_n	
			1	R	
\mathbf{A}_{n}	a_{n1}/z_1	a_{n2}/z_2		a_{nn}/z_{n}	

2. Mencari prioritas dengan cara merata-rata jumlah entri dalam baris ke-i, untuk setiap i, sehingga didapatkan prioritas yang menunjukkan bobot nilai dari kriteria/subkriteria yang terdapat dalam matriks tersebut.

$$v_i = \frac{a_{ij}}{n}, i, j = 1, 2, ..., n$$

v adalah rata-rata baris matriks A yang telah dinormalisasi, dan v_i menunjukkan prioritas kriteria/subkriteria/alternatif ke-i dalam baris matriks tersebut. Hal ini dapat diilustrasikan sebagai berikut :

C	A_1	A_2		A _n	Prioritas
A_1	a_{11}/z_1	a_{12}/z_2	/ ()	a_{1n}/z_n	v_1
A_2	a_{21}/z_{1}	a_{22}/z_2		a_{2n}/z_n	V_2
	🕱))	Y// \$	
\mathbf{A}_{n}	a_{n1}/z_1	a_{n2}/z_2		a_{nn}/z_n	V _n

Jadi dari ilustrasi di atas dapat diperoleh nilai prioritasnya yaitu ditunjukkan dengan v_i, untuk kriteria ke-i.

Untuk mengisi matriks *pairwise comparison*, digunakan bilangan yang dapat menggambarkan relatif pentingnya suatu elemen di atas elemen yang lain. Tabel 2.2 memuat skala banding berpasang, di mana skala itu mendefinisikan dan menjelaskan nilai 1 sampai dengan 9 yang ditetapkan bagi pertimbangan dalam membandingkan

pasangan elemen yang sejenis di setiap tingkat hirarki terhadap suatu kriteria yang berada setingkat di atasnya.

Tabel 2.2 Skala perbandingan berpasang

Tingkat Kepentingan	Definisi Definisi	Keterangan
i nigkat Kepentingan		
1	Kedua elemen sama	Kedua elemen
	pentingnya	mempunyai
	AVALLITIN	pengaruh yang
DAY		sama besar pada
		sifat itu
3	Elemen yang satu	Pengalaman dan
	sedikit lebih penting	pertimbangan
	dari elemen yang	sedikit mendukung
arolly /	lain	satu elemen atas
7		elemen yang
	2171	lainnnya
5	Elemen yang satu	Pengalaman dan
	sangat penting	pertimbangan
	terhadap elemen	dengan kuat
	yang lain	mendukung satu
		elemen atas elemen
	M	yang lainnya
7	Satu elemen jelas	Satu elemen dengan
	lebih penting dari	kuat didukung dan
	elemen yang lainnya	dominannya telah
		terlihat dalam
		praktek
9	Satu elemen mutlak	Bukti yang
	lebih penting	mendukung elemen
	daripada elemen	yang satu atas yang
	yang lainnya	lain memiliki
	局人	tingkat penegasan
		tertinggi yang
	飞机 当	mungkin
		menguatkan
		AN IBN
2, 4, 6, 8	Nilai-nilai diantara	Kompromi
	dua pertimbangan	diperlukan antara
	yang berdekatan	dua pertimbangan

Kebalikan	$a_{ij} = 1/a_{ji}$	Jika untuk aktivitas i
		mendapat satu angka
	Hall Land	bila dibandingkan
		dengan aktivitas j,
		maka j mempunyai
		nilai kebalikannya
		jika dibandingkan
		dengan i

Sumber: Saaty (1993)

Jika ada n elemen yang akan dibandingkan maka terdapat $\frac{n(n-1)}{2}$ perbandingan antar dua elemen yang harus dilakukan.

2.4 Sintesis

2.4.1 Nilai Eigen dan Vektor Eigen

Misalkan \mathbf{Z}_{nxn} merupakan suatu matriks yang elemen-elemennya terdiri dari z_{ij} ($\mathbf{Z}_{nxn} = (z_{ij})$), di mana i menyatakan baris ke-i dan j menyatakan kolom ke-j dari \mathbf{Z}_{nxn} , di mana i, j = 1, 2, ..., n. Menurut Anton (1998), untuk mencari nilai eigen dari \mathbf{Z}_{nxn}

$$\mathbf{Z} \mathbf{x} = \mathbf{x} \tag{2.1}$$

$$\mathbf{Z} \mathbf{x} = \mathbf{I} \mathbf{x}$$

$$(Z - I) x = 0$$
 , $x \neq 0$. (2.2)

Persamaan (2.2) akan ada penyelesaian jika dan hanya jika:

$$|Z I| = 0. (2.3)$$

Persamaan (2.3) dinamakan persamaan karakteristik untuk \mathbf{Z} dan memiliki n akar. Akar-akar persamaan karakteristik yang dinyatakan dengan $_{i}$, i=1, 2, ..., n, disebut nilai eigen dari \mathbf{Z} . Adapun $\mathbf{x} \neq \mathbf{0}$ yang memenuhi persamaan (2.1) disebut vektor eigen dari \mathbf{Z} .

Jika diketahui elemen-elemen dari suatu tingkat dalam hirarki adalah C_1 , C_2 , ..., C_n dan bobot pengaruh mereka adalah $w_1, w_2, ..., w_n$. Misalkan $a_{ij} = w_i/w_j$ merupakan kekuatan C_i jika dibandingkan dengan C_j . Matriks tersebut dinamakan matriks *pairwise comparison* yang diberi simbol **A**. Matriks **A** merupakan matriks *resiprocal*, sehingga $a_{ji} = 1/a_{ij}$. Jika penilaian sempurna pada setiap

perbandingan, maka $a_{ij} = a_{ik}$. a_{kj} untuk semua i,j,k sehingga **A** dinamakan konsisten. Secara matematik dapat dijabarkan

$$a_{ij} = w_i/w_j$$
, dimana i,j = 1, 2, ..., n
 $a_{ij} (w_j/w_i) = 1$, dimana i,j = 1, 2, ..., n
 $a_{ij} .w_j . \frac{1}{w_i}$ n , dimana i = 1, 2, ..., n atau
 $a_{ij} .w_j .w_j$ nw_i , dimana i = 1, 2, ..., n

dalam bentuk matriks Aw = nw.

Rumus ini menunjukkan bahwa w merupakan vektor eigen dari matriks A dengan nilai eigen n.

Jika a_{ij} tidak didasarkan pada ukuran pasti (seperti $w_1, w_2, ..., w_n$) tetapi pada penilaian subyektif , maka a_{ij} akan menyimpang dari rasio w_i/w_j yang sesungguhnya, dan akibatnya $\mathbf{A}w = nw$ tidak dipenuhi lagi. Dua kenyataan dalam teori matriks memberikan kemudahan. Pertama, jika $\lambda_1, ..., \lambda_n$ adalah angka-angka yang memenuhi persamaan $\mathbf{A}w = \lambda w$ dimana λ merupakan nilai eigen dari matriks \mathbf{A} ,

dan jika
$$a_{ii} = 1$$
, untuk setiap i, maka n .

Karena itu, jika $\mathbf{A}\mathbf{w}=\lambda\mathbf{w}$ dipenuhi maka semua nilai eigen sama dengan nol kecuali nilai eigen yang satu, yaitu sebesar n. Oleh karena itu jelas dalam kasus konsisten, n merupakan nilai eigen \mathbf{A} yang terbesar.

Kedua, jika salah satu a_{ij} dari matriks *reciprocal* atau matriks kebalikan **A** berubah sangat kecil, maka nilai eigen juga berubah sangat kecil. Kombinasinya menjelaskan bahwa jika diagonal matriks **A** terdiri dari $a_{ii} = 1$ dan jika **A** konsisten, maka perubahan kecil pada a_{ij} menahan nilai eigen terbesar, λ maksimum, dekat ke n dan nilai eigen sisanya dekat dengan nol.

Karenanya yang menjadi persoalan adalah jika **A** merupakan matriks *pairwise comparison*, untuk mencari vektor eigen, harus dicari w yang memenuhi

$$\mathbf{A}_{\mathbf{W}} = \lambda_{\text{maks}} \mathbf{w}.$$

Perubahan kecil pada a_{ij} menyebabkan perubahan pada maksimum, penyimpangan maksimum dari n merupakan ukuran konsistensi. Cara untuk mencari maksimum yaitu dengan

menjumlahkan hasil kali setiap entri dalam matriks pairwise comparison dengan entri vektor eigen dalam kolom yang sama dan membaginya dengan entri dalam vektor eigen.

2.4.2 Pengambilan Keputusan

Agar didapatkan prioritas menyeluruh, prioritas lokal harus dihitung terlebih dahulu. Prioritas lokal (local priority) adalah vektor eigen. Prioritas lokal merupakan prioritas elemen-elemen dalam satu tingkat dengan memperhatikan satu kriteria saja.

Gabungan prioritas lokal menjadi prioritas menyeluruh (global priority) bagi alternatif-alternatif yang ada di tingkat paling bawah. Pengalian prioritas lokal elemen alternatif dengan prioritas lokal satu tingkat di atasnya membentuk prioritas menyeluruh yang digunakan sebagai dasar dalam perbandingan berpasangan, kemudian menjumlahkan menurut baris yang bersesuaian. Tabel 2.3 adalah gambaran dari prioritas menyeluruh.

Tabel 2.3 Tabel prioritas menyeluruh

			•			
	Y	C_1	C_2		C_{m}	Prioritas
						Menyeluruh
A_1		$b_{11}P_1$	$b_{12}P_2$	A.	$b_{1m}P_m$	u_1
				NOUTE A		
A_2	!	$b_{21}P_1$	$b_{22}P_2$	Y SIL	$b_{2m}P_m$	u_2
		3 0	$\mathcal{L} \otimes \mathcal{L}$			
•••						3 5
A	n	$b_{n1}P_1$	$b_{n2}P_2$		$b_{nm}P_m$	u_n
	11	111-1	112 2	\ \ \		

di mana : C_j = elemen kriteria

A = elemen alternatif

b_{ii} = prioritas lokal elemen alternatif ke-i berdasarkan elemen kriteria ke-j yang berada satu tingkat di atasnya

P_i = prioritas lokal elemen kriteria

 \mathbf{u}_{i} = prioritas menyeluruh alternatif ke-i, \mathbf{u}_{i} = $b_{ij}P_{j}$ i = 1, 2, ..., n j = 1, 2, ..., m.

$$i = 1, 2, ..., n$$

 $i = 1, 2, ..., m$.

2.5 Pengujian Konsistensi

Jika A adalah matriks *pairwise comparison* yang konsisten maka semua nilai eigen bernilai nol kecuali yang bernilai sama dengan n. Tetapi jika A adalah matriks tak konsisten, variansi kecil atas a_{ij} akan membuat nilai eigen terbesar maks selalu lebih besar atau sama dengan n: maks n. Besarnya ketidakkonsistenan yang terdapat dalam A dapat diteliti menggunakan perbedaan antara maks dengan n, di mana rata-ratanya disebut dengan *consistency index* (CI) dan dinyatakan sebagai berikut:

$$CI = \frac{maks}{n} \frac{n}{1}.$$
 (2.4)

(Saaty, 1994)

Suatu matriks *pairwise comparison* dinyatakan konsisten apabila untuk n = 3 nilai *consistency ratio* (*CR*) 5%, untuk n = 4 nilai *consistency ratio* (*CR*) 8%, sedangkan untuk n 5 (*CR*) 10%. Nilai *CR* yang lebih besar dari kriteria tersebut mengidentifikasikan adanya ketidakkonsistenan, sehingga perlu dilakukan perbaikan untuk memperoleh matriks *pairwise comparison* yang konsisten. *CR* dapat dihitung menggunakan rumus sebagai berikut:

$$CR = \frac{CI}{RI}$$
. (2.5)

di mana RI: random concistency index.

Nilai RI dapat dilihat pada Tabel 2.4.

Tabel 2.4 Random concistency index (RI)

n	1	2	3	4	5	6	77.	28 =	9	10
RI	0	0	0,52	0,89	1,11	1,25	1,35	1,40	1,45	1,49

Sumber: Saaty (2002)

Untuk a_{ij} yang memiliki nilai _{ij} paling jauh menyimpang dari 1 adalah entri penyebab ketidakkonsistenan matriks *pairwise comparison*, di mana untuk menghitung _{ij} digunakan rumus :

$$_{ij} \quad a_{ij} w_j / w_i . \tag{2.6}$$

Cara untuk mengubah ketidakkonsistenan tersebut adalah dengan merubah a_{ii} menjadi w_i/w_i (Saaty, 1994).

2.6 Pengujian Kuisioner

Kualitas data yang dianalisis dan instrumen yang digunakan untuk mengumpulkan data penelitian mempunyai peranan yang penting dalam penetapan kesimpulan penelitian. Instrumen yang digunakan di sini adalah kuisioner. Karakteristik dari sebuah instrumen penelitian yang baik harus memenuhi persyaratan validitas dan reliabilitas. Karenanya untuk mengolah data penelitian langkah pertama yang harus dilakukan adalah menguji apakah kualitas data dan instrumen penelitian yang digunakan valid dan handal.

2.6.1 Uji Validitas

Menurut Singarimbun dan Effendi (1995), validitas menunjukkan sejauh mana suatu alat pengukur dapat mengukur apa yang ingin diukur. Didalam pengumpulan data penelitian, kuisioner yang disusun harus valid. Kuisioner dikatakan valid jika setiap butir pertanyaan memiliki keterkaitan yang tinggi. Setiap butir pertanyaan dikatakan valid jika memiliki nilai korelasi yang tinggi dengan jumlah nilai seluruh pertanyaan. Untuk menghitung korelasi setiap butir pertanyaan dengan seluruh pertanyaan digunakan rumus korelasi *product moment* dari Pearson sebagai berikut:

$$r = \frac{n(-xy) - (-x-y)}{\sqrt{n - x^2 - (-x)^2 - n - y^2 - (-y)^2}}$$

di mana : r = korelasi product moment

n = jumlah responden

x = skor jawaban

y = total skor jawaban

xy = hasil perkalian antara xy.

Kemudian $r(r_{hitung})$ dari tiap butir pertanyaan dibandingkan dengan r_{tabel} r_{n-2} dengan derajat bebas n-2. adalah peluang menolak hipotesis nol (H₀) yang dianggap benar dan umumnya disebut taraf nyata pengujian. Jika r_{hitung} lebih besar dari r_{tabel} maka pertanyaan tersebut valid. Apabila dalam perhitungan ditemukan pernyataan yang tidak valid, kemungkinan pertanyaan tersebut kurang baik susunan kata-kata/kalimatnya, sehingga menimbulkan penafsiran berbeda (Yitnosumarto, 1994).

2.6.2 Uji Reliabilitas

Menurut Singarimbun dan Effendi (1995), langkah selanjutnya setelah uji validitas adalah menguji keandalannya (reliabilitas) dari butir-butir pertanyaan yang telah dinyatakan valid. Reliabilitas adalah indeks yang menunjukkan sejauh mana suatu alat pengukur dapat dipercaya atau dapat diandalkan. Apabila suatu alat pengukur dipakai beberapa kali untuk mengukur gejala yang sama dan hasil yang diperoleh relatif konsisten maka alat pengukur dikatakan handal.

Menurut Malhotra (2002), untuk mengukur reliabilitas bisa menggunakan alpha cronbach. Suatu variabel dikatakan reliabel jika alpha cronbach lebih besar atau sama dengan 0,6. Sartono (2005) memberikan rumus alpha cronbach sebagai berikut:

$$\frac{k}{k-1} \quad 1 \quad \frac{S_i^2}{S_T^2}$$

di mana : k = banyak butir pertanyaan S_i^2 = ragam skor butir pertanyaan ke-i S_T^2 = ragam skor total.

2.7 Rata-rata Geometrik dan Nilai Skala Banding

Pada penelitian ini kuisioner yang digunakan adalah skala likert. Skala likert digunakan untuk mengukur sikap, pendapat dan persepsi seseorang atau sekelompok orang tentang fenomena sosial. Jawaban butir pertanyaan kuisioner dinilai dengan skor yang menyatakan pendapat dari responden (Sugiyono, 2004).

Perbedaan pendapat pada kriteria yang sama bisa terjadi dalam penelitian yang melibatkan banyak responden. Untuk mengatasi hal tersebut, rata-rata geometrik bisa digunakan untuk mendapatkan penilaian akhir (Saaty, 1993). Menurut Yitnosumarto (1994), rata-rata geometrik dihitung dengan rumus:

$$\overline{X}_g = \sqrt[n]{\prod_{i=1}^n X_i} \tag{2.7}$$

di mana : \overline{X}_g = rata-rata geometri n = banyak data

 X_i = skor yang diberikan atau besar data.

Rata-rata geometrik harus ditransformasikan terlebih dahulu ke skala dalam AHP untuk menentukan tingkat kepentingan satu elemen terhadap elemen yang lain sesuai dengan skala yang ada dalam AHP. Transformasi ini menggunakan Nilai Skala Banding (NSB).

$$NSB = \frac{Nilai \ Tertinggi - Nilai \ Terendah}{Q} . \tag{2.8}$$

Tingkat kepentingan satu elemen terhadap elemen yang lain sebagai entri matriks *pairwise comparison* ditentukan sebagai berikut :

$$a_{ij} = \frac{\textit{Tipe yang dibandingkan} - \textit{Tipe pembanding}}{\textit{NSB}} \quad . \quad (2.9)$$

Jika nilai a_{ij} positif maka nilai tersebut sebagai entri baris ke-i kolom ke-j dalam matriks *pairwise comparison*. Jika hasilnya negatif maka nilai tersebut sebagai entri baris ke-j kolom ke-i dengan nilai harga mutlak angka tersebut.

2.8 Penarikan Sampel

Menurut Supranto (1992), sampel adalah sebagian dari populasi. Sedangkan populasi adalah kumpulan yang lengkap dari seluruh elemen yang sejenis, tetapi dapat dibedakan karena karakteristiknya. Besarnya elemen sampel yang diteliti harus dapat mewakili populasi sampel berasal.

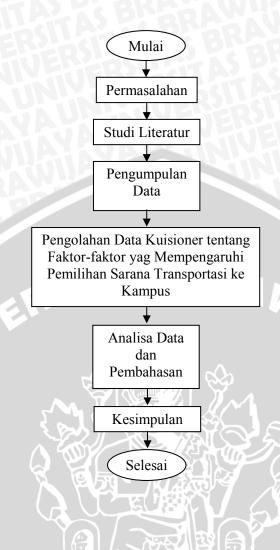
Keuntungan menggunakan sampel adalah:

- 1. Karena subyek pada sampel lebih sedikit dibandingkan dengan populasi, maka akan lebih mudah untuk memperoleh data.
- 2. Apabila populasinya terlalu besar, maka dikhawatirkan ada yang terlewati.
- 3. Dengan penelitian sampel, maka akan lebih efisien dalam arti biaya, waktu dan tenaga.
- 4. Ada kalanya dengan penelitian populasi berarti destruktif.
- 5. Ada bahaya bias dari pengumpul data. Karena subyeknya banyak, pengumpul data menjadi lelah sehingga pencatatannya menjadi tidak teliti.

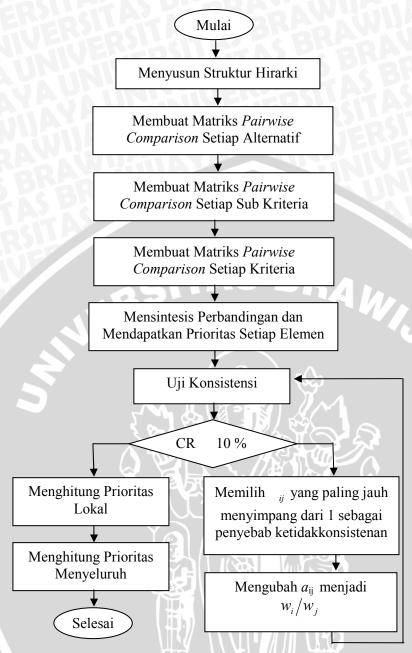
Sampel yang digunakan di sini berupa kuisioner. Kuisioner adalah sejumlah pertanyaan tertulis yang digunakan untuk memperoleh informasi dari responden.

BAB III METODE PENELITIAN

3.1 Sumber Data


Data yang digunakan adalah data hasil survei dengan kuisioner. Responden penelitian adalah mahasiswa, dosen dan karyawan Universitas Brawijaya. Responden diambil dari setiap fakultas sebanyak 15 kuisioner. Jumlah sampel yang digunakan yaitu 150 responden.

3.2 Metode Analisis


Langkah-langkah yang dilakukan dalam penelitian adalah sebagai berikut :

- 1. Langkah pertama adalah menyusun struktur hirarki.
- 2. Langkah kedua yang dilakukan dalam pengumpulan data, yaitu:
 - a. Mengujicobakan kuisioner sebelum menyebar kuisioner pada survei yang sesungguhnya. Survei pendahuluan dilakukan kepada pada 36 mahasiswa yang diambil secara acak
 - b. Memberikan skor jawaban pada setiap butir pertanyaan kuisioner survei pendahuluan.
 - c. Melakukan uji validitas pada setiap butir pertanyaan kuisioner survei pendahuluan. Jika terdapat pertanyaan yang tidak valid maka butir pertanyaan tersebut dibuang. Butir pertanyaan yang tersisa diuji validitas lagi. Perhitungan dalam uji validitas dilakukan dengan menggunakan bantuan software SPSS versi 11.5.
 - d. Melakukan uji reliabilitas terhadap butir pertanyaan kuisioner yang sudah valid. Butir pertanyaan yang reliabel dapat digunakan sebagai butir pertanyaan kuisioner pada survei yang sesungguhnya. Perhitungan dalam uji reliabilitas dilakukan dengan menggunakan bantuan *software* SPSS versi 11.5.
- 3. Langkah ketiga yang dilakukan adalah melakukan survei sesungguhnya kepada sejumlah sampel yang telah ditetapkan sebelumnya. Kemudian memberikan skor jawaban pada butir pertanyaan kuisioner survei yang sesungguhnya.

- 4. Langkah keempat yaitu pengolahan data dengan langkah-langkah sebagai berikut :
 - a. Menghitung rata-rata geometrik dari jawaban responden. Perhitungan rata-rata geometrik sesuai dengan persamaan (2.7).
 - b. Menghitung nilai skala banding (NSB) untuk setiap perbandingan berpasangan. Untuk menghitung NSB digunakan persamaan (2.8).
 - c. Menyusun matriks *pairwise comparison* sesuai dengan persamaan (2.9).
 - d. Menguji konsistensi pada setiap matriks *pairwise comparison*. Kemudian menghitung CI sesuai dengan persamaan (2.4). Berikutnya menghitung CR sesuai dengan persamaan (2.5). Jika terdapat matriks *pairwise comparison* yang tidak konsisten maka melakukan perbaikan martriks *pairwise comparison* dengan menghitung $_{ij}$ sesuai persamaan (2.6), kemudian memilih a_{ij} yang memiliki $_{ij}$ paling jauh menyimpang dari 1 sebagai entri penyebab ketidakkonsistenan. Kemudian merubahnya menjadi w_i/w_i .
- 5. Langkah kelima yang dilakukan yaitu menganalisa data dan pembahasan. Pengambilan keputusan dilakukan dengan menghitung prioritas lokal untuk setiap matriks *pairwise comparison* sehingga diperoleh prioritas elemen-elemen dalam satu tingkat dengan memperhatikan satu kriteria saja. Langkah berikutnya adalah menghitung prioritas menyeluruh bagi elemen alternatif. Perhitungan dilakukan dengan bantuan *software microsoft Excel*. Diagram alir dari metode penelitian bisa dilihat pada Gambar 3.1.

Gambar 3.1 Diagram alir metode penelitian

Gambar 3.2 Diagram Alir Langkah Metode AHP

BAB IV HASIL DAN PEMBAHASAN

4.1 Penyusunan Hirarki

Susunan hirarki penelitian terdiri dari 4 tingkat yaitu tujuan, kriteria, sub kriteria dan alternatif. Adapun rinciannya adalah sebagai berikut :

- 1. Tingkat pertama: Tujuan
- 2. Tingkat kedua : Faktor-faktor yang berpengaruh terhadap pemilihan sarana transportasi, terdiri dari :
 - a. Kriteria keamanan
 - b. Kriteria kenyamanan
 - c. Kriteria biaya
 - d. Kriteria waktu
- 3. Tingkat ketiga : Sub kriteria dari masing-masing kriteria Sub kriteria keamanan antara lain :
 - a. Tindak kriminalitas
 - b. Resiko kecelakaan
 - c. Gangguan lingkungan sekitar Sub kriteria kenyamanan antara lain :
 - a. Perlindungan dari cuaca
 - b. Privasi dari orang lain
 - c. Ketenangan selama perjalanan Sub kriteria waktu antara lain :
 - a. Jarak ke kampus
 - b. Lama waktu untuk melakukan perjalanan
 - c. Kelancaran selama perjalanan
 - d. Ketepatan waktu sampai tujuan
 - e. Kebebasan melakukan perjalanan setiap saat
- 4. Tingkat keempat : sarana transportasi yang dipilih, yang terdiri dari mobil, sepeda motor, angkutan umum, antar jemput, dan jalan kaki.

4.2 Pengujian Kuisioner Survei Pendahuluan

Data yang digunakan dalam penelitian ini adalah data primer yaitu hasil survei terhadap responden dengan menggunakan kuisioner. Sebelum data yang diperoleh diolah lebih lanjut sebaiknya terlebih dahulu dilakukan uji validitas dan reliabilitas terhadap

BRAWIJAYA

jawaban butir pertanyaan kuisioner survei pendahuluan. Pada survei pendahuluan, kuisioner diujicobakan pada 36 responden yang diambil secara acak. Uji validitas dilakukan menggunakan korelasi *product moment* dari Pearson. Korelasi ini merupakan korelasi antara skor setiap butir pertanyaan dengan total skor variabel. Didalam uji reliabilitas digunakan *alpha cronbrach*. Nilai korelasi (r) dan *alpha cronbrach* (α) dapat dilihat pada Tabel 4.1.

Tabel 4.1 Nilai korelasi dan alpha cronbach

Nilai Korelasi Pertanyaan	Korelasi (r)	Alpha cronbrach (α)
2	0,879	
3	0,781	0,7280
4	0,751	
5	0,780	BRA.
6	0,719	0,7750
7	0,678	
9	0,801	
10	0,808	
11	0,726	0,7111
12	0,472	
13	0,580	

Sumber: Pengolahan Data

Dengan derajat bebas 34 dan *alpha* 0,05 diperoleh r_{Tabel} sebesar 0,339, semua pertanyaan mempunyai r_{hitung} lebih besar dari r_{Tabel} , hal ini menunjukkan bahwa pertanyaan kuisioner valid. Nilai r_{Tabel} dapat dilihat dalam Lampiran 2. *Alpha cronbrach* yang diperoleh dari semua pertanyaan lebih dari 0,6, hal ini menunjukkan semua pertanyaan reliabel. Jadi kuisioner dapat digunakan dalam survei berikutnya. Perhitungan nilai korelasi (r) dan *alpha conbrach* (α) dapat dilihat pada Lampiran 3.

4.3 Perhitungan Hasil Kuisioner

Setelah jawaban kuisioner terkumpul, kemudian jawaban tersebut diberi skor dan dihitung rata-rata geometriknya. Sementara itu frekuensi dan rata-rata geometrik dapat dilihat di Lampiran 6. Didalam mentransformasikan skor jawaban ke dalam skala AHP digunakan nilai skala banding (NSB). Hasil perhitungan NSB dapat dilihat di Lampiran 7.

4.4 Penyusunan Entri Matriks Banding Berpasang, Perhitungan Vektor Eigen, Nilai Eigen dan Uji Konsistensi

4.4.1 Kriteria

Pada hirarki terdapat empat kriteria yaitu kriteria keamanan, kenyamanan, biaya dan waktu, sehingga terdapat empat elemen yang harus dibandingkan. Dengan demikian matriks *pairwise comparison* yang diperoleh berordo 4x4. Matriks *pairwise comparison* dapat dilihat pada Tabel 4.2. Dalam matriks ini, elemen dalam kolom sebelah kiri dibandingkan dengan elemen yang berada di baris atas berkenaan dengan sifat di sudut kiri atas. Perhitungan dalam matriks *pairwise comparison* kriteria yang selengkapnya dapat dilihat pada Lampiran 8.

Tabel 4.2 Matriks pairwise comparison antar kriteria

Kriteria	keamanan	kenyamanan	biaya	waktu	prioritas
keamanan	1,0000	8,4724	9,0000	5,8022	0,6869
kenyamanan	0,1180	1,0000	0,5276	0,3745	0,0610
biaya	0,1111	1,8955	1,0000	0,3127	0,0822
waktu	0,1723	2,6702	3,1978	1,0000	0,1699

Sumber: Pengolahan Data

 $\lambda_{\text{maks}} = 4,1330$ CI = 0,0443
CR = 0.0498

Pada Tabel 4.4 dapat dilihat bahwa CR matriks *pairwise comparison* kriteria adalah 4,98 %, dengan demikian matriks tersebut konsisten.

4.4.2 Sub Kriteria Berdasarkan Kriteria Keamanan

Kriteria keamanan terdiri dari sub kriteria tindak kriminalitas, resiko kecelakaan dan gangguan lingkungan sekitar, dengan demikian matriks *pairwise comparison* yang terbentuk adalah 3x3. Kriteria keamanan menunjukkan keamanan selama melakukan perjalanan ke kampus, yaitu rasa aman dari adanya tindakan kriminalitas, keselamatan dari resiko kecelakaan dan dari adanya gangguan lingkungan sekitar yaitu gangguan sebelum dan sesudah melakukan perjalanan. Matriks *pairwise comparison* antar sub kriteria berdasarkan kriteria keamanan beserta vektor eigen, nilai eigen maksimum dan konsistensi rasio dapat dilihat pada Lampiran 9. Nilai CR yang diperoleh adalah 3,42 %, sehingga matriks *pairwise comparison* tersebut konsisten. Konsisten artinya semua elemen telah dikelompokkan secara homogen dan relasi antar kriteria saling membenarkan secara logis.

4.4.3 Sub Kriteria Berdasarkan Kriteria Kenyamanan

Kriteria kenyamanan terdiri dari sub kriteria perlindungan cuaca, privasi dari orang lain dan ketenangan selama perjalanan, dengan demikian matriks *pairwise comparison* yang terbentuk adalah 3x3. Kriteria kenyamanan lebih menunjukkan pada fasilitas yang tersedia selama perjalanan, yaitu perlindungan dari cuaca, privasi dari orang lain yaitu kebebasan untuk melakukan segala sesuatu selama dalam perjalanan, dan suasana tenang selama perjalanan. Matriks *pairwise comparison* sub kriteria berdasarkan kriteria kenyamanan, vektor eigen dan konsistensi rasio dapat dilihat pada Lampiran 9. Nilai CR yang diperoleh dari sub kriteria kenyamanan adalah 3,56 %, yang berarti bahwa matriks *pairwise comparison* tersebut konsisten.

4.4.4 Sub Kriteria Berdasarkan Kriteria Biaya

Kriteria biaya tidak memiliki sub kriteria oleh karena itu perhitungan langsung diperoleh dari perbandingan antar alternatif. Faktor biaya merupakan semua biaya yang langsung dikeluarkan untuk melakukan perjalanan.

4.4.5 Sub Kriteria Berdasarkan Kriteria Waktu

Kriteria waktu terdiri dari sub kriteria jarak ke kampus, waktu tempuh ke kampus, ketepatan waktu sampai tujuan, kelancaran selama perjalanan dan kebebasan melakukan perjalanan setiap saat, dengan demikian matriks *pairwise comparison* yang terbentuk adalah 5x5. Matriks *pairwise comparison* sub kriteria berdasarkan kriteria waktu, vektor eigen dan konsistensi rasio dapat dilihat pada Lampiran 9. Nilai CR yang diperoleh dari sub kriteria waktu adalah 2,55 % yang berarti matriks *pairwise comparison* tersebut konsisten.

4.4.6 Alternatif Berdasarkan Sub Kriteria

Perbandingan antar alternatif berdasarkan sub kriteria terdapat 11 matriks *pairwise comparison*, di mana secara lengkap dapat dilihat pada Lampiran 10. Ringkasan nilai CR ditampilkan pada Tabel 4.3.

Tabel 4.3 *Consistensy ratio* (CR) untuk matriks perbandingan antar alternatif berdasarkan sub kriteria.

anemati berdasarkan sub kriteria.						
Sub kriteria	CR					
Tindak kriminalitas	0,0167					
Resiko kecelakaan	0,0733					
Gangguan lingkungan sekitar	0,0160					
Perlindungan cuaca	0,0538					
Privasi orang lain	0,0731					
Ketenangan selama	0,0226					
perjalanan						
Jarak ke kampus	0,0341					
Waktu tempuh ke kampus	0,0340					
Kelancaran selama perjalanan	0,0604					
Ketepatan waktu sampai	0,0453					
tujuan						
Kebebasan melakukan	0,0713					
perjalanan setiap saat						

Sumber: Pengolahan Data

Pada sub kriteria resiko kecelakaan, matriks *pairwise comparison* antar alternatif dapat dilihat pada Tabel 4.4. Perhitungan dalam

matriks *pairwise comparison* lebih lengkap dapat dilihat pada Lampiran 10.

Tabel 4.4 Matriks pairwise comparison antar alternatif

resiko kecelakaan	mobil	sepeda motor	angkutan umum	antar jemput	jalan kaki	prioritas
mobil	1,0000	4,9137	0,2562	2,8352	0,1111	0,1309
sepeda motor	0,2035	1,0000	0,2702	0,3800	0,1137	0,0405
angkutan umum	3,9038	3,7003	1,0000	1,0687	0,1962	0,1591
antar jemput	0,3527	2,6316	0,9357	1,0000	0,1622	0,0926
jalan kaki	9,0000	8,7965	5,0962	6,1648	1,0000	0,5770

Sumber: Pengolahan Data

 $\lambda_{\text{maks}} = 5,6688$ CI = 0,1672
CR = 0,1506

Pada Tabel 4.4 terlihat bahwa matriks *pairwise comparison* antar alternatif mempunyai CR = 0,1506. Menurut Saaty (1994), Matriks *pairwise comparison* berordo 5x5 dinyatakan konsisten jika CR ≤ 10%. Dengan demikian matriks tersebut tidak konsisten. Oleh karena itu harus dilakukan perbaikan terhadap perbandingan antar alternatif. Untuk mengetahui penyebab ketidakkonsistenan matriks *pairwise comparison*, maka dicari entri matriks yang memiliki nilai _{ij} paling jauh menyimpang dari 1. Nilai _{ij} matriks *pairwise comparison* antar alternatif sub kriteria resiko kecelakaan dapat dilihat pada Tabel 4.5.

Tabel 4.5 Tabel $_{ij} = a_{ij} w_j / w_i$

resiko	22/17	sepeda	angkutan	antar	jalan
kecelakaan	mobil	motor	umum	jemput	kaki
mobil	1,0000	1,5194	0,3114	0,1813	0,4898
sepeda		#11:	104	2112	450
motor	0,6582	1,0000	1,0623	0,8696	1,6207
angkutan			NATT V	7	0611
umum	3,2117	0,9413	1,0000	0,6221	0,7117
antar	THA!				M = 10
jemput	0,4984	1,1500	1,6073	1,0000	1,0105
jalan kaki	2,0416	0,6170	1,4052	0,9896	1,0000

Sumber: Pengolahan Data

Pada Tabel 4.5 dapat dilihat bahwa nilai $_{13}$ = 3,2117 merupakan nilai yang paling menyimpang dari 1. Dengan demikian penilaian terhadap alternatif mobil dibandingkan dengan alternatif angkutan umum harus diperbaiki dengan nilai w_1 / w_3 , sehingga diperoleh a_{13} yang baru :

$$a_{13} = \frac{w_1}{w_3}$$

$$= \frac{0,1309}{0,1591}$$

$$= 1,2155$$

Matriks *pairwise comparison* yang diperbaiki dapat dilihat pada Tabel 4.6, sedangkan untuk perhitungan lebih lengkap dapat dilihat pada Lampiran 10.

BRAWIJAYA

Tabel 4.6 Matriks *pairwise comparison* antar alternatif sub kriteria resiko kecelakaan

resiko	11313	sepeda	angkutan	antar	jalan
kecelakaan	Mobil	motor	umum	jemput	kaki
mobil	1,0000	4,9137	0,8227	2,8352	0,1111
sepeda		THE	MITTER	20511	Let
motor	0,2035	1,0000	0,2702	0,3800	0,1137
angkutan				III VA	H-IPO
umum	1,2155	3,7003	1,0000	1,0687	0,1962
antar					
jemput	0,357	2,6316	0,9357	1,0000	0,1622
jalan kaki	9,0000	8,7965	5,0962	6,1648	1,0000

Sumber: Pengolahan Data

 $\lambda_{\text{maks}} = 5,3255$ CI = 0,0814
CR = 0,0733

Pada Tabel 4.6 dapat dilihat bahwa matriks *pairwise comparison* antar alternatif sub kriteria resiko kecelakaan memiliki CR 10 %, dengan demikian matriks *pairwise comparison* tersebut konsisten. Ketidakkonsistenan ini juga terjadi pada matriks *pairwise comparison* antar alternatif sub kriteria perlindungan cuaca. Matriks *pairwise comparison*, vektor eigen dan konsistensi rasio dapat dilihat pada Lampiran 10. Setelah semua matriks yang tidak konsisten diperbaiki maka diketahui bahwa matriks *pairwise comparison* antar alternatif dari masing-masing sub kriteria memiliki CR 10 %. Dengan demikian semua matriks tersebut konsisten.

4.4.7 Alternatif berdasarkan kriteria biaya

Kriteria biaya tidak memiliki sub kriteria, sehingga alternatif langsung dibandingkan berdasarkan kriteria. Matriks *pairwise comparison* alternatif berdasarkan kriteria biaya dapat dilihat pada Lampiran 10. Kriteria biaya memiliki CR 2,07 % yang berarti bahwa matriks tersebut konsisten.

4.5 Pengambilan Keputusan

Dari sub bab 4.4 diketahui bahwa semua matriks *pairwise comparison* konsisten. Langkah selanjutnya yaitu pengambilan keputusan dengan prioritas lokal dan prioritas menyeluruh.

4.5.1 Prioritas Lokal (*Local Priority*)

Prioritas lokal merupakan prioritas elemen-elemen dalam satu level dengan hanya mempertimbangkan satu kriteria saja. Perhitungan *local priority* dilakukan dengan mengalikan bobot nilai masing-masing unsur dengan prioritas tiap-tiap unsur dalam kriteria tersebut. Hasil perhitungan dapat dilihat pada tabel berikut:

Tabel 4.7 Local Priority Kriteria Keamanan

	tindak	resiko	gangguan	local
alternatif	kriminalitas	kecelakaan	sekitar	priority
	0,5434	0,4021	0,0546	
mobil	0,0663	0,1475	0,0500	0,0980
sepeda				
motor	0,3035	0,0406	0,1779	0,1909
angkutan				
umum	0,0372	0,1239	0,0669	0,0737
antar	\sim			
jemput	0,1450	0,0920	0,5946	0,1482
jalan kaki	0,4481	0,5960	0,1107	0,4891

Sumber: Pengolahan Data

Berdasarkan Tabel 4.7 diperoleh prioritas tertinggi dimiliki oleh jalan kaki. Jadi menurut kriteria keamanan jalan kaki paling diminati daripada alternatif yang lain.

Tabel 4.8 Local Priority Kriteria Kenyamanan

	perlindungan	privasi	BRS	local
alternatif	cuaca	orang lain	ketenangan	priority
	0,3149	0,0586	0,6265	
mobil	0,6351	0,2310	0,3290	0,4197
sepeda			41-1967	LATT P
motor	0,0526	0,1556	0,0794	0,0754
angkutan	VALET	VALLE		111111
umum	0,0877	0,0304	0,0324	0,0497
antar	Section 1			
jemput	0,1498	0,2360	0,3433	0,2761
jalan kaki	0,0748	0,3469	0,2158	0,1791

Sumber: Pengolahan Data

Berdasarkan Tabel 4.8 diperoleh prioritas tertinggi dimiliki oleh mobil. Jadi menurut kriteria kenyamanan mobil paling diminati sebagai sarana transportasi ke kampus.

Karena biaya tidak memiliki sub kriteria maka prioritas lokal langsung diperoleh dari tujuan.

Tabel 4.9 Local Priority Kriteria Biaya

Biaya	local priority
mobil	0,0499
sepeda motor	0,0968
angkutan umum	0,0501
Antar jemput	0,5226
jalan kaki	0,2806

Sumber: Pengolahan Data

Berdasarkan Tabel 4.9 diperoleh prioritas tertinggi dimiliki oleh antar jemput. Jadi menurut kriteria biaya antar jemput paling banyak diminati karena tidak mengeluarkan biaya.

Misalkan JK = jarak ke kampus, WK = waktu tempuh ke kampus, KP = kelancaran selama perjalanan, KW = ketepatan waktu sampai tujuan dan KS = kebebasan melakukan perjalanan setiap saat.

Tabel 4.10 Local Priority Kriteria Waktu

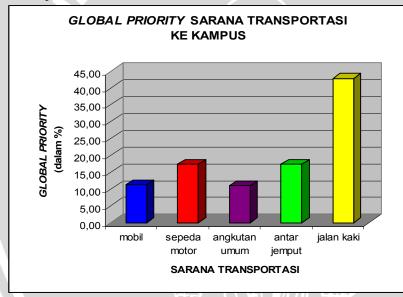
们自让	JK	WK	KP	KW	KS	local
alternatif	124	3011		(6 15)		priority
	0,0949	0,0971	0,2594	0,5093	0,0392	
mobil	0,0997	0,1251	0,0844	0,0851	0,2042	0,0948
sepeda motor	0,2069	0,2237	0,1262	0,1712	0,4348	0,1783
angkutan umum	0,0437	0,0371	0,0541	0,5644	0,0317	0,3105
antar jemput	0,0870	0,1122	0,1014	0,0425	0,0967	0,0709
jalan kaki	0,5627	0,5019	0,6339	0,1368	0,2326	0,3454

Sumber: Pengolahan Data

Berdasarkan Tabel 4.10 diperoleh prioritas tertinggi dimiliki oleh jalan kaki. Jadi menurut kriteria waktu jalan kaki paling banyak diminati sebagai sarana transportasi ke kampus.

4.5.2 Prioritas Menyeluruh (Global Priority)

Prioritas menyeluruh merupakan prioritas yang memperhatikan seluruh kriteria. Prioritas menyeluruh ditentukan dari penjumlahan hasil perkalian antara vektor eigen sub kriteria dengan vektor eigen dari kriteria yang bersesuaian. Alternatif yang memiliki nilai prioritas menyeluruh paling besar merupakan alternatif yang menjadi prioritas mahasiswa dalam memilih sarana transportasi ke kampus. Perhitungan dari prioritas menyeluruh bisa dilihat pada Tabel 4.11.



Tabel 4.11 *Global Priority* Alternatif Keputusan

			3 1977	450	global
alternatif	keamanan	kenyamanan	biaya	waktu	priority
	0,6869	0,0610	0,0822	0,1699	
mobil	0,0980	0,4197	0,0499	0,0948	0,1132
sepeda motor	0,1909	0,0754	0,0968	0,1783	0,1740
angkutan umum	0,0737	0,0497	0,0501	0,3105	0,1105
antar jemput	0,1482	0,2761	0,5226	0,0709	0,1737
jalan kaki	0,4891	0,1791	0,2806	0,3454	0,4287

Sumber: Pengolahan Data

Berdasarkan Tabel 4.11 diperoleh prioritas tertinggi dalam memilih sarana transportasi ke kampus adalah jalan kaki dan berturut-turut diikuti sepeda motor, antar jemput, mobil dan angkutan umum. Secara grafik, *global priority* alternatif keputusan dapat dilihat pada Gambar 4.1.

Sumber: Pengolahan Data

4.5.3 Pengadaan Angkutan Kampus

Untuk pemilihan angkutan kampus yang belum ada, responden diberikan gambaran berupa mini bus yang beroperasi di luar kampus di mana memenuhi kriteria aman, nyaman, biaya murah, dan tepat waktu. Responden cukup menanggapi adanya angkutan kampus, hal ini dapat dilihat dari hasil penyebaran kuisioner. Dari 150 kuisioner diperoleh 66,667 % responden diantaranya menyetujui adanya angkutan kampus dengan urutan prioritas keamanan, waktu, biaya dan kenyamanan.

BAB V KESIMPULAN DAN SARAN

5.1 Kesimpulan

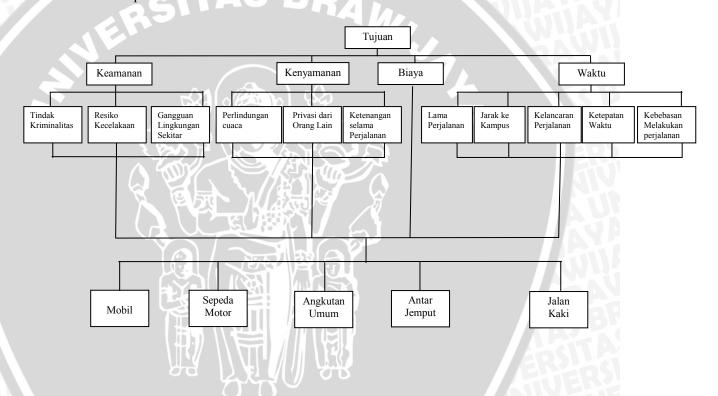
Berdasarkan pembahasan sebelumnya dapat diperoleh kesimpulan sebagai berikut :

- 1. Setelah melakukan perhitungan menggunakan AHP didapatkan bahwa faktor utama yang mempengaruhi pemilihan sarana transportasi ke kampus adalah faktor keamanan sebesar 68,69 %, selanjutnya adalah waktu sebesar 16,99 %. Faktor berikutnya yang mempengaruhi adalah biaya sebesar 8,22 % dan terakhir kenyamanan sebesar 6,10 %.
- Pengambilan keputusan prioritas lokal dengan memperhatikan kriteria keamanan dan memperhatikan sub kriteria tindak kriminalitas, resiko kecelakaan dan gangguan lingkungan sekitar maka jalan kaki memperoleh prioritas utama sebesar 48,91 % diikuti dengan sepeda motor 19,09 %. Dari kriteria kenyamanan diperoleh mobil sebagai prioritas utama sebesar 41,97 % dan prioritas terakhir adalah angkutan umum sebesar 4,97 %. Untuk kriteria biaya, antar jemput merupakan sarana transportasi yang paling diminati sebesar 52,26 % diikuti dengan jalan kaki karena dianggap tidak mengeluarkan biaya. Sedangkan untuk kriteria waktu diperoleh prioritas utama adalah jalan kaki sebesar 34,54 %. Sementara itu berdasarkan pengambilan keputusan dengan prioritas menyeluruh dapat disimpulkan jalan kaki menjadi prioritas utama sebagai sarana transportasi ke kampus sebesar 42,87 %. Kemudian diikuti sepeda motor sebesar 17,40 %, antar jemput sebesar 17,37 %, mobil sebesar 11,32 % dan terakhir angkutan umum sebesar 11,05 %.

5.2 Saran

Saran yang dapat diberikan setelah penulisan tugas akhir ini adalah untuk penulis selanjutnya bisa menambahkan faktor-faktor lain yang mempengaruhi pemilihan sarana transportasi ke kampus sehingga diperoleh hasil yang lebih lengkap. Selain itu juga bisa ditambahkan pembahasan mengenai analisis sensitivitas sehingga dapat diketahui kecenderungan pemilihan masing-masing sarana transportasi ke kampus berdasarkan perubahan pada setiap faktornya.

DAFTAR PUSTAKA


- Anton, H. 1998. *Aljabar Linier Elementer*. Edisi Kelima. Erlangga. Jakarta.
- Kosasi, S. 2002. *Sistem Penunjang Keputusan*. Proyek
 Peningkatan Penelitian Pendidikan Tinggi Direktorat Jendral
 Pendidikan Tinggi Departemen Pendidikan Nasional.
 Jakarta.
- Malhotra, N. K. 2002. Basic Marketing Research Applications to Contemporary Issue. Prentice Hall. New Jersey.
- Mulyono, S. 1991. *Operation Research*. Fakultas Ekonomi UI. Jakarta.
- Saaty, T.L. 1993. *Pengambilan Keputusan bagi para Pemimpin*. Cetakan kedua. Penerjemah : Setiono, L. Gramedia. Jakarta.
 - . 1994. Fundamental of Decisions Making and Priority
 Theory with the Analytic Hierarchy Process. Edisi ke-1.
 Universitas Pittsburgh. USA.
 - . 2002. Hard Mathematics Applied to Soft Decisions. INSAHP II. Universitas Kristen Petra. Surabaya.
- Sartono, B. 2005. *Mengukur Validitas dan Reliabilitas Alat Ukur*. http://www.geocities.com/bagusco4/mybook/8.html. Tanggal akses 9 Maret 2007.
- Singarimbun, M. dan S. Effendi. 1995. *Metode Penelitian Survai*. Lembaga Penelitian. Pengembangan dan Penerangan Ekonomi dan Sosial. Jakarta.
- Sugiono. 2004. *Metode Penelitian Bisnis*. Cetakan ketujuh. Alfabeta. Bandung.
- Supranto, J. 1992. *Teknik Sampling untuk Survei dan Eksperimen*. Cetakan pertama. Rineka Cipta. Jakarta.

Yitnosumarto, S. 1994. *Dasar-dasar Statistika dengan Penekanan Terapan dalam Bidang Agrokompleks, Teknologi dan Sosial.* Rajagrafindo Persada. Jakarta.

BRAWIJAYA

Lampiran 1. Hirarki untuk Menentukan Faktor-faktor yang Mempengaruhi Pemilihan Sarana Transportasi ke Kampus

BRAWIJAYA

Lampiran 2. Nilai kritik dari koefisien korelasi r

Derajat	5%	1%	Derajat	5%	1%
kebebasan		1-111-4	kebebasan	HAS.	
3	0,997	1,000	26	0,388	0,496
4	0,950	0,990	27	0,381	0,487
5	0,878	0,959	28	0,374	0,479
6	0,811	0,917	29	0,367	0,471
7	0,754	0,875	30	0,361	0,463
8	0,707	0,834	32	0,349	0,449
9	0,666	0,798	34	0,339	0,436
10	0,632	0,765	36	0,329	0,424
11	0,602	0,735	38	0,320	0,413
12	0,576	0,708	40	0,312	0,403
13	0,553	0,684	42	0,304	0,393
14	0,532	0,661	44	0,297	0,384
15	0,514	0,641	46	0,291	0,376
16	0,497	0,623	48	0,285	0,368
17	0,482	0,606	50	0,279	0,361
18	0,468	0,590	55	0,266	0,345
19	0,456	0,575	60	0,254	0,330
20	0,444	0,561	65	0,244	0,317
21	0,433	0,549	70	0,235	0,306
22	0,423	0,537	75	0,227	0,296
23	0,413	0,526	80	0,220	0,286
24	0,404	0,515	85	0,213	0,278
25	0,396	0,505	90	0,207	0,270

42

Lampiran 3. Hasil perhitungan nilai korelasi dan *alpha cronbach* menggunakan SPSS 11.5

Kriteria Keamanan

Correlations

		VAR00001	VAR00002	VAR00003	VAR00004
VAR00001	Pearson Correlation	1	.550(**)	.513(**)	.879(**)
	Sig. (2-tailed)		.001	.001	.000
	N	36	36	36	36
VAR00002	Pearson Correlation	.550(**)	1	.350(*)	.781(**)
	Sig. (2-tailed)	.001	_	.036	.000
	N	36	36	36	36
VAR00003	Pearson Correlation	.513(**)	.350(*)	1	.751(**)
	Sig. (2-tailed)	.001	.036	<u>.</u>	.000
	N	36	36	36	36
VAR00004	Pearson Correlation	.879(**)	.781(**)	.751(**)	1
	Sig. (2-tailed)	.000	.000	.000	
	N	36	36	36	36

^{**} Correlation is significant at the 0.01 level (2-tailed).

* Correlation is significant at the 0.05 level (2-tailed).

Lampiran 3 (Lanjutan)

***** Method 2 (covariance matrix) will be used for this analysis *****

RELIABILITY ANALYSIS - SCALE (ALPHA)

5	4	Mean	Std Dev	Cases
1.	VAR00001	2.1944	.7099	36.0
2.	VAR00002	2.0000	.5855	36.0
3.	VAR00003	2.5556	.5578	36.0

N of Cases = 36.0

Reliability Coefficients 3 items

Alpha = .7280

Standardized item alpha = .7276

SITAS BRAWIUS Lampiran 3 (Lanjutan)

Kriteria Kenyamanan

Correlations

		VAR00001	VAR00002	VAR00003	VAR00004
VAR00001	Pearson Correlation	1	.501(**)	.486(**)	.780(**)
	Sig. (2-tailed)	_	.002	.003	.000
	N	36	36	36	36
VAR00002	Pearson Correlation	.501(**)	1	.659(**)	.719(**)
	Sig. (2-tailed)	.002	_	.000	.000
	N	36	36	36	36
VAR00003	Pearson Correlation	.486(**)	.659(**)	1	.678(**)
	Sig. (2-tailed)	.003	.000		.000
	N	36	36	36	36
VAR00004	Pearson Correlation	.780(**)	.719(**)	.678(**)	1
	Sig. (2-tailed)	.000	.000	.000	
	N	36	36	36	36

^{**} Correlation is significant at the 0.01 level (2-tailed).

TAS BRAW

Lampiran 3 (Lanjutan)

***** Method 2 (covariance matrix) will be used for this analysis *****

RELIABILITY ANALYSIS - SCALE (ALPHA)

	~ M	Mean	Std Dev	Cases
1.	VAR00001	2.5000	1.2306	36.0
2.	VAR00002	2.9722	1.1829	36.0
3.	VAR00003	3.0556	.9545	36.0
			Ke y	

N of Cases = 36.0

Reliability Coefficients 3 items

Alpha = .7750

Standardized item alpha = .7849

Lampiran 3 (Lanjutan)

Kriteria Waktu

Correlations

		VAR00001	VAR00002	VAR00003	VAR00004	VAR00005	VAR00006
VAR00001	Pearson Correlation	1	.735(**)	.532(**)	.051	.381(*)	.801(**)
	Sig. (2-tailed)		.000	.001	.767	.022	.000
	N	36	36	36	36	36	36
VAR00002	Pearson Correlation	.735(**)	1	.463(**)	.190	.281	.808(**)
	Sig. (2-tailed)	.000	-	.004	.268	.097	.000
	N	36	36	36	36	36	36
VAR00003	Pearson Correlation	.532(**)	.463(**)	1	.268	.184	.726(**)
	Sig. (2-tailed)	.001	.004		.114	.283	.000
	N	36	36	36	36	36	36
VAR00004	Pearson Correlation	.051	.190	.268	1	.158	.472(**)
	Sig. (2-tailed)	.767	.268	.114		.359	.004
	N	36	36	36	36	36	36
VAR00005	Pearson Correlation	.381(*)	.281	.184	.158	1	.580(**)

TAS BRAW. Lampiran 3 (Lanjutan)

	Sig. (2-tailed)	.022	.097	.283	.359		.000
	N	36	36	36	36	36	36
VAR00006	Pearson Correlation	.801(**)	.808(**)	.726(**)	.472(**)	.580(**)	1
	Sig. (2-tailed)	.000	.000	.000	.004	.000	
	N	36	36	36	36	36	36

^{**} Correlation is significant at the 0.01 level (2-tailed).

* Correlation is significant at the 0.05 level (2-tailed).

^{*****} Method 1 (space saver) will be used for this analysis ***** RELIABILITY ANALYSIS -SCALE (A L P H A)

		Mean	Std Dev	Cases
1.	VAR00001	2,3889	,7281	36,0
2.	VAR00002	3,2778	9137	36,0
3.	VAR00003	2,5000	,8106	36,0
4.	VAR00004	3,3611	,7232	36,0
5.	VAR00005	2,6111	,7664	36,0

36,0

N of Cases =

Reliability Coefficients

5 items

Alpha = ,7111

,7059 Standardized item alpha =

48

Lampiran 4. Kuisioner Penelitian

Kuisioner Faktor – Faktor yang Mempengaruhi Pemilihan Sarana Transportasi ke Kampus Menggunakan *Analytic Hierarchy Process* (AHP)

Sehubungan dengan penyelesaian Tugas Akhir S1 penulis yang berjudul Faktor – Faktor yang Mempengaruhi Pemilihan Sarana Transportasi ke Kampus Menggunakan *Analytic Hierarchy Process* (AHP) Studi Kasus Di Universitas Brawijaya, maka penulis mengadakan penelitian dengan kuisioner tentang prioritas mahasiswa Universitas Brawijaya dalam memilih sarana transportasi ke kampus. Untuk itu, penulis memohon kesediaan saudara untuk menjawab pertanyaan sesuai dengan pandangan dan keadaan saudara. Setiap jawaban saudara sangat berarti dalam penelitian ini. Atas kesediaan dan bantuan saudara penulis mengucapkan terima kasih.

Petunjuk Pengisian Kuisioner

- 1. Isilah kuisioner ini dengan cermat dan benar
- 2. Isilah kuisioner ini sesuai dengan apa yang anda rasakan dan amati selama ini

Berilah Tanda (X) atau (O) pada jawaban pilihan anda

- 1. Sarana yang anda gunakan ke kampus selama ini adalah:
 - a. Mobil
- b. Sepeda Motor
- c. Angkutan Umum

- d. Jalan Kaki
- e. Antar Jemput

A.Kriteria Keamanan

- 2. Bagaimana menurut anda tindak kriminalitas yang terjadi selama melakukan perjalanan
 - a. Sering terjadi
- b. Jarang terjadi c. Tidak pernah
 - terjadi
- 3. Bagaimana resiko kecelakaan yang anda hadapi selama melakukan perjalanan
 - a. Resiko tinggi
- b. Resiko sedang
- c. Tidak ada resiko
- 4. Apakah selama melakukan perjalanan anda pernah mendapatkan gangguan dari lingkungan sekitar (misalnya dihadang, diganggu, dll)
 - a. Sering
- b. Jarang terjadi c. Tidak pernah

Lampiran 4 (Lanjutan)

B. Kriteria Kenyamanan

- Bagaimana menurut anda perlindungan terhadap cuaca selama melakukan perjalanan (perlindungan dari hujan, panas, debu, dingin, dll)
 - a. Tidak baik
- b. Kurang Baik
- c. Cukup baik

- d. Baik
- e. Sangat Baik
- 6. Bagaimana menurut anda kebebasan / privasi yang anda dapatkan selama melakukan perjalanan
 - a. Tidak bebas / privasi
- b. Kurang Bebas / privasi
- c. Cukup bebas / privasi
- d. Bebas / privasi
- e. Sangat bebas / privasi
- 7. Bagaimana menurut anda suasana / ketenangan selama melakukan perjalanan
 - a. Tidak tenang
- b. Kurang tenang
- c. Cukup tenang

- d. Tenang
- e. Sangat tenang

C. Kriteria Biaya

- 8. Bagaimana menurut anda biaya yang anda keluarkan untuk ke kampus setiap harinya
 - a. Sangat mahal
- b. Mahal
- c. Cukup mahal

- d. Murah
- e. Sangat murah

D. Kriteria Waktu

- 9. Menurut anda jarak rumah atau kost dari kampus adalah
 - a. Sangat jauh
- b. Jauh
- c. Dekat

- d. Sangat dekat
- 10. Berapa waktu yang anda butuhkan untuk melakukan perjalanan
 - a. > 1 jam b. 41 60 menit
- c. 21-40 menit

- d. 0-20 menit
- 11. Bagaimana menurut anda kelancaran selama melakukan perjalanan
 - a. Tidak lancar
- b. Cukup lancar
- c. Lancar

- d. Sangat Lancar
- 12. Menurut anda ketepatan waktu sampai ke tujuan / kampus adalah
 - a. Tidak pentingd. Sangat penting
- b. Cukup penting
- c. Penting

50

Lampiran 4 (Lanjutan)

- 13. Bagaimana menurut anda kemudahan untuk melakukan perjalanan setiap saat ketika menggunakan satu moda (sarana) tertentu
 - a. Sulit
- b. Cukup sulit
- c. Mudah

- d. Sangat mudah
- 14. Seandainya ada angkutan kampus (bus kampus) bagimana pendapat anda
 - a. Tidak setuju , karena
 - b. Setuju, karena
- 15. Fasilitas yang anda inginkan untuk angkutan kampus (bus kampus) adalah
 - (jawaban boleh lebih dari satu)
 - a. keamanan dalam angkutan kampus
 - b. Kenyamanan (AC, Televisi & musik, tempat duduk dan lingkungan bersih)
 - c. Tarif murah
 - d. ketepatan waktu terjamin dan rute perjalanan jelas Diantara keempat pilihan urutkan antara prioritas yang paling tinggi sampai prioritas paling rendah

Lampiran 4 (Lanjutan)

1	K	R)	П	"	71	Q1	A
ı		\mathbf{r}			٦,	N	\mathbf{A}

A. Kriteria Keamanan

- ☐ Tindakan kriminalitas
- ☐ Resiko kecelakaan
- ☐ Gangguan lingkungan sekitar

B. Kriteria Kenyamanan

- ☐ Perlindungan dari cuaca
- ☐ Privasi dari orang lain
- ☐ Suasana tenang selama perjalanan

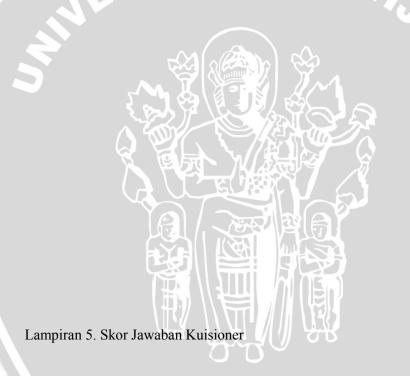
C. Kriteria Biaya

D. Kriteria Waktu

- ☐ Jarak rumah / kost ke kampus
- ☐ Waktu untuk melakukan perjalanan
- ☐ Kelancaran selama perjalanan
- ☐ Ketepatan waktu sampai tujuan
- ☐ Kemudahan melakukan perjalanan setiap saat

Berdasarkan Kriteria di Atas, Urutkanlah Kriteria – Kriteria di Bawah ini dari Prioritas Tertinggi sampai Prioritas Terendah

Prioritas Tertinggi Bernilai 1 dan Prioritas Terendah Bernilai 4					
Kriteria Keamanan	Kriteria Kenyamanan	Kriteria Biaya	Kriteria Waktu		
	1 62				


Prioritas Tertinggi Bernilai 1 dan Prioritas Terendah Bernilai 3					
Tindak	Resiko Gangguan Lingkungan				
kriminalitas	Kecelakaan	Sekitar			

Lampiran 4 (Lanjutan)

52

Prioritas Tertinggi Bernilai 1 dan Prioritas Terendah Bernilai 3						
Perlindungan	Ketenangan Selama					
dari Cuaca Orang Lain		Perjalanan				

Priorit	Prioritas Tertinggi Bernilai 1 dan Prioritas Terendah Bernilai 5					
Jarak ke Waktu Kelancaran Ketepatan Kemudahan						
kampus	tempuh ke	perjalanan	waktu	melakukan		
DAY	kampus		sampai	perjalanan		
			tujuan	setiap saat		
	P					

Skor jawaban pertanyaan bagian I

Skor jawaban pertanyaan bagian A

Jawaban	Skor		
a	1		
b	2		
c	3		

Skor jawaban pertanyaan bagian B

Jawaban	Skor
a	1
b	2
c	3
d	4
e	5

Skor jawaban pertanyaan bagian C

SBRAWIUAL

Jawaban	Skor
a	1
b	2
c	3
d	4

Skor jawaban pertanyaan bagian D

Jawaban	Skor
a	1
b	2
c	3
d	4

Lampiran 5 (Lanjutan)

54

Skor jawaban pertanyaan bagian II

Skor jawaban pertanyaan kriteria

Prioritas	Skor
1	4
2	3
3	2
4	4-11

Skor jawaban pertanyaan kriteria keamanan

	Prioritas	Skor
	1	3
V	2	2
1	3	1

SBRAWIUAL Skor jawaban pertanyaan kriteria kenyamanan

Prioritas	Skor		
1	3		
2	2		
3			

Skor jawaban pertanyaan kriteria waktu

Prioritas	Skor
1	5
2	4
3	3
4	2
5	1

Lampiran 6. Frekuensi dan rata-rata geometrik skor jawaban

kuisioner

Frekuensi dan rata – rata geometrik skor jawaban dan kriteria

Kriteria	Skor				Rata – rata
	1	2	3	4	geometrik
Keamanan	14	38	40	58	2,7308
Kenyamanan	47	40	37	26	2,0060
Biaya	54	33	32	31	1,9608
Waktu	35	39	41	35	2,2344

Frekuensi dan rata – rata geometrik skor jawaban dari sub kriteria berdasarkan kriteria

berdasarkan kirteria						
Skor			Rata – rata			
1	2	3	geometrik			
23	63	64	2,1380			
		0				
22	55	73	2,2008			
105	32	13	1,2752			
	1 23 22	Skor 1 2 23 63 22 55	Skor 3 1 2 3 23 63 64 22 55 73			

Kriteria		Skor		Rata – rata
Kenyamanan	1	2	3 4	geometrik
Perlindungan dari cuaca	51	41	58	1,8483
Privasi dari orang lain	54	62	34	1,7083
Ketenangan selama perjalanan	45	47	58	1,9002

Lampiran 6 (Lanjutan)

Kriteria Waktu		Tirl I	Skor	7 (3)	R	Rata – rata
	1	2	3	4	5	geometrik
Jarak ke	36	37	31	26	20	2,3465
kampus			11.2			2 4 6 6
Waktu tempuh	22	45	44	19	20	2,5103
ke kampus					ALL L	608111
Kelancaran	12	24	27	64	23	3,1485
selama	ATT					
perjalanan	PALL				410	
Ketepatan	6	14	29	34	67	3,7069
waktu sampai						
tujuan						
Kemudahan	74	30	19	7	20	1,7456
melakukan						
perjalanan	C		2	3	20	

Frekuensi dan rata – rata geometrik skor jawaban dari alternatif berdasarkan sub kriteria

berdasarkan sub kriteria						
	Skor		Rata – rata			
	2	3	geometrik			
	$\beta \mid \beta$	9				
9		^				
3	18	9	2,1074			
2	15	13	2,2765			
4	18	8	2,0317			
3	15	12	2,1946			
一门员	16	13	2,3297			
	JI F		2			
5	25	aY	1,7818			
7	19	4	1,7958			
3	20	7.1	2,0512			
4	20	6	1,9775			
2	11	17	2,4030			
	2 4 3 1 5 7 3 4	3 18 2 15 4 18 3 15 1 16 5 25 7 19 3 20 4 20	1 2 3 3 18 9 2 15 13 4 18 8 3 15 12 1 16 13 5 25 - 7 19 4 3 20 7 4 20 6			

Lampiran 6 (Lanjutan)

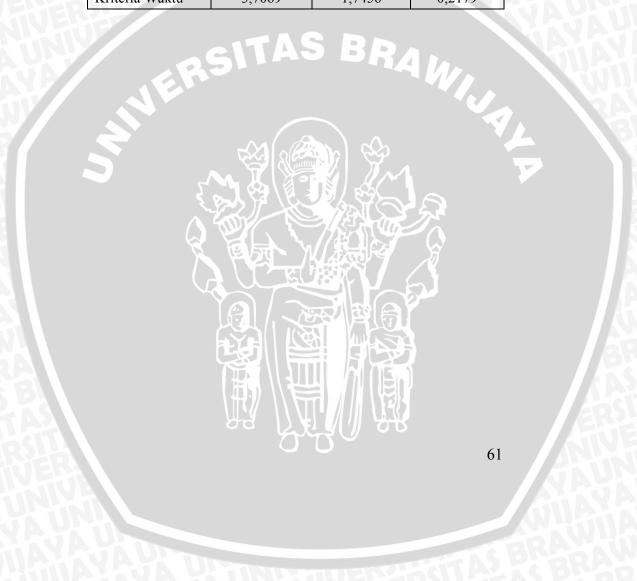
Gangguan lingkungan sekitar				SBRA
Mobil	2	12	16	2,3707
Sepeda motor	1	9	20	2,5609
Angkutan umum	1	13	16	2,4261
Antar jemput		6	24	2,7663
Jalan kaki	1	11	18	2,4926

Kriteria			Skor			Rata –
3:04	1	2	3	4	5	rata
						geometrik
Kriteria Kenyamanan	e			1 0		
Perlindungan cuaca						A LAD
Mobil	2	5	7	7	11	3,3609
Sepeda motor	4	12	11	3	-	2,2676
Angkutan umum	4	12	13	1	-	2,2245
Antar jemput	4	$\sqrt{9}$	8	6	3	2,5577
Jalan kaki	5	_14	6	4	YI'	2,1851
Privasi dari orang	M	J.J.	9.		$\langle \langle \rangle \rangle$	
lain	9-1	$\langle 3 \rangle$		アイト	\mathcal{D}_{\succeq}	
Mobil	71<	//3	12	9	5	3,2966
Sepeda motor	2	3	12	10	3	3,1012
Angkutan umum	10	10	8	2=		1,8523
Antar jemput	1	8	8	8	5	3,0518
Jalan kaki		3	8	16	3_	3,5345
Ketenangan selama perjalanan			(4)			
Mobil	a Y	2	16	10	2	3,3252
Sepeda motor	2	8	10	10		2,7542
Angkutan umum	2	15	12	1	THS	2,2984
Antar jemput	14	4	8	9	8	3,4228
Jalan kaki	1	(6	11	12	1	3,1570

Lampiran 6 (Lanjutan)

Kriteria	Skor					Rata-rata geometrik
	1\1	2	3	4	5	Pile
Kriteria Biaya				1001	LL ST	
Mobil	2	8	15	5	1:21	2,6253
Sepeda motor	0-0	4	19	7	147	3,0394
Angkutan umum	5	9	8	8	-	2,4559
Antar jemput		-	-	18	12	4,3734
Jalan kaki	-	-	7	20	3	3,8247

Kriteria		Sl	kor		Rata – rata
	1	2	3	4	geometrik
Kriteria Waktu		0			
Jarak ke kampus	NV.			11	
Mobil	5	13	12	4	2,0955
Sepeda motor	2	11	14	3	2,4731
Angkutan umum	9	13	8	-	1,8100
Antar jemput	3	16	11	-	2,1652
Jalan kaki	$\mathcal{M}(.)$	5	19	6	2,9700
Waktu tempuh ke				γ ,	
kampus	II \	9.1		\sim	
Mobil	1\	4	8.9	_17	3,2251
Sepeda motor		3	5	22	3,5574
Angkutan umum	4	4	11	4.11	2,7280
Antar jemput ©		5	8	17	3,3004
Jalan kaki	Y	7 XA	2	28	3,9240


Lampiran 6 (Lanjutan)

Kelancaran selama	69	N/AX	LAS	10 II	BRA
perjalanan				-AS	
Mobil	4	18	6	2	2,0710
Sepeda motor	3	11	12	4	2,4071
Angkutan umum	2	22	4	2	2,1111
Antar jemput	1	18	10	1	2,2894
Jalan kaki	1-1	4	14	12	3,1887
Ketepatan waktu ke	W				
kampus					
Mobil	-	5	16	9	3,0567
Sepeda motor	-	7	7	16	3,1818
Angkutan umum	-	2	7	21	3,5714
Antar jemput	-	8	15	7	2,8795
Jalan kaki		2	18	- 10	3,2139
Kemudahan				5	
melakukan perjalanan					
setiap waktu					
Mobil	1	6	23	-	2,6669
Sepeda motor	-	6	21	3	2,8471
Angkutan umum	5	13 (2)	12	C(C)	2,0955
Antar jemput	5	5	19	17	2,3573
Jalan kaki	4	2	20	4	2,6207

Lampiran 7. Nilai Skala Banding

NSB untuk tujuan (perbandingan antar kriteria) dan kriteria (perbandingan antar sub kriteria)

(bereameningen and			
	Nilai	Nilai	NSB
	Tertinggi	Terendah	
Kriteria	2,7308	1,9608	0,0856
Kriteria	2,2008	1,2752	0,1028
Keamanan			HTTI
Kriteria	1,9002	1,7083	0,0213
Kenyamanan			TI LIFE
Kriteria Biaya	4,3734	2,4559	0,2131
Kriteria Waktu	3,7069	1,7456	0,2179

Lampiran 7 (Lanjutan)

NSB untuk sub kriteria (perbandingan antar sub kriteria)

AUNIKIV	Nilai Tertinggi	Nilai Terendah	NSB
Kriteria Keamanan	Tertinggi	Terendan	
			0.000
Tindak kriminalitas	2,3297	2,0317	0,0331
Resiko kecelakaan	2,4030	1,7818	0,0690
Gangguan	2,7663	2,3707	0,0440
lingkungan sekitar			
Kriteria Kenyamanan	14		
Perlindungan dari	3,3609	2,1851	0,1306
cuaca			
Privasi dari orang	3,5345	1,8523	0,1869
lain	ŕ		ŕ
Ketenangan selama	3,4228	2,2984	0,1249
perjalanan	GIIA	O, D	
Kriteria Waktu			7 10
Jarak ke kampus	2,9700	1,8100	0,1289
Waktu tempuh ke	3,9240	2,7280	0,1329
kampus	· /		,
Kelancaran selama	3,1887	2,0710	0,1242
perjalanan			
Ketepatan waktu	3,5714	2,8795	0,0769
Kemudahan	2,8741	2,0955	0,0835
melakukan			5
perjalanan setiap			
waktu		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	

Lampiran 8. Matriks *pairwise comparison*, vektor eigen, nilai eigen, dan uji konsistensi antar kriteria

matriks *pairwise comparison*

kriteria	keamanan	kenyamanan	biaya	waktu
keamanan	1,0000	8,4724	9,0000	5,8022
kenyamanan	0,1180	1,0000	0,5276	0,3745
biaya	0,1111	1,8955	1,0000	0,3127
waktu	0,1723	2,6702	3,1978	1,0000

matriks normalitas

kriteria	keamanan	kenyamanan	biaya	waktu
keamanan	0,7135	0,6035	0,6557	0,7747
kenyamanan	0,0842	0,0712	0,0384	0,0500
biaya	0,0793	0,1350	0,0729	0,0418
waktu	0,1230	0,1902	0,2330	0,1335

kriteria		vektor eigen
keamanan		0,6869
kenyamanan	\sim	0,0610
biaya		0,0822
waktu	A K TOPE IN	0,1699
	1 ~ 1 C3 \ R 3 D / E9 _	

1 VAA			
Nilai eigen maksimum (maks)	5	4,1330
Consistency Index (CI)			0,0443
Consistency Ratio (CR)		red S	0,0498

63

Lampiran 9. Matriks *pairwise comparison*, vektor eigen, nilai eigen, dan uji konsistensi sub kriteria berdasarkan kriteria

Matriks *pairwise comparison*, vektor eigen, nilai eigen dan uji konsistensi sub kriteria berdasarkan kriteria keamanan

matriks pairwise comparison

kriteria	tindak kriminalitas	resiko kecelakaan	gangguan lingkungan sekitar
tindak kriminalitas	1,0000	1,6377	8,3894
resiko kecelakaan	0,6106	1,0000	9,0000
gangguan lingkungan sekitar	0,1192	0,1111	1,0000

matriks normalitas

kriteria	tindak kriminalitas	resiko kecelakaan	gangguan lingkungan sekitar
tindak kriminalitas	0,5781	0,5958	0,4562
resiko kecelakaan	0,3530	0,3638	0,4894
gangguan lingkungan sekitar	0,0689	0,0404	0,0544

Lampiran 9 (Lanjutan)

	kriteria	vektor eigen
	tindak kriminalitas	0,5434
4	resiko kecelakaan	0,4021
	gangguan lingkungan sekitar	0,0546

Nilai eigen maksimum (maks)	3,0355
Consistency Index (CI)	0,0178
Consistency Ratio (CR)	0,0342

Matriks *pairwise comparison*, vektor eigen, nilai eigen dan uji konsistensi sub kriteria berdasarkan kriteria kenyamanan

matriks pairwise comparison

kriteria	perlindungan dari cuaca	privasi dari orang lain	ketenangan selama perjalanan
perlindungan dari cuaca	1,0000	6,5631	0,4104
privasi dari orang lain	0,1524	1,0000	0,1111
ketenangan selama perjalanan	2,4369	9,0000	1,0000

matriks normalitas

Lampiran 9 (Lanjutan) matriks normalitas	AS BRAL		
kriteria	perlindungan dari cuaca	privasi dari orang lain	ketenangan selama perjalanan
perlindungan dari cuaca	0,2786	0,3962	0,2697
privasi dari orang lain	0,0425	0,0604	0,0730
ketenangan selama perjalanan	0,6789	0,5434	0,6573

vektor eigen
0,3149
0,0586
0,6265

Nilai eigen maksimum (maks)	3,0370
Consistency Index (CI)		0,0185
Consistency Ratio (CR)		0,0356

repos

Lampiran 9 (Lanjutan)

Matriks *pairwise comparison*, vektor eigen, nilai eigen dan uji konsistensi sub kriteria berdasarkan kriteria waktu

matriks pairwise comparison

kriteria	jarak	waktu	kelancaran	ketepatan	kemudahan
jarak	1,0000	1,3303	0,2717	0,1602	2,7573
waktu	0,7517	1,0000	0,3415	0,1821	3,5090
kelancaran	3,6802	2,9285	1,0000	0,3902	6,4375
ketepatan	6,2427	5,4910	2,5625	1,0000	9,0000
kemudahan	0,3627	0,2850	0,1553	0,1111	1,0000

matriks normalitas

matrix normanas					
kriteria	jarak	waktu	kelancaran	ketepatan	kemudahan
jarak	0,0831	0,1206	0,0627	0,0869	0,1214
waktu	0,0624	0,0906	0,0788	0,0988	0,1546
kelancaran	0,3057	0,2654	0,2309	0,2117	0,2835
ketepatan	0,5186	0,4976	0,5917	0,5424	0,3964
kemudahan	0,0301	0,0258	0,0359	0,0603	0,0440

Lampiran 9 (Lanjutan)

	kriteria	vektor eigen
	jarak	0,0949
4	waktu	0,0971
	kelancaran	0,2594
	ketepatan	0,5093
	kemudahan	0,0392

Nilai eigen maksimum (maks)	5,1132
Consistency Index (CI)	0,0283
Consistency Ratio (CR)	0,0255

Lampiran 10. Matriks *pairwise comparison*, vektor eigen, nilai eigen dan uji konsistensi alternatif berdasarkan sub kriteria

Matriks *pairwise comparison*, vektor eigen, nilai eigen dan uji konsistensi alternatif berdasarkan sub kriteria keamanan

matriks pairwise comparison

Hitting pull vise comparison					
tindak kriminalitas	mobil	sepeda motor	angkutan umum	antar jemput	jalan kaki
mobil	1,0000	0,1959	2,2882	0,3798	0,1490
sepeda motor	5,1050	1,0000	7,3933	2,4718	0,6224
angkutan umum	0,4370	0,1353	1,0000	0,2032	0,1111
antar jemput /	2,6332	0,4046	4,9215	1,0000	0,2452
jalan kaki	6,7118	1,6067	9,0000	4,0785	1,0000

matriks normalitas

tindak kriminalitas	mobil	sepeda motor	angkutan umum	antar jemput	jalan kaki
mobil	0,0629	0,0586	0,0930	0,0467	0,0700
sepeda motor	0,3213	0,2992	0,3005	0,3039	0,2925
angkutan umum	0,0275	0,0405	0,0406	0,0250	0,0522
antar jemput	0,1657	0,1210	0,2000	0,1230	0,1152
jalan kaki	0,4225	0,4807	0,3658	0,5015	0,4700

Lampiran 10 (Lanjutan)

tindak kriminalitas	vektor eigen
mobil	0,0663
sepeda motor	0,3035
angkutan umum	0,0372
antar jemput	0,1450
jalan kaki	0,4481

Nilai eigen maksimum (maks)	5,0743
Consistency Index (CI)		0,0186
Consistency Ratio (CR)		0,0167

matriks *pairwise comparison*

matrix puri vise comparison						
resiko kecelakaan	mobil	sepeda motor	angkutan umum	antar jemput	jalan kaki	
mobil	1,0000	4,9137	0,2562	2,8352	0,1111	
sepeda motor	0,2035	1,0000	0,2702	0,3800	0,1137	
angkutan umum	3,9038	3,7003	1,0000	1,0687	0,1962	
antar jemput	0,3527	2,6316	0,9357	1,0000	0,1622	
jalan kaki	9,0000	8,7965	5,0962	6,1648	1,0000	

Lampiran 10 (Lanjutan)							
matriks normalitas		MAIN		DATE AND			
resiko kecelakaan	mobil	sepeda motor	angkutan umum	antar jemput	jalan kaki		
mobil	0,0692	0,2335	0,0339	0,2476	0,0702		
sepeda motor	0,0141	0,0475	0,0358	0,0332	0,0718		
angkutan umum	0,2700	0,1759	0,1323	0,0933	0,1239		
antar jemput	0,0244	0,1251	0,1238	0,0873	0,1025		
jalan kaki	0,6224	0,4180	0,6742	0,5385	0,6316		

resiko kecelakaan	vektor eigen
mobil	0,1309
sepeda motor	0,0405
angkutan umum	0,1591
antar jemput	0,0926
jalan kaki	0,5770

Nilai eigen maksimum (maks)	5,6688
Consistency Index (CI)	0,1672
Consistency Ratio (CR)	0,1506

 $a_{ij} = a_{ij} w_j / w_j$

matriks pairwise comparison yang sudah diperbaiki

resiko kecelakaan	mobil	sepeda motor	angkutan umum	antar jemput	jalan kaki
mobil	\(\lambda\)1,0000	4,9137	0,8227	2,8352	0,1111
sepeda motor	0,2035	/1,0000	0,2702	0,3800	0,1137
angkutan umum	1,2155	3,7003	1,0000	1,0687	0,1962
antar jemput	0,3527	2,6316	0,9357	1,0000	0,1622
jalan kaki	9,0000	8,7965	5,0962	6,1648	1,0000

resiko kecelakaan	mobil	sepeda motor	angkutan umum	antar jemput	jalan kaki
mobil	0,0849	0,2335	0,1013	0,2476	0,0702
sepeda motor	0,0173	0,0475	0,0333	0,0332	0,0718
angkutan umum	0,1033	0,1759	0,1231	0,0933	0,1239
antar jemput	0,0300	0,1251	0,1152	0,0873	0,1025
jalan kaki	0,7645	0,4180	0,6272	0,5385	0,6316

repos

Lampiran 10 (Lanjutan)

resiko kecelakaan	vektor eigen
mobil	0,1475
sepeda motor	0,0406
angkutan umum	0,1239
antar jemput	0,0920
jalan kaki	0,5960

Nilai eigen maksimum (maks)	5,3255
Consistency Index (CI)	0,0814
Consistency Ratio (CR)	0,0733

matriks pairwise comparison

macrins per rese compens					
gangguan lingkungan					
sekitar	mobil	sepeda motor	angkutan umum	antar jemput	jalan kaki
mobil	1,0000	0,2311	0,7933	0,1111	0,3606
sepeda motor	4,3265	1,0000	3,0659	0,2140	1,5537
angkutan umum	1,2606	0,3262	1,0000	0,1292	0,6613
antar jemput	9,0000	4,6735	7,7394	1,0000	6,2272
jalan kaki	2,7728	0,6436	1,5122	0,1606	1,0000

Lampiran 10 (Lanjutan) matriks normalitas	tas i	BRAL		YAUN UAYA UAYA	
gangguan lingkungan				TALLY	
sekitar	mobil	sepeda motor	angkutan umum	antar jemput	jalan kaki
mobil	0,0545	0,0336	0,0562	0,0688	0,0368
sepeda motor	0,2356	0,1455	0,2173	0,1325	0,1585
angkutan umum	0,0687	0,0474	0,0709	0,0800	0,0675
antar jemput	0,4902	0,6798	0,5485	0,6192	0,6352
jalan kaki	0,1510	0,0936	0,1072	0,0994	0,1020

gangguan lingkungan sekitar	vektor eigen
mobil	0,0500
sepeda motor	0,1779
angkutan umum	0,0669
antar jemput	0,5946
jalan kaki	0,1107

		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Nilai eigen maksimum (maks)	5	,0710
Consistency Index (CI)		/^0	,0177
Consistency Ratio (CR)			,0160

Matriks *pairwise comparison*, vektor eigen, nilai eigen dan uji konsistensi alternatif berdasarkan sub kriteria kenyamanan

matriks pairwise comparison

perlindungan dari cuaca	mobil	sepeda motor	angkutan umum	antar jemput	jalan kaki
mobil	1,0000	8,3690	8,6987	6,1483	9,0000
sepeda motor	0,1195	1,0000	0,3297	0,4503	0,6310
angkutan umum	0,1150	3,0330	1,0000	0,3921	0,3013
antar jemput	0,1626	2,2207	2,5504	1,0000	2,8517
jalan kaki	0,1111	1,5847	3,3186	0,3507	1,0000

HWI HO HOTHWINE						
perlindungan dari cuaca	mobil	sepeda motor	angkutan umum	antar jemput	jalan kaki	
mobil	0,6630	0,5164	0,5472	0,7371	0,6529	
sepeda motor	0,0792	0,0617	0,0207	0,0540	0,0458	
angkutan umum	0,0762	0,1871	0,0629	0,0470	0,0219	
antar jemput	0,1078	0,1370	0,1604	0,1199	0,2069	
jalan kaki	0,0737	0,0978	0,2088	0,0420	0,0725	

	perlindungan dari cuaca	vektor eigen		
	mobil	0,6233		
4	sepeda motor	0,0523		
	angkutan umum	0,0790		
	antar jemput	0,1464		
	jalan kaki	0,0990		
		Ammi /		

Nilai eigen maksimum (maks)	5,5138
Consistency Index (CI)	0,1284
Consistency Ratio (CR)	0,1157

 $a_{ij} = a_{ij} w_j / w_i$

matriks pairwise comparison yang sudah diperbaiki

perlindungan dari cuaca	mobil	sepeda motor	angkutan umum	antar jemput	jalan kaki
mobil	1,0000	8,3690	8,6987	6,1483	9,0000
sepeda motor	0,1195	1,0000	0,3297	0,4503	0,6310
angkutan umum	0,1150	3,0330	1,0000	0,3921	0,7986
antar jemput	0,1626	2,2207	2,5504	1,0000	2,8517
jalan kaki	0,1111	1,5847	1,2522	0,3507	1,0000

Lampiran 10 (Lanjutan)	TAS	BRA			
matriks normalitas				VLHTIV.	
perlindungan dari cuaca	mobil	sepeda motor	angkutan umum	antar jemput	jalan kaki
mobil	0,6630	0,5164	0,6289	0,7371	0,6302
sepeda motor	0,0792	0,0617	0,0238	0,0540	0,0442
angkutan umum	0,0762		0,0723	0,0470	0,0559
antar jemput	0,1078	0,1370	0,1844	0,1199	0,1997
jalan kaki	0,0737	0,0978	0,0905	0,0420	0,0700

perlindungan dari cuaca	vektor eigen
mobil	0,6351
sepeda motor	0,0526
angkutan umum	0,0877
antar jemput	0,1498
jalan kaki	0,0748

Nilai eigen maksimum (maks)	5,2388
Consistency Index (CI)	0,0597
Consistency Ratio (CR)	0,0538

Lampiran 10 (Lanjutan)								
matriks pairwise comp	matriks pairwise comparison							
privasi dari orang lain	mobil	sepeda motor	angkutan umum	antar jemput	jalan kaki			
mobil	1,0000	1,0451	7,7270	1,3098	0,7856			
sepeda motor	0,9568	1,0000	6,6819	0,2647	0,4314			
angkutan umum	0,1294	0,1497	1,0000	0,1558	0,1111			
antar jemput	0,7635	3,7782	6,4172	1,0000	0,3872			
jalan kaki	1,2730	2,3181	9,0000	2,5828	1,0000			

matriks normalitas

privasi dari orang lain	mobil	sepeda motor	angkutan umum	antar jemput	jalan kaki
mobil	0,2426	0,1261	0,2507	0,2465	0,2893
sepeda motor	0,2321	0,1206	0,2168	0,0498	0,1589
angkutan umum	0,0314	0,0181	0,0324	0,0293	0,0409
antar jemput	0,1852	0,4557	0,2082	0,1882	0,1426
jalan kaki	0,3088	0,2796	0,2920	0,4861	0,3683

78

	privasi dari orang lain	vektor eigen	
	mobil	0,2310	
4	sepeda motor	0,1556	
	angkutan umum	0,0304	
	antar jemput	0,2360	
	jalan kaki	0,3469	
		7	

Nilai eigen maksimum (maks)	5,3244
Consistency Index (CI)	0,0811
Consistency Ratio (CR)	0,0731

matriks pairwise comparison

matrix pair wise comparison						
ketenangan selama						
perjalanan	mobil	sepeda motor	angkutan umum	antar jemput	jalan kaki	
mobil	1,0000	4,5703	8,2189	1,2802	1,3465	
sepeda motor	0,2188	1,0000	3,6485	0,1869	0,3102	
angkutan umum	0,1217	0,2741	1,0000	0,1111	0,1455	
antar jemput	0,7811	5,3515	9,0000	1,0000	2,1276	
jalan kaki	0,7427	3,2239	6,8724	0,4700	1,0000	

Lampiran 10 (Lanjutan		BRA			
matriks normalitas	IAO	DRA	In.	TUATE	
ketenangan selama					
perjalanan	mobil	sepeda motor	angkutan umum	antar jemput	jalan kaki
mobil	0,3491	0,3169	0,2860	0,4200	0,2731
sepeda motor	0,0764	0,0693	0,1270	0,0613	0,0629
angkutan umum	0,0425	0,0190	0,0348	0,0365	0,0295
antar jemput	0,2727	0,3711	0,3132	0,3281	0,4316
jalan kaki	0,2593	0,2236	0,2391	0,1542	0,2029
	クゲース		\mathcal{D}		

ketenangan selama perjalanan	vektor eigen
mobil	0,3290
sepeda motor	0,0794
angkutan umum	0,0324
antar jemput	0,3433
jalan kaki	0,2158

Nilai eigen maksimum (maks)	5,1005
Consistency Index (CI)		0,0251
Consistency Ratio (CR)		0,0226

Matriks *pairwise comparison*, vektor eigen, nilai eigen dan uji konsistensi alternatif berdasarkan sub kriteria biaya

matriks pairwise comparison

biaya	mobil	sepeda motor	angkutan umum	antar jemput	jalan kaki
mobil	1,0000	0,5145	0,7952	0,1219	0,1776
sepeda motor	1,9438	1,0000	2,7389	0,1597	0,2713
angkutan umum	1,2576	0,3651	1,0000	0,1111	0,1557
antar jemput	8,2048	6,2611	9,0000	1,0000	2,5755
jalan kaki	5,6294	3,6856	6,4245	0,3883	1,0000

matrix normana						
biaya	mobil	sepeda motor	angkutan umum	antar jemput	jalan kaki	
mobil	0,0554	0,0435	0,0398	0,0684	0,0425	
sepeda motor	0,1078	0,0846	0,1372	0,0897	0,0649	
angkutan umum	0,0697	0,0309	0,0501	0,0624	0,0372	
antar jemput	0,4549	0,5294	0,4509	0,5615	0,6161	
jalan kaki	0,3121	0,3116	0,3219	0,2180	0,2392	

biaya	vektor eigen
mobil	0,0499
sepeda motor	0,0968
angkutan umum	0,0501
antar jemput	0,5226
jalan kaki	0,2806
	The state of the s

Nilai eigen maksimum (maks)	5,0921
Consistency Index (CI)	0,0230
Consistency Ratio (CR)	0,0207

Matriks *pairwise comparison*, vektor eigen, nilai eigen dan uji konsistensi alternatif berdasarkan sub kriteria waktu

matriks pairwise comparison

jarak ke kampus	mobil	sepeda motor	angkutan umum	antar jemput	jalan kaki
mobil	1,0000	0,3414	2,2153	1,8507	0,1474
sepeda motor	2,9293	1,0000	5,1446	2,3889	0,2594
angkutan umum	0,4514	0,1944	1,0000	0,3629	0,1111
antar jemput	0,5403	0,4186	2,7556	1,0000	0,1601
jalan kaki	6,7847	3,8554	9,0000	6,2444	1,0000

matrixs normanas	Havino Hollianus						
jarak ke kampus	mobil	sepeda motor	angkutan umum	antar jemput	jalan kaki		
mobil	0,0854	0,0588	0,1101	0,1562	0,0878		
sepeda motor	0,2502	0,1721	0,2558	0,2016	0,1546		
angkutan umum	0,0386	0,0335	0,0497	0,0306	0,0662		
antar jemput	0,0462	0,0721	0,1370	0,0844	0,0954		
jalan kaki	0,5796	0,6636	0,4474	0,5271	0,5959		

	jarak ke kampus	vektor eigen
	mobil	0,0997
4	sepeda motor	0,2069
	angkutan umum	0,0437
	antar jemput	0,0870
	jalan kaki	0,5627
		7

Nilai eigen maksimum (maks)	5,1513
Consistency Index (CI)	0,0378
Consistency Ratio (CR)	0,0341

matriks pairwise comparison

waktu tempuh ke					
kampus	mobil	sepeda motor	angkutan umum	antar jemput	jalan kaki
mobil	1,0000	0,3999	3,7405	1,7630	0,1901
sepeda motor	2,5009	1,0000	6,2414	1,9336	0,3625
angkutan umum	0,2673	0,1602	1,0000	0,2321	0,1111
antar jemput	0,5672	0,5172	4,3078	1,0000	0,2131
jalan kaki	5,2595	2,7586	9,0000	4,6922	1,0000

Lampiran 10 (Lanjutan)	- A C				
matriks normalitas	ITAS	BRA	A.		
waktu tempuh ke				NULLATI	
kampus	mobil	sepeda motor	angkutan umum	antar jemput	jalan kaki
mobil	0,1042	0,0827	0,1540	0,1832	0,101
sepeda motor	0,2606	0,2068	0,2570	0,2010	0,193
angkutan umum	0,0279	0,0331	0,0412	0,0241	0,0592
antar jemput	0,0591	0,1069	0,1773	0,1039	0,113
jalan kaki	0,5482	0,5704	0,3705	0,4877	0,532

7.4.//	
waktu tempuh ke kampus	vektor eigen
mobil	0,1251
sepeda motor	0,2237
angkutan umum	0,0371
antar jemput	0,1122
jalan kaki	0,5019

Nilai eigen maksimum (maks)	5,1508
Consistency Index (CI)		0,0377
Consistency Ratio (CR)	(近り) / 性	0,0340

repos

Lampiran 10 (Lanjutan)

matriks pairwise comparison

matriks pair wise comparts	,011				
kelancaran selama					
perjalanan	mobil	sepeda motor	angkutan umum	antar jemput	jalan kaki
mobil	1,0000	0,3695	3,0969	0,5686	0,1111
sepeda motor	2,7066	1,0000	2,3837	0,9478	0,1589
angkutan umum	0,3229	0,4195	1,0000	0,6964	0,1152
antar jemput	1,7588	1,0551	1,4359	1,0000	0,1381
jalan kaki	9,0000	6,2934	8,6771	7,2412	1,0000

kelancaran selama	12 1./	14 1 h. 1			
perjalanan	mobil	sepeda motor	angkutan umum	antar jemput	jalan kaki
mobil	0,0676	0,0404	0,1866	0,0544	0,0729
sepeda motor	0,1830	0,1094	0,1437	0,0907	0,1043
angkutan umum	0,0218	0,0459	0,0603	0,0666	0,0757
antar jemput	0,1189	0,1155	0,0865	0,0957	0,0907
jalan kaki	0,6086	0,6887	0,5229	0,6927	0,6564

kelancaran selama perjalanan	vektor eigen
mobil	0,0844
sepeda motor	0,1262
angkutan umum	0,0541
antar jemput	0,1014
jalan kaki	0,6339
	The state of the s

Nilai eigen maksimum (maks)	5,2682
Consistency Index (CI)	0,0670
Consistency Ratio (CR)	0,0604

matriks pairwise comparison

ketepatan sampai					7 P
tujuan	mobil	sepeda motor	angkutan umum	antar jemput	jalan kaki
mobil	1,0000	0,6148	0,1494	2,3052	0,4892
sepeda motor	1,6266	1,0000	0,1973	3,9317	2,3943
agkutan umum	6,6948	5,0683	1,0000	9,0000	4,6506
antar jemput	0,4338	0,2543	0,1111	1,0000	0,2299
jalan kaki	2,0442	0,4177	0,2150	4,3494	1,0000

Lampiran 10 (Lanjı	utan)	S BRA			
matriks normalitas	9111			VERTA	
ketepatan sampai					
tujuan	mobil	sepeda motor	angkutan umum	antar jemput	jalan kaki
mobil	0,0847	0,0836	0,0893	0,1120	0,0558
sepeda motor	0,1379	0,1360	0,1179	0,1910	0,2732
agkutan umum	0,5674	0,6891	0,5978	0,4372	0,5306
antar jemput	0,0368	0,0346	0,0664	0,0486	0,0262
jalan kaki	0,1732	0,0568	0,1285	0,2113	0,1141
				32	

ketepatan sampai tujuan	vektor eigen
mobil	0,0851
sepeda motor	0,1712
angkutan umum	0,5644
antar jemput	0,0425
jalan kaki	0,1368

Nilai eigen maksimum (maks)	5,2013
Consistency Index (CI)		0,0503
Consistency Ratio (CR)	li b	0,0453

Lampiran 10 (Lanjutan)	TAG				
matriks pairwise comparison	TAS	BRA	la.	VILLEY	
kemudahan melakukan					
perjalanan setiap saat	mobil	sepeda motor	angkutan umum	antar jemput	jalan kaki
mobil	1,0000	0,4634	6,8419	3,7069	0,5522
sepeda motor	2,1581	1,0000	9,0000	5,8651	2,7103
agkutan umum	0,1462	0,1111	1,0000	0,1590	0,1590
antar jemput	0,2698	0,1705	6,2897	1,0000	0,3170
jalan kaki	1,8109	0,3690	6,2897	3,1547	1,0000

kemudahan melakukan perjalanan setiap saat	mobil	sepeda motor	angkutan umum	antar jemput	jalan kaki
mobil	0,1857	0,2192	0,2325	0,2670	0,1165
sepeda motor	0,4008	0,4731	0,3059	0,4224	0,5720
agkutan umum	0,0271	0,0526	0,0340	0,0114	0,0336
antar jemput	0,0501	0,0807	0,2138	0,0720	0,0669
jalan kaki	0,3363	0,1745	0,2138	0,2272	0,2110

	kemudahan melakukan perjalanan setiap saat	vektor eigen
4	mobil	0,2042
	sepeda motor	0,4348
	angkutan umum	0,0317
	antar jemput	0,0967
	jalan kaki	0,2326

	- 4 b 7 7 N 9 N
Nilai eigen maksimum (maks)	5,3168
Consistency Index (CI)	0,0792
Consistency Ratio (CR)	0,0713

repo

Lampiran 11. *Local Priority* dari Sub Kriteria

Local priority dari sub kriteria keamanan

alternatif	tindak kriminalitas	resiko kecelakaan	gangguan lingkungan sekitar
	0,5434	0,4021	0,0546
mobil	0,0663	0,1475	0,0500
sepeda motor	0,3035	0,0406	0,1779
angkutan umum	0,0372	0,1239	0,0669
antar jemput	0,1450	0,0920	0,5946
jalan kaki	0,4481	0,5960	0,1107

alternatif	tindak kriminalitas	resiko kecelakaan	gangguan lingkungan sekitar	local priority
mobil	0,0360	0,0593	0,0027	0,0980
sepeda motor	0,1649	0,0163	0,0097	0,1909
angkutan umum	0,0202	0,0498	0,0037	0,0737
antar jemput	0,0788	0,0370	0,0324	0,1482
jalan kaki	0,2435	0,2396	0,0060	0,4891

repos

Lampiran 11 (Lanjutan)

Local priority dari sub kriteria kenyamanan

	perlindungan	privasi dari	ketenangan selama		
alternatif	dari cuaca	orang lain	perjalanan		
	0,3149	0,0586	0,6265		
mobil	0,6351	0,2310	0,3290		
sepeda motor	0,0526	0,1556	0,0794		
angkutan umum	0,0877	0,0304	0,0324		
antar jemput	0,1498	0,2360	0,3433		
jalan kaki	0,0748	0,3469	0,2158		

alternatif	perlindungan dari cuaca	privasi dari orang lain	ketenangan selama perjalanan	local priority
mobil	0,2000	0,0135	0,2061	0,4197
sepeda motor	0,0166	0,0091	0,0497	0,0754
angkutan umum	0,0276	0,0018	0,0203	0,0497
antar jemput	0,0472	0,0138	0,2151	0,2761
jalan kaki	0,0236	0,0203	0,1352	0,1791

Local priority dari sub kriteria waktu

alternatif	jarak ke waktu ke Iternatif kampus kampus		kelancaran selama perjalanan	ketepatan sampai tujuan	kemudahan melakukan perjalanan setiap saat
	0,0949	0,0971	0,2594	0,5093	0,0392
mobil	0,0997	0,1251	0,0844	0,0851	0,2042
sepeda motor	0,2069	0,2237	0,1262	0,1712	0,4348
angkutan umum	0,0437	0,0371	0,0541	0,5644	0,0317
antar jemput	0,0870	0,1122	0,1014	0,0425	0,0967
jalan kaki	0,5627	0,5019	0,6339	0,1368	0,2326

alternatif	jarak ke kampus	waktu ke kampus	kelancaran selama perjalanan	ketepatan sampai tujuan	kemudahan melakukan perjalanan setiap saat	local priority
mobil	0,0095	0,0121	0,0219	0,0433	0,0080	0,0948
sepeda motor	0,0196	0,0217	0,0327	0,0872	0,0171	0,1783
angkutan umum	0,0042	0,0036	0,0140	0,2875	0,0012	0,3105
antar jemput	0,0083	0,0109	0,0263	0,0217	0,0038	0,0709
jalan kaki	0,0534	0,0487	0,1645	0,0697	0,0091	0,3454

repos

Lampiran 12. *Global Priority* Pemilihan Sarana Transportasi ke Kampus

V	alternatif	keamanan	kenyamanan	biaya	waktu
		0,6869	0,0610	0,0822	0,1699
4	mobil	0,0980	0,4197	0,0499	0,0948
	sepeda motor	0,1909	0,0754	0,0968	0,1783
	angkutan umum	0,0737	0,0497	0,0501	0,3105
	antar jemput	0,1482	0,2761	0,5226	0,0709
	jalan kaki	0,4891	0,1791	0,2806	0,3454

alternatif	keamanan	kenyamanan	biaya	waktu	global priority
mobil	0,0673	0,0256	0,0041	0,0161	0,1132
sepeda motor	0,1312	0,0046	0,0080	0,0303	0,1740
angkutan umum	0,0506	0,0030	0,0041	0,0528	0,1105
antar jemput	0,1018	0,0168	0,0430	0,0121	0,1737
jalan kaki	0,3360	0,0109	0,0231	0,0587	0,4287

BAB I PENDAHULUAN

1.1 Latar Belakang

Perjalanan ke kampus dipengaruhi oleh sarana transportasi yang digunakan. Alternatif perjalanan ke kampus menggunakan beberapa sarana transportasi, misalnya mobil, sepeda motor, angkutan umum, antar jemput dan jalan kaki. Pemilihan sarana transportasi tersebut dipengaruhi oleh faktor-faktor tertentu diantaranya faktor keamanan, kenyamanan, biaya dan waktu. Untuk menentukan prioritas dari faktor-faktor pemilihan sarana transportasi ke kampus dapat digunakan metoda *Analytic Hierarchy Process* (AHP).

Menurut Kosasi (2002), *Analytic Hierarchy Process* (AHP) merupakan metode untuk pengambilan keputusan multikriteria. Saaty (1993) menyatakan bahwa pada dasarnya metode AHP memecah-mecah situasi kompleks dan tak terstruktur ke dalam bagian-bagian komponennya, kemudian menatanya ke dalam hirarki, memberikan nilai numerik pada pertimbangan subyektif tentang pentingnya setiap variabel. Akhirnya, melakukan pertimbangan untuk menetapkan variabel dengan prioritas paling tinggi. Hirarki adalah gambaran dari permasalahan yang kompleks dalam struktur banyak tingkat. Hasil akhir dari AHP adalah prioritas bagi alternatifalternatif yang ada untuk memenuhi tujuan dari permasalahan yang dihadapi.

1.2 Perumusan Masalah

- 1. Bagaimana penggunaan *Analytic Hierarchy Process* (AHP) dalam menentukan prioritas faktor-faktor yang mempengaruhi pemilihan sarana transportasi ke kampus ?
- 2. Bagaimana menentukan prioritas masing-masing alternatif dari setiap faktor yang mempengaruhi pemilihan sarana transportasi ke kampus ?

1.3 Batasan Masalah

1. Metode penelitian adalah metode survei dengan kuisioner. Sampel diambil sebanyak 150, yang terdiri dari mahasiswa, dosen serta karyawan Universitas Brawijaya.

1

- 2. Sarana transportasi yang digunakan dibatasi hanya mobil, sepeda motor, angkutan umum, antar jemput dan jalan kaki.
- 3. Faktor-faktor yang diperhitungkan terdiri atas empat faktor yaitu keamanan, kenyamanan, biaya dan waktu.

1.4 Tujuan

- 1. Menentukan prioritas faktor-faktor yang mempengaruhi pemilihan sarana transportasi ke kampus menggunakan Analytic Hierarchy Process (AHP).
- 2. Menentukan prioritas masing-masing alternatif dari setiap faktor yang mempengaruhi pemilihan sarana transportasi ke kampus.

1.5 Manfaat

Manfaat yang bisa diperoleh dari tugas akhir ini adalah memahami konsep Analytic Hierarchy Process (AHP) serta penerapannya sehingga diketahui prioritas faktor-faktor dan prioritas alternatif yang mempengaruhi pemilihan sarana transportasi ke kampus.

BAB II TINJAUAN PUSTAKA

2.1 Gambaran Umum Analytic Hierarchy Process (AHP)

2.1.1 Definisi Analytic Hierarchy Process (AHP)

Analytic Hierarchy Process (AHP) pertama kali dikemukakan oleh seorang matematikawan dari Universitas Pittsburgh Amerika Serikat Thomas L. Saaty sekitar tahun 1970. Menurut Saaty (1993), Analytic Hierarchy Process (AHP) adalah suatu model luwes yang memungkinkan mengambil keputusan dengan mengkombinasikan pertimbangan dan nilai-nilai pribadi secara logis.

Menurut Mulyono (1991), pada AHP, pembuat keputusan membagi kriteria dari masalah keputusan ke dalam suatu hirarki subkriteria dan menggunakan perbandingan berpasang untuk mengevaluasi kriteria dan alternatif keputusan tersebut. Ada beberapa prinsip yang harus dipahami dalam menyelesaikan persoalan dengan menggunakan *Analytic Hierarchy Process* (AHP), diantaranya adalah :

1. Decomposition

Setelah persoalan didefinisikan, maka perlu dilakukan dekomposisi yaitu memecahkan persoalan yang utuh menjadi unsur-unsur. Untuk mendapatkan hasil yang lebih akurat, pemecahan juga dilakukan terhadap unsur-unsurnya sampai tidak mungkin dilakukan pemecahan lebih lanjut, sehingga diperoleh beberapa tingkatan persoalan yang telah didefinisikan.

2. Comparative Judgment

Prinsip ini berarti membuat penilaian tentang kepentingan relatif dua elemen pada suatu tingkat tertentu dalam kaitannya dengan tingkat di atasnya. Penilaian ini merupakan inti dari AHP, karena akan berpengaruh terhadap prioritas elemen-elemen. Hasil penilaian akan lebih baik jika disajikan dalam bentuk matriks pairwise comparison (matriks perbandingan berpasang).

3. Synthesis of Priority

Dari setiap matriks *pairwise comparison* kemudian dicari eigen vektornya untuk mendapatkan *local priority*. Karena matriks *pairwise comparison* terdapat pada setiap tingkat, maka untuk mendapatkan *global priority* harus dilakukan sintesis diantara

BRAWIJAYA

local priority. Pengurutan elemen-elemen menurut kepentingan relatif melalui sintesis dinamakan *priority setting*.

4. Logical Consistency

Konsistensi logis merupakan prinsip rasional AHP. Konsistensi memiliki dua makna, yaitu :

a. Pemikiran atau objek yang serupa dikelompokkan menurut keseragaman dan relevansinya.

Contoh: Semangka dan bola.

Kriteria : bulat (dapat dikelompokkan).

Kriteria: rasa (tidak dapat dikelompokkan).

b. Tingkat hubungan antara obyek didasarkan pada kriteria tertentu, saling membenarkan secara logis.

Contoh: Kriteria: kemanisan.

Jika madu 2 kali lebih manis daripada gula pasir. Jika gula pasir 3 kali lebih manis daripada molasa. Maka madu harus 6 kali lebih manis daripada molasa.

2.1.2 Keuntungan Analytic Hierarchy Process (AHP)

Menurut Saaty (1993), keuntungan *Analytic Hierarchy Process* (AHP) adalah :

- 1. Kesatuan, AHP memberi satu model tunggal yang mudah dimengerti, luwes untuk aneka ragam persoalan tak terstruktur.
- 2. Kompleksitas, AHP memadukan ancangan deduktif dan ancangan berdasarkan sistem dalam memecahkan persoalan kompleks.
- 3. Saling ketergantungan, AHP dapat menangani saling ketergantungan elemen-elemen dalam suatu sistem dan tidak memaksakan pemikiran linier.
- 4. Penyusunan hirarki, AHP mencerminkan kecenderungan alami pikiran untuk memilah-milah elemen-elemen suatu sistem dalam berbagai tingkat berlainan dan mengelompokkan unsur yang serupa dalam setiap tingkat.
- 5. Pengukuran, AHP memberi suatu skala untuk mengukur hal-hal yang tidak berwujud dan suatu metode untuk menetapkan prioritas.
- 6. Konsistensi, AHP melacak konsistensi logis dari pertimbanganpertimbangan yang digunakan dalam menetapkan berbagai prioritas.

4

- 7. Sintesis, AHP menuntun ke suatu taksiran menyeluruh tentang kebaikan setiap alternatif.
- 8. Tawar menawar, AHP mempertimbangkan prioritas-prioritas relatif dari berbagai faktor sistem dan memungkinkan orang memilih alternatif terbaik berdasarkan tujuan-tujuannya.
- 9. Penilaian dan konsensus, AHP tidak memaksakan konsensus tetapi mensintesis suatu hasil yang representatif dari berbagai penilaian yang berbeda-beda.
- 10. Pengulangan proses, AHP memungkinkan untuk memperhalus definisi pada suatu persoalan dan memperbaiki pertimbangan dan pengertian melalui pengulangan.

2.1.3 Langkah-langkah Dasar Analytic Hierarchy Process (AHP)

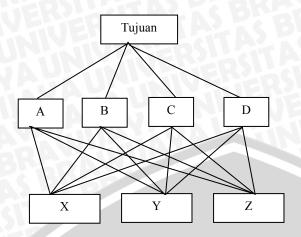
Pada Analytic Hierarchy Process elemen-elemen persoalan ditata dalam bentuk hirarki. Kemudian dibuat perbandingan berpasang antar elemen dari suatu tingkat sesuai dengan yang diperlukan oleh kriteria-kriteria yang berada setingkat lebih tinggi. Berbagai perbandingan ini menghasilkan prioritas dan akhirnya, melalui sintesis, menghasilkan prioritas menyeluruh, kemudian diukur konsistensi dan interdependensinya. Secara umum langkah-langkah dasar dalam mengerjakan AHP adalah memeriksa persoalan, menyusun hirarki, melakukan perbandingan berpasangan, menetapkan prioritas, mensintesis prioritas menyeluruh dan memeriksa konsistensi (Saaty, 1993).

2.2 Hirarki

2.2.1 Definisi Hirarki

Menurut Saaty (1993), hirarki melibatkan pengidentifikasian elemen-elemen suatu persoalan, mengelompokkan elemen-elemen ke dalam beberapa kumpulan yang homogen, dan menata kumpulan-kumpulan itu pada tingkat-tingkat yang berbeda. Hirarki yang sederhana berbentuk linier, yang naik atau turun dari tingkat yang satu ke tingkat yang lain.

Definisi hirarki menurut Saaty (1994) adalah gambaran dari permasalahan yang kompleks dalam struktur banyak tingkat dimana tingkat paling atas adalah tujuan dan diikuti tingkat kriteria, sub kriteria dan seterusnya ke bawah sampai tingkat yang paling bawah adalah tingkat alternatif.


2.2.2 Penggolongan Hirarki

Hirarki digolongkan menjadi dua yaitu hirarki struktural dan fungsional. Pada hirarki struktural sistem yang kompleks disusun ke dalam komponen-komponen pokoknya dalam urutan menurun menurut sifat strukturalnya. Hirarki struktural sangat erat kaitannya dengan cara otak menganalisis hal yang kompleks, yaitu dengan memecah-mecah obyek yang ditangkap oleh indera menjadi sejumlah gugusan, sub gugusan dan gugusan yang lebih kecil lagi. Sebaliknya hirarki fungsional menguraikan sistem yang kompleks menjadi elemen-elemen pokoknya menurut hubungan esensialnya (Saaty, 1993).

2.2.3 Penyusunan Hirarki

Menurut Saaty (1993), tidak ada aturan yang pantang dilanggar untuk menyusun hirarki. Rancangan dalam menyusun hirarki bergantung pada jenis keputusan yang perlu diambil. Jika persoalannya adalah memilih alternatif, maka dapat dimulai dari tingkat dasar dengan menderetkan semua alternatif itu. Tingkat berikutnya harus terdiri dari kriteria untuk mempertimbangkan berbagai alternatif sebelumnya, dan tingkat puncak haruslah satu elemen saja, yaitu fokus atau tujuan menyeluruh. Didalam membuat hirarki tidak ada batasan untuk jumlah tingkat. Bila elemen-elemen suatu tingkat sulit dibandingkan, suatu tingkat baru dengan perbedaan yang lebih halus harus diciptakan. Hirarki harus bersifat luwes, selalu dapat diubah guna menampung adanya kriteria baru yang muncul. Contoh sistem hirarki permasalahan tiga tingkat dapat dilihat pada Gambar 2.1.

6

Gambar 2.1. Hirarki tiga tingkat AHP

Keterangan: Kriteria = A, B, C, D Alternatif = X, Y, Z

2.3 Matriks *Pairwise Comparison* (Matriks Perbandingan Berpasang)

Langkah awal dalam menetapkan susunan prioritas elemen adalah dengan membuat perbandingan berpasang, yaitu membandingkan elemen-elemen berpasangan dengan kriteria yang telah ditentukan. Kemudian perbandingan tersebut ditransformasikan dalam bentuk matriks yang digunakan untuk analisis numerik. Menurut Anton (1998), sebuah matriks adalah susunan segiempat siku-siku dari bilangan-bilangan. Bilangan ini disebut sebagai entri di dalam matriks. Sementara itu Saaty (1993) mengatakan matriks merupakan alat sederhana yang biasa digunakan dan memberi kerangka untuk menguji konsistensi. Selain itu juga dapat diperoleh informasi tambahan dengan jalan membuat segala perbandingan yang mungkin, dan menganalisis kepekaan prioritas menyeluruh terhadap perubahan dalam pertimbangan.

Proses perbandingan berpasang dimulai pada puncak hirarki untuk memilih kriteria C, atau sifat yang akan digunakan untuk

BRAWIJAYA

melakukan perbandingan yang pertama. Kemudian satu tingkat dibawahnya, diambil elemen-elemen yang akan dibandingkan : A_1 , A_2 , ..., A_n . Tabel matriks *pairwise comparison* dapat dilihat pada Tabel 2.1.

Tabel 2.1 Contoh tabel matriks *pairwise comparison* (a_{ij})

C	A_1	A_2		A_n
A_1	1	a_{12}		a_{1n}
A_2	a ₂₁	1		a_{2n}
A_n	a_{n1}	a_{n2}	AE	1

Semua entri pada diagonal matriks bernilai sama dengan 1, karena $a_{11}, a_{22}, \ldots, a_{nn}$ merupakan nilai perbandingan elemen operasi A_1, A_2, \ldots, A_n dengan elemennya sendiri, sehingga dengan sendirinya nilai $a_{11}, a_{22}, \ldots, a_{nn}$ sama dengan 1. Nilai a_{12} merupakan perbandingan kepentingan elemen operasi A_1 dengan elemen A_2 . Besarnya nilai a_{21} merupakan $1/a_{12}$ yang menyatakan tingkat intensitas kepentingan elemen operasi A_2 terhadap elemen A_1 . Menurut Saaty (1994), matriks *pairwise comparison* harus memenuhi sifat *reciprocal* (sifat berkebalikan) sehingga memenuhi persamaan :

$$a_{ij} = 1/a_{ji}, i, j = 1, 2, ..., n$$

Langkah selanjutnya setelah semua elemen matriks untuk tiaptiap subkriteria atau unsur-unsur terisi adalah

1. Menormalisasi matriks *pairwise comparison* untuk mencari eigen vektornya sebagai vektor prioritas. Cara menormalisasi matriks adalah dengan membagi setiap entri dengan hasil penjumlahan kolom dari entri tersebut

(
$$z_j = \int_{i=1}^{n} a_{ij}$$
, $j = 1, 2, ..., n$), yang dapat digambarkan sebagai matriks berikut:

C	A_1	A_2		A_n	
A_1	a_{11}/z_1	a_{12}/z_{2}		a_{1n}/z_n	
A_2	a_{21}/z_1	a_{22}/z_2		a_{2n}/z_n	
A			1		
$\mathbf{A}_{\mathbf{n}}$	a_{n1}/z_1	a_{n2}/z_2		a_{nn}/z_n	

2. Mencari prioritas dengan cara merata-rata jumlah entri dalam baris ke-i, untuk setiap i, sehingga didapatkan prioritas yang menunjukkan bobot nilai dari kriteria/subkriteria yang terdapat dalam matriks tersebut.

$$v_i = \frac{a_{ij}}{n}, i, j = 1, 2, ..., n$$

v adalah rata-rata baris matriks ${\bf A}$ yang telah dinormalisasi, dan v_i menunjukkan prioritas kriteria/subkriteria/alternatif ke-i dalam baris matriks tersebut. Hal ini dapat diilustrasikan sebagai berikut :

C	\mathbf{A}_1	A_2		A _n	Prioritas
A_1	a_{11}/z_1	a_{12}/z_2		a_{1n}/z_n	v_1
A_2	a_{21}/z_{1}	a_{22}/z_2		a_{2n}/z_n	V_2
	🕱	E 5	\\	\ // \$	
\mathbf{A}_{n}	a_{n1}/z_1	a_{n2}/z_2		a_{nn}/z_n	v_n

Jadi dari ilustrasi di atas dapat diperoleh nilai prioritasnya yaitu ditunjukkan dengan v_i , untuk kriteria ke-i.

Untuk mengisi matriks *pairwise comparison*, digunakan bilangan yang dapat menggambarkan relatif pentingnya suatu elemen di atas elemen yang lain. Tabel 2.2 memuat skala banding berpasang, di mana skala itu mendefinisikan dan menjelaskan nilai 1 sampai dengan 9 yang ditetapkan bagi pertimbangan dalam membandingkan

pasangan elemen yang sejenis di setiap tingkat hirarki terhadap suatu kriteria yang berada setingkat di atasnya.

Tabel 2.2 Skala perbandingan berpasang

Tingkat Kepentingan	Definisi	Keterangan	
	Kedua elemen sama pentingnya	Kedua elemen mempunyai pengaruh yang sama besar pada sifat itu	
3	Elemen yang satu sedikit lebih penting dari elemen yang lain	Pengalaman dan pertimbangan sedikit mendukung satu elemen atas elemen yang lainnnya	
5 Line	Elemen yang satu sangat penting terhadap elemen yang lain	Pengalaman dan pertimbangan dengan kuat mendukung satu elemen atas elemen yang lainnya	
7	Satu elemen jelas lebih penting dari elemen yang lainnya	Satu elemen dengan kuat didukung dan dominannya telah terlihat dalam praktek	
9	Satu elemen mutlak lebih penting daripada elemen yang lainnya	Bukti yang mendukung elemen yang satu atas yang lain memiliki tingkat penegasan tertinggi yang mungkin menguatkan	
2, 4, 6, 8	Nilai-nilai diantara dua pertimbangan yang berdekatan	Kompromi diperlukan antara dua pertimbangan	

10

Kebalikan	$a_{ij} = 1/a_{ji}$	Jika untuk aktivitas i
		mendapat satu angka
	A GIVE	bila dibandingkan
		dengan aktivitas j,
	III EN 400	maka j mempunyai
		nilai kebalikannya
		jika dibandingkan
		dengan i

Sumber: Saaty (1993)

Jika ada n elemen yang akan dibandingkan maka terdapat $\frac{n(n-1)}{2}$ perbandingan antar dua elemen yang harus dilakukan.

2.4 Sintesis

2.4.1 Nilai Eigen dan Vektor Eigen

Misalkan \mathbf{Z}_{nxn} merupakan suatu matriks yang elemen-elemennya terdiri dari z_{ij} ($\mathbf{Z}_{nxn} = (z_{ij})$), di mana i menyatakan baris ke-i dan j menyatakan kolom ke-j dari \mathbf{Z}_{nxn} , di mana i, j = 1, 2, ..., n. Menurut Anton (1998), untuk mencari nilai eigen dari \mathbf{Z}_{nxn}

$$\mathbf{Z} \mathbf{x} = \mathbf{x} \tag{2.1}$$

$$\mathbf{Z} \mathbf{x} = \mathbf{I} \mathbf{x}$$

$$(\mathbf{Z} - \mathbf{I}) \mathbf{x} = \mathbf{0} \quad , \quad \mathbf{x} \neq \mathbf{0}. \tag{2.2}$$

Persamaan (2.2) akan ada penyelesaian jika dan hanya jika :

$$|Z I| = 0. (2.3)$$

Persamaan (2.3) dinamakan persamaan karakteristik untuk \mathbf{Z} dan memiliki n akar. Akar-akar persamaan karakteristik yang dinyatakan dengan $_{i}$, i=1,2,...,n, disebut nilai eigen dari \mathbf{Z} . Adapun $\mathbf{x} \neq \mathbf{0}$ yang memenuhi persamaan (2.1) disebut vektor eigen dari \mathbf{Z} .

Jika diketahui elemen-elemen dari suatu tingkat dalam hirarki adalah C_1 , C_2 , ..., C_n dan bobot pengaruh mereka adalah $w_1, w_2, ..., w_n$. Misalkan $a_{ij} = w_i/w_j$ merupakan kekuatan C_i jika dibandingkan dengan C_j . Matriks tersebut dinamakan matriks *pairwise comparison* yang diberi simbol **A**. Matriks **A** merupakan matriks *resiprocal*, sehingga $a_{ji} = 1/a_{ij}$. Jika penilaian sempurna pada setiap

perbandingan, maka $a_{ij} = a_{ik}$. a_{kj} untuk semua i,j,k sehingga **A** dinamakan konsisten. Secara matematik dapat dijabarkan

$$a_{ij} = w_i/w_j$$
, dimana i,j = 1, 2, ..., n
 $a_{ij} (w_j/w_i) = 1$, dimana i,j = 1, 2, ..., n
 $a_{ij} .w_j . \frac{1}{w_i}$ n , dimana i = 1, 2, ..., n atau
 $a_{ij} .w_j .w_j$ nw_i , dimana i = 1, 2, ..., n

dalam bentuk matriks Aw = nw.

Rumus ini menunjukkan bahwa w merupakan vektor eigen dari matriks A dengan nilai eigen n.

Jika a_{ij} tidak didasarkan pada ukuran pasti (seperti $w_1, w_2, ..., w_n$) tetapi pada penilaian subyektif , maka a_{ij} akan menyimpang dari rasio w_i/w_j yang sesungguhnya, dan akibatnya $\mathbf{A}\mathbf{w}=\mathbf{n}\mathbf{w}$ tidak dipenuhi lagi. Dua kenyataan dalam teori matriks memberikan kemudahan. Pertama, jika $\lambda_1, ..., \lambda_n$ adalah angka-angka yang memenuhi persamaan $\mathbf{A}\mathbf{w}=\lambda\mathbf{w}$ dimana λ merupakan nilai eigen dari matriks \mathbf{A} ,

dan jika
$$a_{ii} = 1$$
, untuk setiap i, maka n_{i} n_{i}

Karena itu, jika $\mathbf{A}\mathbf{w}=\lambda\mathbf{w}$ dipenuhi maka semua nilai eigen sama dengan nol kecuali nilai eigen yang satu, yaitu sebesar n. Oleh karena itu jelas dalam kasus konsisten, n merupakan nilai eigen \mathbf{A} yang terbesar.

Kedua, jika salah satu a_{ij} dari matriks *reciprocal* atau matriks kebalikan **A** berubah sangat kecil, maka nilai eigen juga berubah sangat kecil. Kombinasinya menjelaskan bahwa jika diagonal matriks **A** terdiri dari $a_{ii} = 1$ dan jika **A** konsisten, maka perubahan kecil pada a_{ij} menahan nilai eigen terbesar, λ maksimum, dekat ke n dan nilai eigen sisanya dekat dengan nol.

Karenanya yang menjadi persoalan adalah jika **A** merupakan matriks *pairwise comparison*, untuk mencari vektor eigen, harus dicari w yang memenuhi

$$\mathbf{A}_{\mathbf{W}} = \lambda_{\text{maks}} \mathbf{w}.$$

Perubahan kecil pada a_{ij} menyebabkan perubahan pada maksimum, penyimpangan maksimum dari n merupakan ukuran konsistensi. Cara untuk mencari maksimum yaitu dengan

menjumlahkan hasil kali setiap entri dalam matriks pairwise comparison dengan entri vektor eigen dalam kolom yang sama dan membaginya dengan entri dalam vektor eigen.

2.4.2 Pengambilan Keputusan

Agar didapatkan prioritas menyeluruh, prioritas lokal harus dihitung terlebih dahulu. Prioritas lokal (local priority) adalah vektor eigen. Prioritas lokal merupakan prioritas elemen-elemen dalam satu tingkat dengan memperhatikan satu kriteria saja.

Gabungan prioritas lokal menjadi prioritas menyeluruh (global priority) bagi alternatif-alternatif yang ada di tingkat paling bawah. Pengalian prioritas lokal elemen alternatif dengan prioritas lokal satu tingkat di atasnya membentuk prioritas menyeluruh yang digunakan sebagai dasar dalam perbandingan berpasangan, kemudian menjumlahkan menurut baris yang bersesuaian. Tabel 2.3 adalah gambaran dari prioritas menyeluruh.

Tabel 2.3 Tabel prioritas menyeluruh

	-	,			
	C_1	C_2		C_{m}	Prioritas
					Menyeluruh
A_1	$b_{11}P_1$	$b_{12}P_2$		$b_{1m}P_m$	u_1
A_2	$b_{21}P_1$	$b_{22}P_2$		$b_{2m}P_m$	u_2
	7	18)			10
	1.17	2.//_			Y 22
A		I D			
A_n	$o_{n1}P_1$	$b_{n2}P_2$	\ ₁ \	$b_{nm}P_m$	u_n

di mana : C_j = elemen kriteria

A = elemen alternatif

b_{ii} = prioritas lokal elemen alternatif ke-i berdasarkan elemen kriteria ke-j yang berada satu tingkat di atasnya

P_i = prioritas lokal elemen kriteria

 \mathbf{u}_{i} = prioritas menyeluruh alternatif ke-i, \mathbf{u}_{i} = $b_{ij}P_{j}$ i = 1, 2, ..., n j = 1, 2, ..., m.

$$i = 1, 2, ..., n$$

 $i = 1, 2, ..., m$.

BRAWIJAYA

2.5 Pengujian Konsistensi

Jika A adalah matriks *pairwise comparison* yang konsisten maka semua nilai eigen bernilai nol kecuali yang bernilai sama dengan n. Tetapi jika A adalah matriks tak konsisten, variansi kecil atas a_{ij} akan membuat nilai eigen terbesar maks selalu lebih besar atau sama dengan n: maks n. Besarnya ketidakkonsistenan yang terdapat dalam A dapat diteliti menggunakan perbedaan antara maks dengan n, di mana rata-ratanya disebut dengan *consistency index* (CI) dan dinyatakan sebagai berikut:

$$CI = \frac{maks}{n} \frac{n}{1}.$$
 (2.4)

(Saaty, 1994)

Suatu matriks *pairwise comparison* dinyatakan konsisten apabila untuk n = 3 nilai *consistency ratio* (*CR*) 5%, untuk n = 4 nilai *consistency ratio* (*CR*) 8%, sedangkan untuk n 5 (*CR*) 10%. Nilai *CR* yang lebih besar dari kriteria tersebut mengidentifikasikan adanya ketidakkonsistenan, sehingga perlu dilakukan perbaikan untuk memperoleh matriks *pairwise comparison* yang konsisten. *CR* dapat dihitung menggunakan rumus sebagai berikut:

$$CR = \frac{CI}{RI}$$
. (2.5)

di mana RI: random concistency index.

Nilai RI dapat dilihat pada Tabel 2.4.

Tabel 2.4 Random concistency index (RI)

n	1	2	3	4	2 5	6	ズル	28 6	9	10
RI	0	0	0,52	0,89	1,11	1,25	1,35	1,40	1,45	1,49

Sumber: Saaty (2002)

Untuk a_{ij} yang memiliki nilai _{ij} paling jauh menyimpang dari 1 adalah entri penyebab ketidakkonsistenan matriks *pairwise comparison*, di mana untuk menghitung _{ij} digunakan rumus :

$$_{ij} \quad a_{ij} w_j / w_i . \tag{2.6}$$

Cara untuk mengubah ketidakkonsistenan tersebut adalah dengan merubah a_{ii} menjadi w_i/w_i (Saaty, 1994).

2.6 Pengujian Kuisioner

Kualitas data yang dianalisis dan instrumen yang digunakan untuk mengumpulkan data penelitian mempunyai peranan yang penting dalam penetapan kesimpulan penelitian. Instrumen yang digunakan di sini adalah kuisioner. Karakteristik dari sebuah instrumen penelitian yang baik harus memenuhi persyaratan validitas dan reliabilitas. Karenanya untuk mengolah data penelitian langkah pertama yang harus dilakukan adalah menguji apakah kualitas data dan instrumen penelitian yang digunakan valid dan handal.

2.6.1 Uji Validitas

Menurut Singarimbun dan Effendi (1995), validitas menunjukkan sejauh mana suatu alat pengukur dapat mengukur apa yang ingin diukur. Didalam pengumpulan data penelitian, kuisioner yang disusun harus valid. Kuisioner dikatakan valid jika setiap butir pertanyaan memiliki keterkaitan yang tinggi. Setiap butir pertanyaan dikatakan valid jika memiliki nilai korelasi yang tinggi dengan jumlah nilai seluruh pertanyaan. Untuk menghitung korelasi setiap butir pertanyaan dengan seluruh pertanyaan digunakan rumus korelasi *product moment* dari Pearson sebagai berikut:

$$r = \frac{n(-xy) - (-x-y)}{\sqrt{n - x^2 - (-x)^2 - n - y^2 - (-y)^2}}$$

di mana : r = korelasi product moment

n = jumlah responden

x = skor jawaban

y = total skor jawaban

xy = hasil perkalian antara xy.

Kemudian $r(r_{hitung})$ dari tiap butir pertanyaan dibandingkan dengan r_{tabel} r_{n-2} dengan derajat bebas n-2. adalah peluang menolak hipotesis nol (H₀) yang dianggap benar dan umumnya disebut taraf nyata pengujian. Jika r_{hitung} lebih besar dari r_{tabel} maka pertanyaan tersebut valid. Apabila dalam perhitungan ditemukan pernyataan yang tidak valid, kemungkinan pertanyaan tersebut kurang baik susunan kata-kata/kalimatnya, sehingga menimbulkan penafsiran berbeda (Yitnosumarto, 1994).

2.6.2 Uji Reliabilitas

Menurut Singarimbun dan Effendi (1995), langkah selanjutnya setelah uji validitas adalah menguji keandalannya (reliabilitas) dari butir-butir pertanyaan yang telah dinyatakan valid. Reliabilitas adalah indeks yang menunjukkan sejauh mana suatu alat pengukur dapat dipercaya atau dapat diandalkan. Apabila suatu alat pengukur dipakai beberapa kali untuk mengukur gejala yang sama dan hasil yang diperoleh relatif konsisten maka alat pengukur dikatakan handal.

Menurut Malhotra (2002), untuk mengukur reliabilitas bisa menggunakan alpha cronbach. Suatu variabel dikatakan reliabel jika alpha cronbach lebih besar atau sama dengan 0,6. Sartono (2005) memberikan rumus alpha cronbach sebagai berikut:

$$\frac{k}{k-1} \quad 1 \quad \frac{{k \choose S_i}^2}{S_T^2}$$

di mana : k = banyak butir pertanyaan S_i^2 = ragam skor butir pertanyaan ke-i S_T^2 = ragam skor total.

2.7 Rata-rata Geometrik dan Nilai Skala Banding

Pada penelitian ini kuisioner yang digunakan adalah skala likert. Skala likert digunakan untuk mengukur sikap, pendapat dan persepsi seseorang atau sekelompok orang tentang fenomena sosial. Jawaban butir pertanyaan kuisioner dinilai dengan skor yang menyatakan pendapat dari responden (Sugiyono, 2004).

Perbedaan pendapat pada kriteria yang sama bisa terjadi dalam penelitian yang melibatkan banyak responden. Untuk mengatasi hal tersebut, rata-rata geometrik bisa digunakan untuk mendapatkan penilaian akhir (Saaty, 1993). Menurut Yitnosumarto (1994), rata-rata geometrik dihitung dengan rumus :

$$\overline{X}_g = \sqrt[n]{\prod_{i=1}^n X_i} \tag{2.7}$$

di mana : \overline{X}_g = rata-rata geometri n = banyak data

 X_i = skor yang diberikan atau besar data.

Rata-rata geometrik harus ditransformasikan terlebih dahulu ke skala dalam AHP untuk menentukan tingkat kepentingan satu elemen terhadap elemen yang lain sesuai dengan skala yang ada dalam AHP. Transformasi ini menggunakan Nilai Skala Banding (NSB).

$$NSB = \frac{Nilai \ Tertinggi - Nilai \ Terendah}{Q} . \tag{2.8}$$

Tingkat kepentingan satu elemen terhadap elemen yang lain sebagai entri matriks *pairwise comparison* ditentukan sebagai berikut :

$$a_{ij} = \frac{\textit{Tipe yang dibandingkan} - \textit{Tipe pembanding}}{\textit{NSB}} \quad . \quad (2.9)$$

Jika nilai a_{ij} positif maka nilai tersebut sebagai entri baris ke-i kolom ke-j dalam matriks *pairwise comparison*. Jika hasilnya negatif maka nilai tersebut sebagai entri baris ke-j kolom ke-i dengan nilai harga mutlak angka tersebut.

2.8 Penarikan Sampel

Menurut Supranto (1992), sampel adalah sebagian dari populasi. Sedangkan populasi adalah kumpulan yang lengkap dari seluruh elemen yang sejenis, tetapi dapat dibedakan karena karakteristiknya. Besarnya elemen sampel yang diteliti harus dapat mewakili populasi sampel berasal.

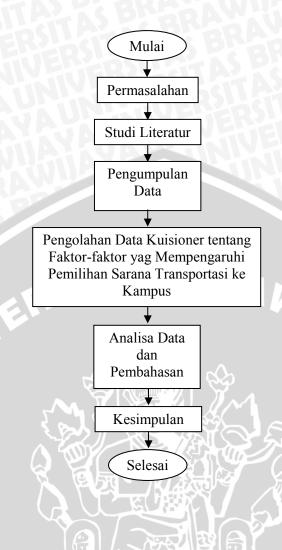
Keuntungan menggunakan sampel adalah:

- 1. Karena subyek pada sampel lebih sedikit dibandingkan dengan populasi, maka akan lebih mudah untuk memperoleh data.
- 2. Apabila populasinya terlalu besar, maka dikhawatirkan ada yang terlewati.
- 3. Dengan penelitian sampel, maka akan lebih efisien dalam arti biaya, waktu dan tenaga.
- 4. Ada kalanya dengan penelitian populasi berarti destruktif.
- 5. Ada bahaya bias dari pengumpul data. Karena subyeknya banyak, pengumpul data menjadi lelah sehingga pencatatannya menjadi tidak teliti.

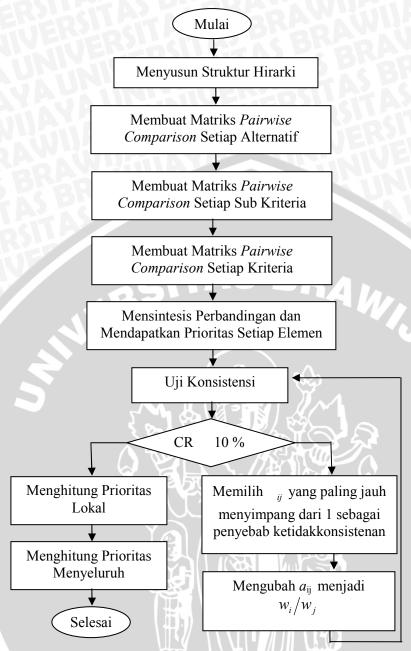
Sampel yang digunakan di sini berupa kuisioner. Kuisioner adalah sejumlah pertanyaan tertulis yang digunakan untuk memperoleh informasi dari responden.

BAB III METODE PENELITIAN

3.1 Sumber Data


Data yang digunakan adalah data hasil survei dengan kuisioner. Responden penelitian adalah mahasiswa, dosen dan karyawan Universitas Brawijaya. Responden diambil dari setiap fakultas sebanyak 15 kuisioner. Jumlah sampel yang digunakan yaitu 150 responden.

3.2 Metode Analisis


Langkah-langkah yang dilakukan dalam penelitian adalah sebagai berikut :

- 1. Langkah pertama adalah menyusun struktur hirarki.
- 2. Langkah kedua yang dilakukan dalam pengumpulan data, yaitu:
 - a. Mengujicobakan kuisioner sebelum menyebar kuisioner pada survei yang sesungguhnya. Survei pendahuluan dilakukan kepada pada 36 mahasiswa yang diambil secara acak
 - b. Memberikan skor jawaban pada setiap butir pertanyaan kuisioner survei pendahuluan.
 - c. Melakukan uji validitas pada setiap butir pertanyaan kuisioner survei pendahuluan. Jika terdapat pertanyaan yang tidak valid maka butir pertanyaan tersebut dibuang. Butir pertanyaan yang tersisa diuji validitas lagi. Perhitungan dalam uji validitas dilakukan dengan menggunakan bantuan software SPSS versi 11.5.
 - d. Melakukan uji reliabilitas terhadap butir pertanyaan kuisioner yang sudah valid. Butir pertanyaan yang reliabel dapat digunakan sebagai butir pertanyaan kuisioner pada survei yang sesungguhnya. Perhitungan dalam uji reliabilitas dilakukan dengan menggunakan bantuan *software* SPSS versi 11.5.
- 3. Langkah ketiga yang dilakukan adalah melakukan survei sesungguhnya kepada sejumlah sampel yang telah ditetapkan sebelumnya. Kemudian memberikan skor jawaban pada butir pertanyaan kuisioner survei yang sesungguhnya.

- 4. Langkah keempat yaitu pengolahan data dengan langkah-langkah sebagai berikut :
 - a. Menghitung rata-rata geometrik dari jawaban responden. Perhitungan rata-rata geometrik sesuai dengan persamaan (2.7).
 - b. Menghitung nilai skala banding (NSB) untuk setiap perbandingan berpasangan. Untuk menghitung NSB digunakan persamaan (2.8).
 - c. Menyusun matriks *pairwise comparison* sesuai dengan persamaan (2.9).
 - d. Menguji konsistensi pada setiap matriks *pairwise comparison*. Kemudian menghitung CI sesuai dengan persamaan (2.4). Berikutnya menghitung CR sesuai dengan persamaan (2.5). Jika terdapat matriks *pairwise comparison* yang tidak konsisten maka melakukan perbaikan martriks *pairwise comparison* dengan menghitung $_{ij}$ sesuai persamaan (2.6), kemudian memilih a_{ij} yang memiliki $_{ij}$ paling jauh menyimpang dari 1 sebagai entri penyebab ketidakkonsistenan. Kemudian merubahnya menjadi w_i/w_j .
- 5. Langkah kelima yang dilakukan yaitu menganalisa data dan pembahasan. Pengambilan keputusan dilakukan dengan menghitung prioritas lokal untuk setiap matriks *pairwise comparison* sehingga diperoleh prioritas elemen-elemen dalam satu tingkat dengan memperhatikan satu kriteria saja. Langkah berikutnya adalah menghitung prioritas menyeluruh bagi elemen alternatif. Perhitungan dilakukan dengan bantuan *software microsoft Excel*. Diagram alir dari metode penelitian bisa dilihat pada Gambar 3.1.

Gambar 3.1 Diagram alir metode penelitian

Gambar 3.2 Diagram Alir Langkah Metode AHP

BAB IV HASIL DAN PEMBAHASAN

4.1 Penyusunan Hirarki

Susunan hirarki penelitian terdiri dari 4 tingkat yaitu tujuan, kriteria, sub kriteria dan alternatif. Adapun rinciannya adalah sebagai berikut :

- 1. Tingkat pertama: Tujuan
- 2. Tingkat kedua : Faktor-faktor yang berpengaruh terhadap pemilihan sarana transportasi, terdiri dari :
 - a. Kriteria keamanan
 - b. Kriteria kenyamanan
 - c. Kriteria biaya
 - d. Kriteria waktu
- 3. Tingkat ketiga : Sub kriteria dari masing-masing kriteria Sub kriteria keamanan antara lain :
 - a. Tindak kriminalitas
 - b. Resiko kecelakaan
 - c. Gangguan lingkungan sekitar Sub kriteria kenyamanan antara lain :
 - a. Perlindungan dari cuaca
 - b. Privasi dari orang lain
 - c. Ketenangan selama perjalanan Sub kriteria waktu antara lain :
 - a. Jarak ke kampus
 - b. Lama waktu untuk melakukan perjalanan
 - c. Kelancaran selama perjalanan
 - d. Ketepatan waktu sampai tujuan
 - e. Kebebasan melakukan perjalanan setiap saat
- 4. Tingkat keempat : sarana transportasi yang dipilih, yang terdiri dari mobil, sepeda motor, angkutan umum, antar jemput, dan jalan kaki.

4.2 Pengujian Kuisioner Survei Pendahuluan

Data yang digunakan dalam penelitian ini adalah data primer yaitu hasil survei terhadap responden dengan menggunakan kuisioner. Sebelum data yang diperoleh diolah lebih lanjut sebaiknya terlebih dahulu dilakukan uji validitas dan reliabilitas terhadap

BRAWIJAYA

jawaban butir pertanyaan kuisioner survei pendahuluan. Pada survei pendahuluan, kuisioner diujicobakan pada 36 responden yang diambil secara acak. Uji validitas dilakukan menggunakan korelasi *product moment* dari Pearson. Korelasi ini merupakan korelasi antara skor setiap butir pertanyaan dengan total skor variabel. Didalam uji reliabilitas digunakan *alpha cronbrach*. Nilai korelasi (r) dan *alpha cronbrach* (α) dapat dilihat pada Tabel 4.1.

Tabel 4.1 Nilai korelasi dan alpha cronbach

Nilai Korelasi	Korelasi (r)	Alpha cronbrach (α)
Pertanyaan		
2	0,879	
3	0,781	0,7280
4	0,751	
5	0,780	BRA.
6	0,719	0,7750
7	0,678	
9	0,801	^
10	0,808	
11	0,726	0,7111
12	0,472	
13	0,580	

Sumber: Pengolahan Data

Dengan derajat bebas 34 dan *alpha* 0,05 diperoleh r_{Tabel} sebesar 0,339, semua pertanyaan mempunyai r_{hitung} lebih besar dari r_{Tabel} , hal ini menunjukkan bahwa pertanyaan kuisioner valid. Nilai r_{Tabel} dapat dilihat dalam Lampiran 2. *Alpha cronbrach* yang diperoleh dari semua pertanyaan lebih dari 0,6, hal ini menunjukkan semua pertanyaan reliabel. Jadi kuisioner dapat digunakan dalam survei berikutnya. Perhitungan nilai korelasi (r) dan *alpha conbrach* (α) dapat dilihat pada Lampiran 3.

4.3 Perhitungan Hasil Kuisioner

Setelah jawaban kuisioner terkumpul, kemudian jawaban tersebut diberi skor dan dihitung rata-rata geometriknya. Sementara itu frekuensi dan rata-rata geometrik dapat dilihat di Lampiran 6. Didalam mentransformasikan skor jawaban ke dalam skala AHP digunakan nilai skala banding (NSB). Hasil perhitungan NSB dapat dilihat di Lampiran 7.

4.4 Penyusunan Entri Matriks Banding Berpasang, Perhitungan Vektor Eigen, Nilai Eigen dan Uji Konsistensi

4.4.1 Kriteria

Pada hirarki terdapat empat kriteria yaitu kriteria keamanan, kenyamanan, biaya dan waktu, sehingga terdapat empat elemen yang harus dibandingkan. Dengan demikian matriks *pairwise comparison* yang diperoleh berordo 4x4. Matriks *pairwise comparison* dapat dilihat pada Tabel 4.2. Dalam matriks ini, elemen dalam kolom sebelah kiri dibandingkan dengan elemen yang berada di baris atas berkenaan dengan sifat di sudut kiri atas. Perhitungan dalam matriks *pairwise comparison* kriteria yang selengkapnya dapat dilihat pada Lampiran 8.

Tabel 4.2 Matriks pairwise comparison antar kriteria

Kriteria	keamanan	kenyamanan	biaya	waktu	prioritas
keamanan	1,0000	8,4724	9,0000	5,8022	0,6869
kenyamanan	0,1180	1,0000	0,5276	0,3745	0,0610
biaya	0,1111	1,8955	1,0000	0,3127	0,0822
waktu	0,1723	2,6702	3,1978	1,0000	0,1699

Sumber: Pengolahan Data

 λ_{maks} = 4,1330 CI = 0,0443 CR = 0.0498

Pada Tabel 4.4 dapat dilihat bahwa CR matriks *pairwise comparison* kriteria adalah 4,98 %, dengan demikian matriks tersebut konsisten.

4.4.2 Sub Kriteria Berdasarkan Kriteria Keamanan

Kriteria keamanan terdiri dari sub kriteria tindak kriminalitas, resiko kecelakaan dan gangguan lingkungan sekitar, dengan demikian matriks *pairwise comparison* yang terbentuk adalah 3x3. Kriteria keamanan menunjukkan keamanan selama melakukan perjalanan ke kampus, yaitu rasa aman dari adanya tindakan kriminalitas, keselamatan dari resiko kecelakaan dan dari adanya gangguan lingkungan sekitar yaitu gangguan sebelum dan sesudah melakukan perjalanan. Matriks *pairwise comparison* antar sub kriteria berdasarkan kriteria keamanan beserta vektor eigen, nilai eigen maksimum dan konsistensi rasio dapat dilihat pada Lampiran 9. Nilai CR yang diperoleh adalah 3,42 %, sehingga matriks *pairwise comparison* tersebut konsisten. Konsisten artinya semua elemen telah dikelompokkan secara homogen dan relasi antar kriteria saling membenarkan secara logis.

4.4.3 Sub Kriteria Berdasarkan Kriteria Kenyamanan

Kriteria kenyamanan terdiri dari sub kriteria perlindungan cuaca, privasi dari orang lain dan ketenangan selama perjalanan, dengan demikian matriks *pairwise comparison* yang terbentuk adalah 3x3. Kriteria kenyamanan lebih menunjukkan pada fasilitas yang tersedia selama perjalanan, yaitu perlindungan dari cuaca, privasi dari orang lain yaitu kebebasan untuk melakukan segala sesuatu selama dalam perjalanan, dan suasana tenang selama perjalanan. Matriks *pairwise comparison* sub kriteria berdasarkan kriteria kenyamanan, vektor eigen dan konsistensi rasio dapat dilihat pada Lampiran 9. Nilai CR yang diperoleh dari sub kriteria kenyamanan adalah 3,56 %, yang berarti bahwa matriks *pairwise comparison* tersebut konsisten.

4.4.4 Sub Kriteria Berdasarkan Kriteria Biaya

Kriteria biaya tidak memiliki sub kriteria oleh karena itu perhitungan langsung diperoleh dari perbandingan antar alternatif. Faktor biaya merupakan semua biaya yang langsung dikeluarkan untuk melakukan perjalanan.

4.4.5 Sub Kriteria Berdasarkan Kriteria Waktu

Kriteria waktu terdiri dari sub kriteria jarak ke kampus, waktu tempuh ke kampus, ketepatan waktu sampai tujuan, kelancaran selama perjalanan dan kebebasan melakukan perjalanan setiap saat, dengan demikian matriks *pairwise comparison* yang terbentuk adalah 5x5. Matriks *pairwise comparison* sub kriteria berdasarkan kriteria waktu, vektor eigen dan konsistensi rasio dapat dilihat pada Lampiran 9. Nilai CR yang diperoleh dari sub kriteria waktu adalah 2,55 % yang berarti matriks *pairwise comparison* tersebut konsisten.

4.4.6 Alternatif Berdasarkan Sub Kriteria

Perbandingan antar alternatif berdasarkan sub kriteria terdapat 11 matriks *pairwise comparison*, di mana secara lengkap dapat dilihat pada Lampiran 10. Ringkasan nilai CR ditampilkan pada Tabel 4.3.

Tabel 4.3 *Consistensy ratio* (CR) untuk matriks perbandingan antar alternatif berdasarkan sub kriteria.

i sub kitteria.
CR
0,0167
0,0733
0,0160
0,0538
0,0731
0,0226
0,0341
0,0340
0,0604
0,0453
0,0713

Sumber: Pengolahan Data

Pada sub kriteria resiko kecelakaan, matriks *pairwise comparison* antar alternatif dapat dilihat pada Tabel 4.4. Perhitungan dalam

matriks *pairwise comparison* lebih lengkap dapat dilihat pada Lampiran 10.

Tabel 4.4 Matriks pairwise comparison antar alternatif

resiko kecelakaan	mobil	sepeda motor	angkutan umum	antar jemput	jalan kaki	prioritas
mobil	1,0000	4,9137	0,2562	2,8352	0,1111	0,1309
sepeda motor	0,2035	1,0000	0,2702	0,3800	0,1137	0,0405
angkutan umum	3,9038	3,7003	1,0000	1,0687	0,1962	0,1591
antar jemput	0,3527	2,6316	0,9357	1,0000	0,1622	0,0926
jalan kaki	9,0000	8,7965	5,0962	6,1648	1,0000	0,5770

Sumber: Pengolahan Data

 $\lambda_{\text{maks}} = 5,6688$ CI = 0,1672
CR = 0,1506

Pada Tabel 4.4 terlihat bahwa matriks *pairwise comparison* antar alternatif mempunyai CR = 0,1506. Menurut Saaty (1994), Matriks *pairwise comparison* berordo 5x5 dinyatakan konsisten jika CR ≤ 10%. Dengan demikian matriks tersebut tidak konsisten. Oleh karena itu harus dilakukan perbaikan terhadap perbandingan antar alternatif. Untuk mengetahui penyebab ketidakkonsistenan matriks *pairwise comparison*, maka dicari entri matriks yang memiliki nilai _{ij} paling jauh menyimpang dari 1. Nilai _{ij} matriks *pairwise comparison* antar alternatif sub kriteria resiko kecelakaan dapat dilihat pada Tabel 4.5.

Tabel 4.5 Tabel $_{ij} = a_{ij} w_j / w_i$

resiko		sepeda	angkutan	antar	jalan
kecelakaan	mobil	motor	umum	jemput	kaki
mobil	1,0000	1,5194	0,3114	0,1813	0,4898
sepeda					
motor	0,6582	1,0000	1,0623	0,8696	1,6207
angkutan			VITT-	7134	
umum	3,2117	0,9413	1,0000	0,6221	0,7117
antar	14				
jemput	0,4984	1,1500	1,6073	1,0000	1,0105
jalan kaki	2,0416	0,6170	1,4052	0,9896	1,0000

Sumber: Pengolahan Data

Pada Tabel 4.5 dapat dilihat bahwa nilai $_{13}$ = 3,2117 merupakan nilai yang paling menyimpang dari 1. Dengan demikian penilaian terhadap alternatif mobil dibandingkan dengan alternatif angkutan umum harus diperbaiki dengan nilai w_1 / w_3 , sehingga diperoleh a_{13} yang baru :

$$a_{13} = \frac{w_1}{w_3}$$

$$= \frac{0,1309}{0,1591}$$

$$= 1,2155$$

Matriks *pairwise comparison* yang diperbaiki dapat dilihat pada Tabel 4.6, sedangkan untuk perhitungan lebih lengkap dapat dilihat pada Lampiran 10.

Tabel 4.6 Matriks *pairwise comparison* antar alternatif sub kriteria resiko kecelakaan

resiko	口はは	sepeda	angkutan	antar	jalan
kecelakaan	Mobil	motor	umum	jemput	kaki
mobil	1,0000	4,9137	0,8227	2,8352	0,1111
sepeda			MET	10891	
motor	0,2035	1,0000	0,2702	0,3800	0,1137
angkutan		HIM			
umum	1,2155	3,7003	1,0000	1,0687	0,1962
antar	TATE				
jemput	0,357	2,6316	0,9357	1,0000	0,1622
jalan kaki	9,0000	8,7965	5,0962	6,1648	1,0000

Sumber: Pengolahan Data

 $\lambda_{\text{maks}} = 5,3255$ CI = 0,0814
CR = 0,0733

Pada Tabel 4.6 dapat dilihat bahwa matriks *pairwise comparison* antar alternatif sub kriteria resiko kecelakaan memiliki CR 10 %, dengan demikian matriks *pairwise comparison* tersebut konsisten. Ketidakkonsistenan ini juga terjadi pada matriks *pairwise comparison* antar alternatif sub kriteria perlindungan cuaca. Matriks *pairwise comparison*, vektor eigen dan konsistensi rasio dapat dilihat pada Lampiran 10. Setelah semua matriks yang tidak konsisten diperbaiki maka diketahui bahwa matriks *pairwise comparison* antar alternatif dari masing-masing sub kriteria memiliki CR 10 %. Dengan demikian semua matriks tersebut konsisten.

4.4.7 Alternatif berdasarkan kriteria biaya

Kriteria biaya tidak memiliki sub kriteria, sehingga alternatif langsung dibandingkan berdasarkan kriteria. Matriks *pairwise comparison* alternatif berdasarkan kriteria biaya dapat dilihat pada Lampiran 10. Kriteria biaya memiliki CR 2,07 % yang berarti bahwa matriks tersebut konsisten.

4.5 Pengambilan Keputusan

Dari sub bab 4.4 diketahui bahwa semua matriks *pairwise comparison* konsisten. Langkah selanjutnya yaitu pengambilan keputusan dengan prioritas lokal dan prioritas menyeluruh.

4.5.1 Prioritas Lokal (*Local Priority*)

Prioritas lokal merupakan prioritas elemen-elemen dalam satu level dengan hanya mempertimbangkan satu kriteria saja. Perhitungan *local priority* dilakukan dengan mengalikan bobot nilai masing-masing unsur dengan prioritas tiap-tiap unsur dalam kriteria tersebut. Hasil perhitungan dapat dilihat pada tabel berikut:

Tabel 4.7 Local Priority Kriteria Keamanan

	tindak	resiko	gangguan	local
alternatif	kriminalitas	kecelakaan	sekitar	priority
	0,5434	0,4021	0,0546	
mobil	0,0663	0,1475	0,0500	0,0980
sepeda				
motor	0,3035	0,0406	0,1779	0,1909
angkutan				
umum	0,0372	0,1239	0,0669	0,0737
antar	\sim			
jemput	0,1450	0,0920	0,5946	0,1482
jalan kaki	0,4481	0,5960	0,1107	0,4891

Sumber: Pengolahan Data

Berdasarkan Tabel 4.7 diperoleh prioritas tertinggi dimiliki oleh jalan kaki. Jadi menurut kriteria keamanan jalan kaki paling diminati daripada alternatif yang lain.

Tabel 4.8 Local Priority Kriteria Kenyamanan

4-17-3	perlindungan	privasi		local
alternatif	cuaca	orang lain	ketenangan	priority
	0,3149	0,0586	0,6265	
mobil	0,6351	0,2310	0,3290	0,4197
sepeda	MUL		41-1967	PAIN P
motor	0,0526	0,1556	0,0794	0,0754
angkutan	1.7	AU		11212
umum	0,0877	0,0304	0,0324	0,0497
antar				
jemput	0,1498	0,2360	0,3433	0,2761
jalan kaki	0,0748	0,3469	0,2158	0,1791

Sumber: Pengolahan Data

Berdasarkan Tabel 4.8 diperoleh prioritas tertinggi dimiliki oleh mobil. Jadi menurut kriteria kenyamanan mobil paling diminati sebagai sarana transportasi ke kampus.

Karena biaya tidak memiliki sub kriteria maka prioritas lokal langsung diperoleh dari tujuan.

Tabel 4.9 Local Priority Kriteria Biaya

Biaya	local priority
mobil	0,0499
sepeda motor	0,0968
angkutan umum	0,0501
Antar jemput	0,5226
jalan kaki	0,2806

Sumber: Pengolahan Data

Berdasarkan Tabel 4.9 diperoleh prioritas tertinggi dimiliki oleh antar jemput. Jadi menurut kriteria biaya antar jemput paling banyak diminati karena tidak mengeluarkan biaya.

Misalkan JK = jarak ke kampus, WK = waktu tempuh ke kampus, KP = kelancaran selama perjalanan, KW = ketepatan waktu sampai tujuan dan KS = kebebasan melakukan perjalanan setiap saat.

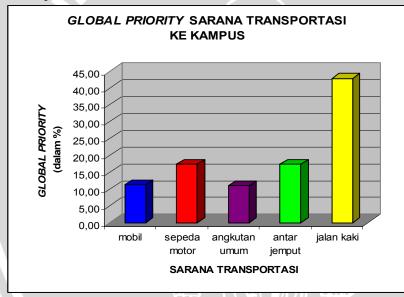
Tabel 4.10 Local Priority Kriteria Waktu

TIER	JK	WK	KP	KW	KS	local
alternatif	1124					priority
	0,0949	0,0971	0,2594	0,5093	0,0392	
				1114	AS	
	0,0997	0,1251	0,0844	0,0851	0,2042	0,0948
mobil					0 4 1 4	4111
sepeda	0,2069	0,2237	0,1262	0,1712	0,4348	0,1783
motor			1981		NA.	11-11
angkutan	0,0437	0,0371	0,0541	0,5644	0,0317	0,3105
umum						
antar	0,0870	0,1122	0,1014	0,0425	0,0967	0,0709
jemput						
jalan	0,5627	0,5019	0,6339	0,1368	0,2326	0,3454
kaki						

Sumber: Pengolahan Data

Berdasarkan Tabel 4.10 diperoleh prioritas tertinggi dimiliki oleh jalan kaki. Jadi menurut kriteria waktu jalan kaki paling banyak diminati sebagai sarana transportasi ke kampus.

4.5.2 Prioritas Menyeluruh (Global Priority)


Prioritas menyeluruh merupakan prioritas yang memperhatikan seluruh kriteria. Prioritas menyeluruh ditentukan dari penjumlahan hasil perkalian antara vektor eigen sub kriteria dengan vektor eigen dari kriteria yang bersesuaian. Alternatif yang memiliki nilai prioritas menyeluruh paling besar merupakan alternatif yang menjadi prioritas mahasiswa dalam memilih sarana transportasi ke kampus. Perhitungan dari prioritas menyeluruh bisa dilihat pada Tabel 4.11.

Tabel 4.11 *Global Priority* Alternatif Keputusan

ATTE	124-7				global
alternatif	keamanan	kenyamanan	biaya	waktu	priority
	0,6869	0,0610	0,0822	0,1699	
mobil	0,0980	0,4197	0,0499	0,0948	0,1132
sepeda motor	0,1909	0,0754	0,0968	0,1783	0,1740
angkutan umum	0,0737	0,0497	0,0501	0,3105	0,1105
antar jemput	0,1482	0,2761	0,5226	0,0709	0,1737
jalan kaki	0,4891	0,1791	0,2806	0,3454	0,4287

Sumber: Pengolahan Data

Berdasarkan Tabel 4.11 diperoleh prioritas tertinggi dalam memilih sarana transportasi ke kampus adalah jalan kaki dan berturut-turut diikuti sepeda motor, antar jemput, mobil dan angkutan umum. Secara grafik, *global priority* alternatif keputusan dapat dilihat pada Gambar 4.1.

Sumber: Pengolahan Data

34

4.5.3 Pengadaan Angkutan Kampus

Untuk pemilihan angkutan kampus yang belum ada, responden diberikan gambaran berupa mini bus yang beroperasi di luar kampus di mana memenuhi kriteria aman, nyaman, biaya murah, dan tepat waktu. Responden cukup menanggapi adanya angkutan kampus, hal ini dapat dilihat dari hasil penyebaran kuisioner. Dari 150 kuisioner diperoleh 66,667 % responden diantaranya menyetujui adanya angkutan kampus dengan urutan prioritas keamanan, waktu, biaya dan kenyamanan.

BAB V KESIMPULAN DAN SARAN

5.1 Kesimpulan

Berdasarkan pembahasan sebelumnya dapat diperoleh kesimpulan sebagai berikut :

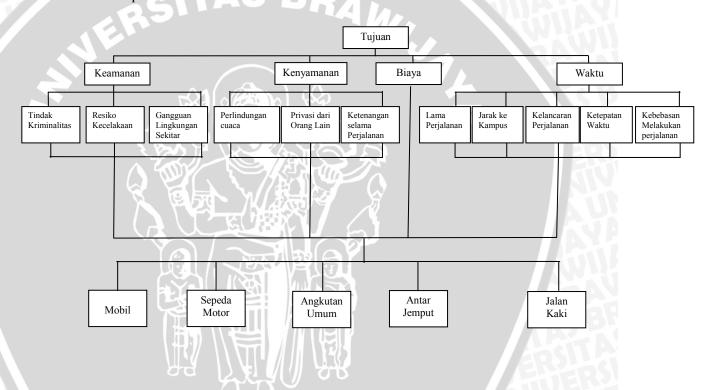
- 1. Setelah melakukan perhitungan menggunakan AHP didapatkan bahwa faktor utama yang mempengaruhi pemilihan sarana transportasi ke kampus adalah faktor keamanan sebesar 68,69 %, selanjutnya adalah waktu sebesar 16,99 %. Faktor berikutnya yang mempengaruhi adalah biaya sebesar 8,22 % dan terakhir kenyamanan sebesar 6,10 %.
- Pengambilan keputusan prioritas lokal dengan memperhatikan kriteria keamanan dan memperhatikan sub kriteria tindak kriminalitas, resiko kecelakaan dan gangguan lingkungan sekitar maka jalan kaki memperoleh prioritas utama sebesar 48,91 % diikuti dengan sepeda motor 19,09 %. Dari kriteria kenyamanan diperoleh mobil sebagai prioritas utama sebesar 41,97 % dan prioritas terakhir adalah angkutan umum sebesar 4,97 %. Untuk kriteria biaya, antar jemput merupakan sarana transportasi yang paling diminati sebesar 52,26 % diikuti dengan jalan kaki karena dianggap tidak mengeluarkan biaya. Sedangkan untuk kriteria waktu diperoleh prioritas utama adalah jalan kaki sebesar 34,54 %. Sementara itu berdasarkan pengambilan keputusan dengan prioritas menyeluruh dapat disimpulkan jalan kaki menjadi prioritas utama sebagai sarana transportasi ke kampus sebesar 42,87 %. Kemudian diikuti sepeda motor sebesar 17,40 %, antar jemput sebesar 17,37 %, mobil sebesar 11,32 % dan terakhir angkutan umum sebesar 11,05 %.

5.2 Saran

Saran yang dapat diberikan setelah penulisan tugas akhir ini adalah untuk penulis selanjutnya bisa menambahkan faktor-faktor lain yang mempengaruhi pemilihan sarana transportasi ke kampus sehingga diperoleh hasil yang lebih lengkap. Selain itu juga bisa ditambahkan pembahasan mengenai analisis sensitivitas sehingga dapat diketahui kecenderungan pemilihan masing-masing sarana transportasi ke kampus berdasarkan perubahan pada setiap faktornya.

BRAWIJAYA

DAFTAR PUSTAKA


- Anton, H. 1998. *Aljabar Linier Elementer*. Edisi Kelima. Erlangga. Jakarta.
- Kosasi, S. 2002. *Sistem Penunjang Keputusan*. Proyek
 Peningkatan Penelitian Pendidikan Tinggi Direktorat Jendral
 Pendidikan Tinggi Departemen Pendidikan Nasional.
 Jakarta.
- Malhotra, N. K. 2002. Basic Marketing Research Applications to Contemporary Issue. Prentice Hall. New Jersey.
- Mulyono, S. 1991. *Operation Research*. Fakultas Ekonomi UI. Jakarta.
- Saaty, T.L. 1993. *Pengambilan Keputusan bagi para Pemimpin*. Cetakan kedua. Penerjemah : Setiono, L. Gramedia. Jakarta.
 - . 1994. Fundamental of Decisions Making and Priority
 Theory with the Analytic Hierarchy Process. Edisi ke-1.
 Universitas Pittsburgh. USA.
 - . 2002. Hard Mathematics Applied to Soft Decisions. INSAHP II. Universitas Kristen Petra. Surabaya.
- Sartono, B. 2005. *Mengukur Validitas dan Reliabilitas Alat Ukur*. http://www.geocities.com/bagusco4/mybook/8.html. Tanggal akses 9 Maret 2007.
- Singarimbun, M. dan S. Effendi. 1995. *Metode Penelitian Survai*. Lembaga Penelitian. Pengembangan dan Penerangan Ekonomi dan Sosial. Jakarta.
- Sugiono. 2004. *Metode Penelitian Bisnis*. Cetakan ketujuh. Alfabeta. Bandung.
- Supranto, J. 1992. *Teknik Sampling untuk Survei dan Eksperimen*. Cetakan pertama. Rineka Cipta. Jakarta.

RAWITAYA

Yitnosumarto, S. 1994. *Dasar-dasar Statistika dengan Penekanan Terapan dalam Bidang Agrokompleks, Teknologi dan Sosial.* Rajagrafindo Persada. Jakarta.

Lampiran 1. Hirarki untuk Menentukan Faktor-faktor yang Mempengaruhi Pemilihan Sarana Transportasi ke Kampus

BRAWIJAYA

Lampiran 2. Nilai kritik dari koefisien korelasi r

Derajat kebebasan	5%	1%	Derajat kebebasan	5%	1%
3	0,997	1,000	26	0,388	0,496
4	0,950	0,990	27	0,381	0,487
5	0,878	0,959	28	0,374	0,479
6	0,811	0,917	29	0,367	0,471
7	0,754	0,875	30	0,361	0,463
8	0,707	0,834	32	0,349	0,449
9	0,666	0,798	34	0,339	0,436
10	0,632	0,765	36	0,329	0,424
11	0,602	0,735	38	0,320	0,413
12	0,576	0,708	40	0,312	0,403
13	0,553	0,684	42	0,304	0,393
14	0,532	0,661	44	0,297	0,384
15	0,514	0,641	46	0,291	0,376
16	0,497	0,623	48	0,285	0,368
17	0,482	0,606	50	0,279	0,361
18	0,468	0,590	55	0,266	0,345
19	0,456	0,575	60	0,254	0,330
20	0,444	0,561	65	0,244	0,317
21	0,433	0,549	70	0,235	0,306
22	0,423	0,537	75	0,227	0,296
23	0,413	0,526	80	0,220	0,286
24	0,404	0,515	85	0,213	0,278
25	0,396	0,505	90	0,207	0,270

42

Lampiran 3. Hasil perhitungan nilai korelasi dan *alpha cronbach* menggunakan SPSS 11.5

Kriteria Keamanan

Correlations

		VAR00001	VAR00002	VAR00003	VAR00004
VAR00001	Pearson Correlation	1	.550(**)	.513(**)	.879(**)
	Sig. (2-tailed)		.001	.001	.000
	N	36	36	36	36
VAR00002	Pearson Correlation	.550(**)	1	.350(*)	.781(**)
	Sig. (2-tailed)	.001		.036	.000
	N	36	36	36	36
VAR00003	Pearson Correlation	.513(**)	.350(*)	1	.751(**)
	Sig. (2-tailed)	.001	.036	•	.000
	N	36	36	36	36
VAR00004	Pearson Correlation	.879(**)	.781(**)	.751(**)	1
	Sig. (2-tailed)	.000	.000	.000	
	N	36	36	36	36

^{**} Correlation is significant at the 0.01 level (2-tailed).

* Correlation is significant at the 0.05 level (2-tailed).

***** Method 2 (covariance matrix) will be used for this analysis *****

RELIABILITY ANALYSIS - SCALE (ALPHA)

5		Mean	Std Dev	Cases
1.	VAR00001	2.1944	.7099	36.0
2.	VAR00002	2.0000	.5855	36.0
3.	VAR00003	2.5556	.5578	36.0
2. 3.				

N of Cases = 36.0

Reliability Coefficients 3 items

Alpha = .7280

Standardized item alpha = .7276

Kriteria Kenyamanan

Correlations

	VAR00001	VAR00002	VAR00003	VAR00004
Pearson Correlation	1	.501(**)	.486(**)	.780(**)
Sig. (2-tailed)		.002	.003	.000
N	36	36	36	36
Pearson Correlation	.501(**)	1	.659(**)	.719(**)
Sig. (2-tailed)	.002	_	.000	.000
N	36	36	36	36
Pearson Correlation	.486(**)	.659(**)	1	.678(**)
Sig. (2-tailed)	.003	.000	-	.000
N	36	36	36	36
Pearson Correlation	.780(**)	.719(**)	.678(**)	1
Sig. (2-tailed)	.000	.000	.000	
N	36	36	36	36
	Correlation Sig. (2-tailed) N Pearson Correlation Sig. (2-tailed)	Pearson 1 Correlation 36 Pearson .501(**) Correlation .002 N 36 Pearson .486(**) Correlation .003 N 36 Pearson .003 N 36 Pearson .780(**) Correlation .780(**) Sig. (2-tailed) .000 N 36	Pearson 1 .501(**) Correlation .002 N 36 36 Pearson .501(**) 1 Correlation .501(**) 1 Sig. (2-tailed) .002 . N 36 36 Pearson .486(**) .659(**) Correlation .003 .000 N 36 36 Pearson .780(**) .719(**) Correlation .000 .000 N 36 36	Pearson Correlation Sig. (2-tailed) 1 .501(**) .486(**) N 36 36 36 Pearson Correlation Sig. (2-tailed) .501(**) 1 .659(**) N 36 36 36 Pearson Correlation Sig. (2-tailed) .486(**) .659(**) 1 N 36 36 36 Pearson Correlation Sig. (2-tailed) .780(**) .719(**) .678(**) Sig. (2-tailed) .000 .000 .000 N 36 36 36

^{**} Correlation is significant at the 0.01 level (2-tailed).

***** Method 2 (covariance matrix) will be used for this analysis *****

RELIABILITY ANALYSIS - SCALE (ALPHA)

	M	Mean	Std Dev	Cases
1. 2.	VAR00001 VAR00002	2.5000 2.9722	1.2306 1.1829	36.0 36.0
3.	VAR00003	3.0556	.9545	36.0

N of Cases = 36.0

Reliability Coefficients 3 items

Alpha = .7750

Standardized item alpha = .7849

Kriteria Waktu

Correlations

			Corrolatio				
		VAR00001	VAR00002	VAR00003	VAR00004	VAR00005	VAR00006
VAR00001	Pearson Correlation	1	.735(**)	.532(**)	.051	.381(*)	.801(**)
	Sig. (2-tailed)		.000	.001	.767	.022	.000
	N	36	36	36	36	36	36
VAR00002	Pearson Correlation	.735(**)	1	.463(**)	.190	.281	.808(**)
	Sig. (2-tailed)	.000	_	.004	.268	.097	.000
	N	36	36	36	36	36	36
VAR00003	VAR00003 Pearson Correlation	.532(**)	.463(**)	1	.268	.184	.726(**)
	Sig. (2-tailed)	.001	.004	-	.114	.283	.000
	N	36	36	36	36	36	36
VAR00004 Pearson Correlation Sig. (2-tailed N		.051	.190	.268	1	.158	.472(**)
	Sig. (2-tailed)	.767	.268	.114		.359	.004
	N	36	36	36	36	36	36
VAR00005	Pearson Correlation	.381(*)	.281	.184	.158	1	.580(**)

TAS BRAW. Lampiran 3 (Lanjutan)

	Sig. (2-tailed)	.022	.097	.283	.359		.000
	N	36	36	36	36	36	36
VAR00006	Pearson Correlation	.801(**)	.808(**)	.726(**)	.472(**)	.580(**)	1
	Sig. (2-tailed)	.000	.000	.000	.004	.000	
	N	36	36	36	36	36	36

^{**} Correlation is significant at the 0.01 level (2-tailed).

* Correlation is significant at the 0.05 level (2-tailed).

***** Method 1 (space saver) will be used for this analysis ***** RELIABILITY ANALYSIS -SCALE (A L P H A)

		Mean	Std Dev	Cases
1.	VAR00001	2,3889	,7281	36,0
2.	VAR00002	3,2778	9137	36,0
3.	VAR00003	2,5000	,8106	36,0
4.	VAR00004	3,3611	,7232	36,0
5.	VAR00005	2,6111	,7664	36,0

36,0

N of Cases =

Reliability Coefficients

5 items

Alpha = ,7111

,7059 Standardized item alpha =

Lampiran 4. Kuisioner Penelitian

Kuisioner Faktor – Faktor yang Mempengaruhi Pemilihan Sarana Transportasi ke Kampus Menggunakan *Analytic Hierarchy Process* (AHP)

Sehubungan dengan penyelesaian Tugas Akhir S1 penulis yang berjudul Faktor – Faktor yang Mempengaruhi Pemilihan Sarana Transportasi ke Kampus Menggunakan *Analytic Hierarchy Process* (AHP) Studi Kasus Di Universitas Brawijaya, maka penulis mengadakan penelitian dengan kuisioner tentang prioritas mahasiswa Universitas Brawijaya dalam memilih sarana transportasi ke kampus. Untuk itu, penulis memohon kesediaan saudara untuk menjawab pertanyaan sesuai dengan pandangan dan keadaan saudara. Setiap jawaban saudara sangat berarti dalam penelitian ini. Atas kesediaan dan bantuan saudara penulis mengucapkan terima kasih.

Petunjuk Pengisian Kuisioner

- 1. Isilah kuisioner ini dengan cermat dan benar
- 2. Isilah kuisioner ini sesuai dengan apa yang anda rasakan dan amati selama ini

Berilah Tanda (X) atau (O) pada jawaban pilihan anda

- 1. Sarana yang anda gunakan ke kampus selama ini adalah:
 - a. Mobil
- b. Sepeda Motor
- c. Angkutan Umum

- d. Jalan Kaki
- e. Antar Jemput

A.Kriteria Keamanan

- 2. Bagaimana menurut anda tindak kriminalitas yang terjadi selama melakukan perjalanan
 - a. Sering terjadi
- b. Jarang terjadi c. Tidak pernah
- terjadi 3. Bagaimana resiko kecelakaan yang anda hadapi selama
 - melakukan perjalanan
 - a. Resiko tinggi b. Resiko sedang
- c. Tidak ada resiko
- 4. Apakah selama melakukan perjalanan anda pernah mendapatkan gangguan dari lingkungan sekitar (misalnya dihadang, diganggu, dll)
 - a. Sering
- b. Jarang terjadi c. Tidak pernah

B. Kriteria Kenyamanan

- Bagaimana menurut anda perlindungan terhadap cuaca selama melakukan perjalanan (perlindungan dari hujan, panas, debu, dingin, dll)
 - a. Tidak baik
- b. Kurang Baik
- c. Cukup baik

- d. Baik
- e. Sangat Baik
- 6. Bagaimana menurut anda kebebasan / privasi yang anda dapatkan selama melakukan perjalanan
 - a. Tidak bebas / privasi
- b. Kurang Bebas / privasi
- c. Cukup bebas / privasi
- d. Bebas / privasi
- e. Sangat bebas / privasi
- 7. Bagaimana menurut anda suasana / ketenangan selama melakukan perjalanan
 - a. Tidak tenang
- b. Kurang tenang
- c. Cukup tenang

- d. Tenang
- e. Sangat tenang

C. Kriteria Biaya

- 8. Bagaimana menurut anda biaya yang anda keluarkan untuk ke kampus setiap harinya
 - a. Sangat mahal
- b. Mahal
- c. Cukup mahal

- d. Murah
- e. Sangat murah

D. Kriteria Waktu

- 9. Menurut anda jarak rumah atau kost dari kampus adalah
 - a. Sangat jauh
- b. Jauh
- c. Dekat

- d. Sangat dekat
- 10. Berapa waktu yang anda butuhkan untuk melakukan perjalanan
 - a. > 1 jam b. 41 60 menit
- c. 21-40 menit

- d. 0-20 menit
- 11. Bagaimana menurut anda kelancaran selama melakukan perjalanan
 - a. Tidak lancar
- b. Cukup lancar
- c. Lancar

- d. Sangat Lancar
- 12. Menurut anda ketepatan waktu sampai ke tujuan / kampus adalah
 - a. Tidak pentingd. Sangat penting
- b. Cukup penting
- c. Penting

- 13. Bagaimana menurut anda kemudahan untuk melakukan perjalanan setiap saat ketika menggunakan satu moda (sarana) tertentu
 - a. Sulit
- b. Cukup sulit
- c. Mudah

- d. Sangat mudah
- 14. Seandainya ada angkutan kampus (bus kampus) bagimana pendapat anda
 - a. Tidak setuju, karena
 - b. Setuju, karena
- 15. Fasilitas yang anda inginkan untuk angkutan kampus (bus kampus) adalah
 - (jawaban boleh lebih dari satu)
 - a. keamanan dalam angkutan kampus
 - b. Kenyamanan (AC, Televisi & musik, tempat duduk dan lingkungan bersih)
 - c. Tarif murah
 - d. ketepatan waktu terjamin dan rute perjalanan jelas Diantara keempat pilihan urutkan antara prioritas yang paling tinggi sampai prioritas paling rendah

K	R	Π	T.	R	IA

A. Kriteria Keamanan

- ☐ Tindakan kriminalitas
- ☐ Resiko kecelakaan
- ☐ Gangguan lingkungan sekitar

B. Kriteria Kenyamanan

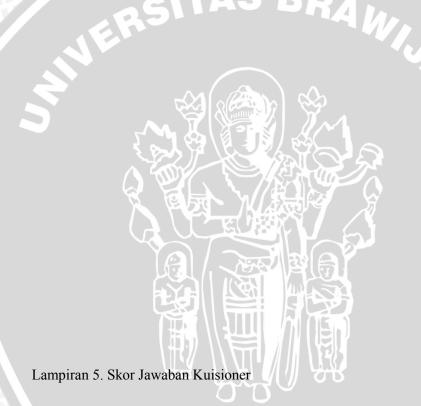
- ☐ Perlindungan dari cuaca
- ☐ Privasi dari orang lain
- ☐ Suasana tenang selama perjalanan

C. Kriteria Biaya

D. Kriteria Waktu

- ☐ Jarak rumah / kost ke kampus
- ☐ Waktu untuk melakukan perjalanan
- ☐ Kelancaran selama perjalanan
- ☐ Ketepatan waktu sampai tujuan
- ☐ Kemudahan melakukan perjalanan setiap saat

Berdasarkan Kriteria di Atas, Urutkanlah Kriteria – Kriteria di Bawah ini dari Prioritas Tertinggi sampai Prioritas Terendah


Prioritas Tertinggi Bernilai 1 dan Prioritas Terendah Bernilai 4			
Kriteria Keamanan	Kriteria Kenyamanan	Kriteria Biaya	Kriteria Waktu

Prioritas Tertinggi Bernilai 1 dan Prioritas Terendah Bernilai 3				
Tindak	dak Resiko Gangguan Lingkungan			
kriminalitas	Kecelakaan	Sekitar		

Lampiran 4 (Lanjutan)

Prioritas Tertinggi Bernilai 1 dan Prioritas Terendah Bernilai 3			
Perlindungan	Perlindungan Privasi dari Ketenangan Selama		
dari Cuaca Orang Lain		Perjalanan	

Priorit	Prioritas Tertinggi Bernilai 1 dan Prioritas Terendah Bernilai 5			
Jarak ke	Waktu	Kelancaran	Ketepatan	Kemudahan
kampus	tempuh ke	perjalanan	waktu	melakukan
DAY	kampus		sampai	perjalanan
			tujuan	setiap saat

Skor jawaban pertanyaan bagian I

Skor jawaban pertanyaan bagian A

Jawaban	Skor
a	1
b	2
c	3

Skor jawaban pertanyaan bagian B

Jawaban	Skor
a	1
b	2
c	3
d	4
e	5

Skor jawaban pertanyaan bagian C

SBRAWINAL

Jawaban	Skor
a	1
b	2
c	3
d	4

Skor jawaban pertanyaan bagian D

Jawaban	Skor
a	1
b	2
c	3
d	4

Lampiran 5 (Lanjutan)

Skor jawaban pertanyaan bagian II

Skor jawaban pertanyaan kriteria

V	Prioritas	Skor
ì	1	4
	2	3
	3	2
	4	1

Skor jawaban pertanyaan kriteria keamanan

Prioritas	Skor
-1-1	3
2	2
3	1

SBRAWIUAL Skor jawaban pertanyaan kriteria kenyamanan

Prioritas	Skor
1	3
2	2
3	

Skor jawaban pertanyaan kriteria waktu

Prioritas	Skor
1	5
2	4
3	3
4	2
5	1

Lampiran 6. Frekuensi dan rata-rata geometrik skor jawaban

BRAWIJAYA

kuisioner

Frekuensi dan rata – rata geometrik skor jawaban dan kriteria

Kriteria		Rata – rata			
	1	2	geometrik		
Keamanan	14	38	40	58	2,7308
Kenyamanan	47	40	37	26	2,0060
Biaya	54	33	32	31	1,9608
Waktu	35	39	41	35	2,2344

Frekuensi dan rata – rata geometrik skor jawaban dari sub kriteria berdasarkan kriteria

_	ocidasaikan kii				
9	Kriteria		Rata – rata		
	Keamanan	1	2	3	geometrik
	Tindak	23	63	64	2,1380
	Kriminalitas			0	
J	Resiko	22	55	73	2,2008
	Kecelakaan				
4	Gangguan	105	32	13	1,2752
4	Lingkungan				
4	Sekitar				

Kriteria		Skor					
Kenyamanan	1	2	3	geometrik			
Perlindungan dari cuaca	51	41	58	1,8483			
Privasi dari orang lain	54	62	34	1,7083			
Ketenangan selama perjalanan	45	47	58	1,9002			

BRAWIJAYA

Lampiran 6 (Lanjutan)

Kriteria Waktu		Tirl I		Rata – rata		
	1	2	3	4	5	geometrik
Jarak ke	36	37	31	26	20	2,3465
kampus		Let 0	12			250
Waktu tempuh	22	45	44	19	20	2,5103
ke kampus						11120
Kelancaran	12	24	27	64	23	3,1485
selama	ATT					
perjalanan	VALL				AAB	
Ketepatan	6	14	29	34	67	3,7069
waktu sampai						
tujuan						
Kemudahan	74	30	19	7	20	1,7456
melakukan						
perjalanan	. 6				2 4	

Frekuensi dan rata – rata geometrik skor jawaban dari alternatif berdasarkan sub kriteria

berdasarkan sub kriteria				
Kriteria		Skor		Rata – rata
	_1	2	3	geometrik
Kriteria Keamanan		$\beta \mid \beta$	9	
Tindak kriminalitas			\sim	
Mobil	3	18	9	2,1074
Sepeda motor	2	15	13	2,2765
Angkutan umum	4	18	8	2,0317
Antar jemput	3	15	12	2,1946
Jalan kaki	一1世	16	13	2,3297
Resiko kecelakaan		JV F		
Mobil	5	25	9	1,7818
Sepeda motor	7	19	4.1	1,7958
Angkutan umum	3	20 -	7.1	2,0512
Antar jemput	4	20	6	1,9775
Jalan Kaki	2	11	17	2,4030

BRAWIJAYA

Lampiran 6 (Lanjutan)

Gangguan lingkungan sekitar				SBRA
Mobil	2	12	16	2,3707
Sepeda motor	1	9	20	2,5609
Angkutan umum	1	13	16	2,4261
Antar jemput		6	24	2,7663
Jalan kaki	1	11	18	2,4926

Kriteria			Skor			Rata –
3104	1	2	3	4	5	rata
						geometrik
Kriteria Kenyamanan	e 1					
Perlindungan cuaca						4 1
Mobil	2	5	7	7	11	3,3609
Sepeda motor	4	12	11	3	-	2,2676
Angkutan umum	4	12	13	1	-	2,2245
Antar jemput	4	$\sqrt{9}$	8	6	(3)	2,5577
Jalan kaki	5	14	6	/4	1	2,1851
Privasi dari orang	M	J.J.) - I		$\langle l \rangle$	
lain	951				9	
Mobil	71<	//3	12	9	5	3,2966
Sepeda motor	2	3	12	10	3	3,1012
Angkutan umum	10	10	8	2	i kir	1,8523
Antar jemput	1	8	8	8	5	3,0518
Jalan kaki		3	8	16	3_	3,5345
Ketenangan selama	Ye) / .				
perjalanan Mobil		-2	16	10	2	3,3252
Sepeda motor	2	8	10	10		2,7542
Angkutan umum	2	15	12	1	THS	2,2984
Antar jemput	14	4	8	9	8	3,4228
Jalan kaki		<u>(</u> 6	11	12	1	3,1570

Kriteria		Rata-rata geometrik				
TULET	1					
Kriteria Biaya					LL AT	TEDE
Mobil	2	8	15	5	1331	2,6253
Sepeda motor	U-A	4	19	7	11-1:	3,0394
Angkutan umum	5	9	8	8	4-6	2,4559
Antar jemput		-	-	18	12	4,3734
Jalan kaki	-	-	7	20	3	3,8247

Kriteria		Sl		Rata – rata	
	1	2	3	4	geometrik
Kriteria Waktu		6			
Jarak ke kampus		2		7	
Mobil	5	13	12	7	2,0955
Sepeda motor	2	11	14	3	2,4731
Angkutan umum	9	13	8	-	1,8100
Antar jemput	3	16	11	-	2,1652
Jalan kaki	$\mathcal{M}(.)$	5	19	6	2,9700
Waktu tempuh ke					
kampus	II \	9.		\sim	
Mobil	1\	4	8.9	_17	3,2251
Sepeda motor	//i	3	-5	22	3,5574
Angkutan umum	4	4	11	4/11	2,7280
Antar jemput	局人	\5	8-8	17	3,3004
Jalan kaki	个上	w/ 323	2	28	3,9240

BRAWIJAY/

Lampiran 6 (Lanjutan)

Kelancaran selama perjalanan	281	U.S.	TAS		BRA
Mobil	4	18	6	2	2,0710
Sepeda motor	3	11	12	4	2,4071
Angkutan umum	2	22	4	2	2,1111
Antar jemput	1	18	10	1	2,2894
Jalan kaki	11-17	4	14	12	3,1887
Ketepatan waktu ke kampus					
Mobil	-	5	16	9	3,0567
Sepeda motor	-	7	7	16	3,1818
Angkutan umum	•	2	7	21	3,5714
Antar jemput	1	8	15	7	2,8795
Jalan kaki	ī	2	18	- 10	3,2139
Kemudahan melakukan perjalanan setiap waktu	51				AWI
Mobil	1	6	23	-	2,6669
Sepeda motor	-	6	21	3	2,8471
Angkutan umum	5	13.7	12	CS ₂	2,0955
Antar jemput	5	5	19/	1	2,3573
Jalan kaki	4	2	20	4	2,6207

Lampiran 7. Nilai Skala Banding

NSB untuk tujuan (perbandingan antar kriteria) dan kriteria (perbandingan antar sub kriteria)

AUNK	Nilai Tertinggi	Nilai Terendah	NSB
Kriteria	2,7308	1,9608	0,0856
Kriteria Keamanan	2,2008	1,2752	0,1028
Kriteria Kenyamanan	1,9002	1,7083	0,0213
Kriteria Biaya	4,3734	2,4559	0,2131
Kriteria Waktu	3,7069	1,7456	0,2179

NSB untuk sub kriteria (perbandingan antar sub kriteria)

TVSD untuk suo kirieria (Nilai	Nilai	NSB
ASIMI	Tertinggi	Terendah	ASE
Kriteria Keamanan		12-40-69	
Tindak kriminalitas	2,3297	2,0317	0,0331
Resiko kecelakaan	2,4030	1,7818	0,0690
Gangguan	2,7663	2,3707	0,0440
lingkungan sekitar			
Kriteria Kenyamanan			
Perlindungan dari	3,3609	2,1851	0,1306
cuaca			
Privasi dari orang	3,5345	1,8523	0,1869
lain			
Ketenangan selama	3,4228	2,2984	0,1249
perjalanan			
Kriteria Waktu			
Jarak ke kampus	2,9700	1,8100	0,1289
Waktu tempuh ke	3,9240	2,7280	0,1329
kampus			
Kelancaran selama	3,1887	2,0710	0,1242
perjalanan			
Ketepatan waktu	3,5714	2,8795	0,0769
Kemudahan	2,8741	2,0955	0,0835
melakukan	Town I		5
perjalanan setiap			
waktu	बिज	7// \$3-40	4

Lampiran 8. Matriks *pairwise comparison*, vektor eigen, nilai eigen, dan uji konsistensi antar kriteria

matriks *pairwise comparison*

kriteria	keamanan	kenyamanan	biaya	waktu
Killella	Keamanan	Kerryarriariari	Diaya	wantu
keamanan	1,0000	8,4724	9,0000	5,8022
kenyamanan	0,1180	1,0000	0,5276	0,3745
biaya	0,1111	1,8955	1,0000	0,3127
waktu	0,1723	2,6702	3,1978	1,0000

matriks normalitas

kriteria	keamanan	kenyamanan	biaya	waktu
keamanan	0,7135	0,6035	0,6557	0,7747
kenyamanan	0,0842	0,0712	0,0384	0,0500
biaya	0,0793	0,1350	0,0729	0,0418
waktu	0,1230	0,1902	0,2330	0,1335

kriteria		vektor eigen
keamanan		0,6869
kenyamanan	\sim \sim \sim \sim \sim \sim \sim	0,0610
biaya		0,0822
waktu	A K TOPE IN	0,1699
	1 ~ 1 C3 \ R 3 D / E9 _	

Nilai eigen maksimum (maks)	5	4,1330
Consistency Index (CI)		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0,0443
Consistency Ratio (CR)	が、これが		0,0498

Lampiran 9. Matriks *pairwise comparison*, vektor eigen, nilai eigen, dan uji konsistensi sub kriteria berdasarkan kriteria

Matriks *pairwise comparison*, vektor eigen, nilai eigen dan uji konsistensi sub kriteria berdasarkan kriteria keamanan

matriks pairwise comparison

kriteria	tindak kriminalitas	resiko kecelakaan	gangguan lingkungan sekitar		
tindak kriminalitas	1,0000	1,6377	8,3894		
resiko kecelakaan	0,6106	1,0000	9,0000		
gangguan lingkungan sekitar	0,1192	0,1111	1,0000		

kriteria	tindak kriminalitas	resiko kecelakaan	gangguan lingkungan sekitar
tindak kriminalitas	0,5781	0,5958	0,4562
resiko kecelakaan	0,3530	0,3638	0,4894
gangguan lingkungan sekitar	0,0689	0,0404	0,0544

V	kriteria	vektor eigen
	tindak kriminalitas	0,5434
4	resiko kecelakaan	0,4021
	gangguan lingkungan sekitar	0,0546

Nilai eigen maksimum (maks)	3,0355
Consistency Index (CI)	0,0178
Consistency Ratio (CR)	0,0342

Matriks *pairwise comparison*, vektor eigen, nilai eigen dan uji konsistensi sub kriteria berdasarkan kriteria kenyamanan

matriks pairwise comparison

kriteria	perlindungan dari cuaca	privasi dari orang lain	ketenangan selama perjalanan
perlindungan dari cuaca	1,0000	6,5631	0,4104
privasi dari orang lain	0,1524	1,0000	0,1111
ketenangan selama perjalanan	2,4369	9,0000	1,0000

Lampiran 9 (Lanjutan) matriks normalitas							
kriteria	perlindungan dari cuaca	privasi dari orang lain	ketenangan selama perjalanan				
perlindungan dari cuaca	0,2786	0,3962	0,2697				
privasi dari orang lain	0,0425	0,0604	0,0730				
ketenangan selama perjalanan	0,6789	0,5434	0,6573				

0.0440
0,3149
0,0586
0,6265

Nilai eigen maksimum (maks)	3,0370
Consistency Index (CI)		0,0185
Consistency Ratio (CR)		0,0356

repos

Lampiran 9 (Lanjutan)

Matriks pairwise comparison, vektor eigen, nilai eigen dan uji konsistensi sub kriteria berdasarkan kriteria waktu

matriks pairwise comparison

kriteria	jarak	waktu	kelancaran	ketepatan	kemudahan
jarak	1,0000	1,3303	0,2717	0,1602	2,7573
waktu	0,7517	1,0000	0,3415	0,1821	3,5090
kelancaran	3,6802	2,9285	1,0000	0,3902	6,4375
ketepatan	6,2427	5,4910	2,5625	1,0000	9,0000
kemudahan	0,3627	0,2850	0,1553	0,1111	1,0000

matrixo normanas					
kriteria	jarak	waktu	kelancaran	ketepatan	kemudahan
jarak	0,0831	0,1206	0,0627	0,0869	0,1214
waktu	0,0624	0,0906	0,0788	0,0988	0,1546
kelancaran	0,3057	0,2654	0,2309	0,2117	0,2835
ketepatan	0,5186	0,4976	0,5917	0,5424	0,3964
kemudahan	0,0301	0,0258	0,0359	0,0603	0,0440

	kriteria	vektor eigen
	jarak	0,0949
4	waktu	0,0971
	kelancaran	0,2594
	ketepatan	0,5093
	kemudahan	0,0392

Nilai eigen maksimum (maks)	5,1132
Consistency Index (CI)	0,0283
Consistency Ratio (CR)	0,0255

Lampiran 10. Matriks *pairwise comparison*, vektor eigen, nilai eigen dan uji konsistensi alternatif berdasarkan sub kriteria

Matriks *pairwise comparison*, vektor eigen, nilai eigen dan uji konsistensi alternatif berdasarkan sub kriteria keamanan

matriks pairwise comparison

marks pur vise comparison					
tindak kriminalitas	mobil	sepeda motor	angkutan umum	antar jemput	jalan kaki
mobil	1,0000	0,1959	2,2882	0,3798	0,1490
sepeda motor	5,1050	1,0000	7,3933	2,4718	0,6224
angkutan umum	0,4370	0,1353	1,0000	0,2032	0,1111
antar jemput /	2,6332	0,4046	4,9215	1,0000	0,2452
jalan kaki	6,7118	1,6067	9,0000	4,0785	1,0000

tindak kriminalitas	mobil	sepeda motor	angkutan umum	antar jemput	jalan kaki
mobil	0,0629	0,0586	0,0930	0,0467	0,0700
sepeda motor	0,3213	0,2992	0,3005	0,3039	0,2925
angkutan umum	0,0275	0,0405	0,0406	0,0250	0,0522
antar jemput	0,1657	0,1210	0,2000	0,1230	0,1152
jalan kaki	0,4225	0,4807	0,3658	0,5015	0,4700

7	tindak kriminalitas	vektor eigen
	mobil	0,0663
4	sepeda motor	0,3035
	angkutan umum	0,0372
	antar jemput	0,1450
	jalan kaki	0,4481
		The state of the s

Nilai eigen maksimum (maks)	5,0743
Consistency Index (CI)	0,0186
Consistency Ratio (CR)	0,0167

matriks pairwise comparison

resiko kecelakaan	mobil	sepeda motor	angkutan umum	antar jemput	jalan kaki
mobil	1,0000	4,9137	0,2562	2,8352	0,1111
sepeda motor	0,2035	1,0000	0,2702	0,3800	0,1137
angkutan umum	3,9038	3,7003	1,0000	1,0687	0,1962
antar jemput	0,3527	2,6316	0,9357	1,0000	0,1622
jalan kaki	9,0000	8,7965	5,0962	6,1648	1,0000

Lampiran 10 (Lanjutan)		RD.			
matriks normalitas		MAM			
resiko kecelakaan	mobil	sepeda motor	angkutan umum	antar jemput	jalan kaki
mobil	0,0692	0,2335	0,0339	0,2476	0,0702
sepeda motor	0,0141	0,0475	0,0358	0,0332	0,0718
angkutan umum	0,2700	0,1759	0,1323	0,0933	0,1239
antar jemput	0,0244	0,1251	0,1238	0,0873	0,1025
jalan kaki	0,6224	0,4180	0,6742	0,5385	0,6316

esiko kecelakaan vektor eigen	
mobil	0,1309
sepeda motor	0,0405
angkutan umum	0,1591
antar jemput	0,0926
jalan kaki	0,5770

Nilai eigen maksimum (maks)	5,6688
Consistency Index (CI)	0,1672
Consistency Ratio (CR)	0,1506

 $a_{ij} = a_{ij} w_j / w_j$

matriks pairwise comparison yang sudah diperbaiki

		1			
resiko kecelakaan	mobil	sepeda motor	angkutan umum	antar jemput	jalan kaki
mobil	1,0000	4,9137	0,8227	2,8352	0,1111
sepeda motor	0,2035	/1,0000	0,2702	0,3800	0,1137
angkutan umum	1,2155	3,7003	1,0000	1,0687	0,1962
antar jemput	0,3527	2,6316	0,9357	1,0000	0,1622
jalan kaki	9,0000	8,7965	5,0962	6,1648	1,0000

resiko kecelakaan	mobil	sepeda motor	angkutan umum	antar jemput	jalan kaki
mobil	0,0849	0,2335	0,1013	0,2476	0,0702
sepeda motor	0,0173	0,0475	0,0333	0,0332	0,0718
angkutan umum	0,1033	0,1759	0,1231	0,0933	0,1239
antar jemput	0,0300	0,1251	0,1152	0,0873	0,1025
jalan kaki	0,7645	0,4180	0,6272	0,5385	0,6316

repos

Lampiran 10 (Lanjutan)

resiko kecelakaan	vektor eigen
mobil	0,1475
sepeda motor	0,0406
angkutan umum	0,1239
antar jemput	0,0920
jalan kaki	0,5960

Nilai eigen maksimum (maks)	5,3255
Consistency Index (CI)	0,0814
Consistency Ratio (CR)	0,0733

matriks pairwise comparison

mains per wise compens					
gangguan lingkungan					
sekitar	mobil	sepeda motor	angkutan umum	antar jemput	jalan kaki
mobil	1,0000	0,2311	0,7933	0,1111	0,3606
sepeda motor	4,3265	1,0000	3,0659	0,2140	1,5537
angkutan umum	1,2606	0,3262	1,0000	0,1292	0,6613
antar jemput	9,0000	4,6735	7,7394	1,0000	6,2272
jalan kaki	2,7728	0,6436	1,5122	0,1606	1,0000

Lampiran 10 (Lanjutan	TAS	BPA.			
matriks normalitas		MAL			
gangguan lingkungan				TALL TO	
sekitar	mobil	sepeda motor	angkutan umum	antar jemput	jalan kaki
mobil	0,0545	0,0336	0,0562	0,0688	0,0368
sepeda motor	0,2356	0,1455	0,2173	0,1325	0,1585
angkutan umum	0,0687	0,0474	0,0709	0,0800	0,0675
antar jemput	0,4902	0,6798	0,5485	0,6192	0,6352
jalan kaki	0,1510	0,0936	0,1072	0,0994	0,1020
				138	

gangguan lingkungan sekitar	vektor eigen
mobil	0,0500
sepeda motor	0,1779
angkutan umum	0,0669
antar jemput	0,5946
jalan kaki	0,1107

Nilai eigen maksimum (maks)	5,0710
Consistency Index (CI)	0,0177
Consistency Ratio (CR)	0,0160

Matriks *pairwise comparison*, vektor eigen, nilai eigen dan uji konsistensi alternatif berdasarkan sub kriteria kenyamanan

matriks pairwise comparison

perlindungan dari cuaca	mobil	sepeda motor	angkutan umum	antar jemput	jalan kaki
mobil	1,0000	8,3690	8,6987	6,1483	9,0000
sepeda motor	0,1195	1,0000	0,3297	0,4503	0,6310
angkutan umum	0,1150	3,0330	1,0000	0,3921	0,3013
antar jemput	0,1626	2,2207	2,5504	1,0000	2,8517
jalan kaki	0,1111	1,5847	3,3186	0,3507	1,0000

Hatrix normana						
perlindungan dari cuaca	mobil	sepeda motor	angkutan umum	antar jemput	jalan kaki	
mobil	0,6630	0,5164	0,5472	0,7371	0,6529	
sepeda motor	0,0792	0,0617	0,0207	0,0540	0,0458	
angkutan umum	0,0762	0,1871	0,0629	0,0470	0,0219	
antar jemput	0,1078	0,1370	0,1604	0,1199	0,2069	
jalan kaki	0,0737	0,0978	0,2088	0,0420	0,0725	

1	perlindungan dari cuaca	vektor eigen
	mobil	0,6233
4	sepeda motor	0,0523
	angkutan umum	0,0790
	antar jemput	0,1464
	jalan kaki	0,0990
		(T/LULIA

Nilai eigen maksimum (maks)	5,5138
Consistency Index (CI)	0,1284
Consistency Ratio (CR)	0,1157

 $a_{ij} = a_{ij} w_j / w_i$

matriks pairwise comparison yang sudah diperbaiki

perlindungan dari cuaca	mobil	sepeda motor	angkutan umum	antar jemput	jalan kaki
mobil	1,0000	8,3690	8,6987	6,1483	9,0000
sepeda motor	0,1195	1,0000	0,3297	0,4503	0,6310
angkutan umum	0,1150	3,0330	1,0000	0,3921	0,7986
antar jemput	0,1626	2,2207	2,5504	1,0000	2,8517
jalan kaki	0,1111	1,5847	1,2522	0,3507	1,0000

Lampiran 10 (Lanjutan)	TAS	BDA			
matriks normalitas		-na	Ar	Watt	
perlindungan dari cuaca	mobil	sepeda motor	angkutan umum	antar jemput	jalan kaki
mobil	0,6630	0,5164	0,6289	0,7371	0,6302
sepeda motor	0,0792	0,0617	0,0238	0,0540	0,0442
angkutan umum	0,0762	0,1871	0,0723	0,0470	0,0559
antar jemput	0,1078	0,1370	0,1844	0,1199	0,1997
jalan kaki	0,0737	0,0978	0,0905	0,0420	0,0700

perlindungan dari cuaca	vektor eigen
mobil	0,6351
sepeda motor	0,0526
angkutan umum	0,0877
antar jemput	0,1498
jalan kaki	0,0748

Nilai eigen maksimum (maks)	5,2388
Consistency Index (CI)	0,0597
Consistency Ratio (CR)	0,0538

Lampiran 10 (Lanjutan)									
matriks pairwise comp	matriks pairwise comparison								
privasi dari orang lain	mobil	sepeda motor	angkutan umum	antar jemput	jalan kaki				
mobil	1,0000	1,0451	7,7270	1,3098	0,7856				
sepeda motor	0,9568	1,0000	6,6819	0,2647	0,4314				
angkutan umum	0,1294	0,1497	1,0000	0,1558	0,1111				
antar jemput	0,7635	3,7782	6,4172	1,0000	0,3872				
jalan kaki	1,2730	2,3181	9,0000	2,5828	1,0000				

matriks normalitas

privasi dari orang lain	mobil	sepeda motor	angkutan umum	antar jemput	jalan kaki
mobil	0,2426	0,1261	0,2507	0,2465	0,2893
sepeda motor	0,2321	0,1206	0,2168	0,0498	0,1589
angkutan umum	0,0314	0,0181	0,0324	0,0293	0,0409
antar jemput	0,1852	0,4557	0,2082	0,1882	0,1426
jalan kaki	0,3088	0,2796	0,2920	0,4861	0,3683

	privasi dari orang lain	vektor eigen
	mobil	0,2310
4	sepeda motor	0,1556
	angkutan umum	0,0304
	antar jemput	0,2360
	jalan kaki	0,3469
		7

maks)		5,3244
		0,0811
		0,0731
	maks)	maks)

matriks pairwise comparison

nating part the companies.							
ketenangan selama							
perjalanan	mobil	sepeda motor	angkutan umum	antar jemput	jalan kaki		
mobil	1,0000	4,5703	8,2189	1,2802	1,3465		
sepeda motor	0,2188	1,0000	3,6485	0,1869	0,3102		
angkutan umum	0,1217	0,2741	1,0000	0,1111	0,1455		
antar jemput	0,7811	5,3515	9,0000	1,0000	2,1276		
jalan kaki	0,7427	3,2239	6,8724	0,4700	1,0000		

Lampiran 10 (Lanjuta	n) TAS	BRA			
matriks normalitas	IAO	DRA	In.	TUAT.	
ketenangan selama					
perjalanan	mobil	sepeda motor	angkutan umum	antar jemput	jalan kaki
mobil	0,3491	0,3169	0,2860	0,4200	0,2731
sepeda motor	0,0764	0,0693	0,1270	0,0613	0,0629
angkutan umum	0,0425	0,0190	0,0348	0,0365	0,0295
antar jemput	0,2727	0,3711	0,3132	0,3281	0,4316
jalan kaki	0,2593	0,2236	0,2391	0,1542	0,2029
1	クアースト				

ketenangan selama perjalanan	vektor eigen		
mobil	0,3290		
sepeda motor	0,0794		
angkutan umum	0,0324		
antar jemput	0,3433		
jalan kaki	0,2158		

Nilai eigen maksimum (maks)		5,1005
Consistency Index (CI)		/6	0,0251
Consistency Ratio (CR)			0,0226

Matriks *pairwise comparison*, vektor eigen, nilai eigen dan uji konsistensi alternatif berdasarkan sub kriteria biaya

matriks pairwise comparison

biaya	mobil	sepeda motor	angkutan umum	antar jemput	jalan kaki
mobil	1,0000	0,5145	0,7952	0,1219	0,1776
sepeda motor	1,9438	1,0000	2,7389	0,1597	0,2713
angkutan umum	1,2576	0,3651	1,0000	0,1111	0,1557
antar jemput	8,2048	6,2611	9,0000	1,0000	2,5755
jalan kaki	5,6294	3,6856	6,4245	0,3883	1,0000

matrix normana					
biaya	mobil	sepeda motor	angkutan umum	antar jemput	jalan kaki
mobil	0,0554	0,0435	0,0398	0,0684	0,0425
sepeda motor	0,1078	0,0846	0,1372	0,0897	0,0649
angkutan umum	0,0697	0,0309	0,0501	0,0624	0,0372
antar jemput	0,4549	0,5294	0,4509	0,5615	0,6161
jalan kaki	0,3121	0,3116	0,3219	0,2180	0,2392

V	biaya	vektor eigen
	mobil	0,0499
4	sepeda motor	0,0968
	angkutan umum	0,0501
	antar jemput	0,5226
	jalan kaki	0,2806

Nilai eigen maksimum (maks)	5,0921
Consistency Index (CI)	0,0230
Consistency Ratio (CR)	0,0207

Matriks *pairwise comparison*, vektor eigen, nilai eigen dan uji konsistensi alternatif berdasarkan sub kriteria waktu

matriks pairwise comparison

jarak ke kampus	mobil	sepeda motor	angkutan umum	antar jemput	jalan kaki
mobil	1,0000	0,3414	2,2153	1,8507	0,1474
sepeda motor	2,9293	1,0000	5,1446	2,3889	0,2594
angkutan umum	0,4514	0,1944	1,0000	0,3629	0,1111
antar jemput	0,5403	0,4186	2,7556	1,0000	0,1601
jalan kaki	6,7847	3,8554	9,0000	6,2444	1,0000

muniky normanas					
jarak ke kampus	mobil	sepeda motor	angkutan umum	antar jemput	jalan kaki
mobil	0,0854	0,0588	0,1101	0,1562	0,0878
sepeda motor	0,2502	0,1721	0,2558	0,2016	0,1546
angkutan umum	0,0386	0,0335	0,0497	0,0306	0,0662
antar jemput	0,0462	0,0721	0,1370	0,0844	0,0954
jalan kaki	0,5796	0,6636	0,4474	0,5271	0,5959

Lampiran 10 (Lanjutan)

A	jarak ke kampus	vektor eigen
	mobil	0,0997
4	sepeda motor	0,2069
	angkutan umum	0,0437
	antar jemput	0,0870
	jalan kaki	0,5627

Nilai eigen maksimum (maks)	5,1513
Consistency Index (CI)	0,0378
Consistency Ratio (CR)	0,0341

matriks *pairwise comparison*

waktu tempuh ke					
kampus	mobil	sepeda motor	angkutan umum	antar jemput	jalan kaki
mobil	1,0000	0,3999	3,7405	1,7630	0,1901
sepeda motor	2,5009	1,0000	6,2414	1,9336	0,3625
angkutan umum	0,2673	0,1602	1,0000	0,2321	0,1111
antar jemput	0,5672	0,5172	4,3078	1,0000	0,2131
jalan kaki	5,2595	2,7586	9,0000	4,6922	1,0000

Lampiran 10 (Lanjutan)	ITAS	BRA			
matriks normalitas	IIAC	DRA	Ar.		
waktu tempuh ke				THEFT	
kampus	mobil	sepeda motor	angkutan umum	antar jemput	jalan kaki
mobil	0,1042	0,0827	0,1540	0,1832	0,101
sepeda motor	0,2606	0,2068	0,2570	0,2010	0,193
angkutan umum	0,0279	0,0331	0,0412	0,0241	0,059
antar jemput	0,0591	0,1069	0,1773	0,1039	0,113
jalan kaki	0,5482	0,5704	0,3705	0,4877	0,532

waktu tempuh ke kampus	vektor eigen		
mobil	0,1251		
sepeda motor	0,2237		
angkutan umum	0,0371		
antar jemput	0,1122		
jalan kaki	0,5019		

Nilai eigen maksimum (m	aks) 5,1508
Consistency Index (CI)	0,0377
Consistency Ratio (CR)	0,0340

repos

Lampiran 10 (Lanjutan)

matriks pairwise comparison

man iks pair wise comparts	3011				
kelancaran selama			· / / /		
perjalanan	mobil	sepeda motor	angkutan umum	antar jemput	jalan kaki
mobil	1,0000	0,3695	3,0969	0,5686	0,1111
sepeda motor	2,7066	1,0000	2,3837	0,9478	0,1589
angkutan umum	0,3229	0,4195	1,0000	0,6964	0,1152
antar jemput	1,7588	1,0551	1,4359	1,0000	0,1381
jalan kaki	9,0000	6,2934	8,6771	7,2412	1,0000

matriks normalitas

kelancaran selama	12 1./	14 1 h. 1			
perjalanan	mobil	sepeda motor	angkutan umum	antar jemput	jalan kaki
mobil	0,0676	0,0404	0,1866	0,0544	0,0729
sepeda motor	0,1830	0,1094	0,1437	0,0907	0,1043
angkutan umum	0,0218	0,0459	0,0603	0,0666	0,0757
antar jemput	0,1189	0,1155	0,0865	0,0957	0,0907
jalan kaki	0,6086	0,6887	0,5229	0,6927	0,6564

Lampiran 10 (Lanjutan)

kelancaran selama perjalanan	vektor eigen
mobil	0,0844
sepeda motor	0,1262
angkutan umum	0,0541
antar jemput	0,1014
jalan kaki	0,6339
	(4)Juliu / 1 = 1 = 7

Nilai eigen maksimum (maks)	5,2682
Consistency Index (CI)	0,0670
Consistency Ratio (CR)	0,0604

matriks pairwise comparison

ketepatan sampai					
tujuan	mobil	sepeda motor	angkutan umum	antar jemput	jalan kaki
mobil	1,0000	0,6148	0,1494	2,3052	0,4892
sepeda motor	1,6266	1,0000	0,1973	3,9317	2,3943
agkutan umum	6,6948	5,0683	1,0000	9,0000	4,6506
antar jemput	0,4338	0,2543	0,1111	1,0000	0,2299
jalan kaki	2,0442	0,4177	0,2150	4,3494	1,0000

matriks normalitas

Lampiran 10 (Lanjut	an)	S BRA	Inc		
ketepatan sampai				MALTI	
tujuan	mobil	sepeda motor	angkutan umum	antar jemput	jalan kaki
mobil	0,0847	0,0836	0,0893	0,1120	0,0558
sepeda motor	0,1379	0,1360	0,1179	0,1910	0,2732
agkutan umum	0,5674	0,6891	0,5978	0,4372	0,5306
antar jemput	0,0368	0,0346	0,0664	0,0486	0,0262
jalan kaki	0,1732	0,0568	0,1285	0,2113	0,1141

ketepatan sampai tujuan	vektor eigen
mobil	0,0851
sepeda motor	0,1712
angkutan umum	0,5644
antar jemput	0,0425
jalan kaki	0,1368

Nilai eigen maksimum (maks)	5,2013
Consistency Index (CI)	MAT I	0,0503
Consistency Ratio (CR)		0,0453

Lampiran 10 (Lanjutan)

Lampiran 10 (Lanjutan)								
matriks pairwise comparison	TAS	BRA	Mr.	VILLEY				
kemudahan melakukan				THUNK				
perjalanan setiap saat	mobil	sepeda motor	angkutan umum	antar jemput	jalan kaki			
mobil	1,0000	0,4634	6,8419	3,7069	0,5522			
sepeda motor	2,1581	1,0000	9,0000	5,8651	2,7103			
agkutan umum	0,1462	0,1111	1,0000	0,1590	0,1590			
antar jemput	0,2698	0,1705	6,2897	1,0000	0,3170			
jalan kaki	1,8109	0,3690	6,2897	3,1547	1,0000			

matriks normalitas					
kemudahan melakukan perjalanan setiap saat	mobil	sepeda motor	angkutan umum	antar jemput	jalan kaki
mobil	0,1857	0,2192	0,2325	0,2670	0,1165
sepeda motor	0,4008	0,4731	0,3059	0,4224	0,5720
agkutan umum	0,0271	0,0526	0,0340	0,0114	0,0336
antar jemput	0,0501	0,0807	0,2138	0,0720	0,0669
jalan kaki	0,3363	0,1745	0,2138	0,2272	0,2110

Lampiran 10 (Lanjutan)

	kemudahan melakukan perjalanan setiap saat	vektor eigen
4	mobil	0,2042
	sepeda motor	0,4348
	angkutan umum	0,0317
	antar jemput	0,0967
	jalan kaki	0,2326

	-4 D7 / NVA
Nilai eigen maksimum (maks)	5,3168
Consistency Index (CI)	0,0792
Consistency Ratio (CR)	0,0713

repo

Lampiran 11. *Local Priority* dari Sub Kriteria

Local priority dari sub kriteria keamanan

Local priority dan suo kintena keamanan							
alternatif	tindak resiko lingkur		gangguan lingkungan sekitar				
	0,5434	0,4021	0,0546				
mobil	0,0663	0,1475	0,0500				
sepeda motor	0,3035	0,0406	0,1779				
angkutan umum	0,0372	0,1239	0,0669				
antar jemput	0,1450	0,0920	0,5946				
jalan kaki	0,4481	0,5960	0,1107				

alternatif	tindak kriminalitas	resiko kecelakaan	gangguan lingkungan sekitar	local priority
mobil	0,0360	0,0593	0,0027	0,0980
sepeda motor	0,1649	0,0163	0,0097	0,1909
angkutan umum	0,0202	0,0498	0,0037	0,0737
antar jemput	0,0788	0,0370	0,0324	0,1482
jalan kaki	0,2435	0,2396	0,0060	0,4891

repos

Lampiran 11 (Lanjutan)

Local priority dari sub kriteria kenyamanan

Local priority dan sub kriteria kenyamanan						
	perlindungan	privasi dari	ketenangan selama			
alternatif	dari cuaca	orang lain	perjalanan			
	0,3149	0,0586	0,6265			
mobil	0,6351	0,2310	0,3290			
sepeda motor	0,0526	0,1556	0,0794			
angkutan umum	0,0877	0,0304	0,0324			
antar jemput	0,1498	0,2360	0,3433			
jalan kaki	0,0748	0,3469	0,2158			

alternatif	perlindungan dari cuaca	privasi dari orang lain	ketenangan selama perjalanan	local priority
mobil	0,2000	0,0135	0,2061	0,4197
sepeda motor	0,0166	0,0091	0,0497	0,0754
angkutan umum	0,0276	0,0018	0,0203	0,0497
antar jemput	0,0472	0,0138	0,2151	0,2761
jalan kaki	0,0236	0,0203	0,1352	0,1791

Lampiran 11 (Lanjutan)

Local priority dari sub kriteria waktu

	jarak ke	waktu ke	kelancaran selama	ketepatan	kemudahan melakukan
alternatif	kampus	kampus	perjalanan	sampai tujuan	perjalanan setiap saat
	0,0949	0,0971	0,2594	0,5093	0,0392
mobil	0,0997	0,1251	0,0844	0,0851	0,2042
sepeda motor	0,2069	0,2237	0,1262	0,1712	0,4348
angkutan			J1		
umum	0,0437	0,0371	0,0541	0,5644	0,0317
antar jemput	0,0870	0,1122	0,1014	0,0425	0,0967
jalan kaki	0,5627	0,5019	0,6339	0,1368	0,2326
		1 1/18			

alternatif	jarak ke kampus	waktu ke kampus	kelancaran selama perjalanan	ketepatan sampai tujuan	kemudahan melakukan perjalanan setiap saat	local priority
aiterriatii	Kallipus	Kallipus		,		
mobil	0,0095	0,0121	0,0219	0,0433	0,0080	0,0948
sepeda motor	0,0196	0,0217	0,0327	0,0872	0,0171	0,1783
angkutan umum	0,0042	0,0036	0,0140	0,2875	0,0012	0,3105
antar jemput	0,0083	0,0109	0,0263	0,0217	0,0038	0,0709
jalan kaki	0,0534	0,0487	0,1645	0,0697	0,0091	0,3454

repos

Lampiran 12. *Global Priority* Pemilihan Sarana Transportasi ke Kampus

alternatif	keamanan	kenyamanan	biaya	waktu
	0,6869	0,0610	0,0822	0,1699
mobil	0,0980	0,4197	0,0499	0,0948
sepeda motor	0,1909	0,0754	0,0968	0,1783
angkutan umum	0,0737	0,0497	0,0501	0,3105
antar jemput	0,1482	0,2761	0,5226	0,0709
jalan kaki	0,4891	0,1791	0,2806	0,3454

alternatif	keamanan	kenyamanan	biaya	waktu	global priority
mobil	0,0673	0,0256	0,0041	0,0161	0,1132
sepeda motor	0,1312	0,0046	0,0080	0,0303	0,1740
angkutan umum	0,0506	0,0030	0,0041	0,0528	0,1105
antar jemput	0,1018	0,0168	-0,0430	0,0121	0,1737
jalan kaki	0,3360	0,0109	0,0231	0,0587	0,4287

FAKTOR - FAKTOR YANG MEMPENGARUHI PEMILIHAN SARANA TRANSPORTASI KE KAMPUS MENGGUNAKAN ANALYTIC HIERARCHY PROCESS (AHP)

(Studi Kasus di Kampus Universitas Brawijaya Malang)

TUGAS AKHIR

oleh :
RINA FARIDATUS S
0110940053-94

PROGRAM STUDI MATEMATIKA
JURUSAN MATEMATIKA
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
UNIVERSITAS BRAWIJAYA
MALANG
2007

FAKTOR – FAKTOR YANG MEMPENGARUHI PEMILIHAN SARANA TRANSPORTASI KE KAMPUS MENGGUNAKAN ANALYTIC HIERARCHY PROCESS (AHP)

(Studi Kasus di Kampus Universitas Brawijaya Malang)

TUGAS AKHIR

Sebagai salah satu syarat untuk memperoleh gelar Sarjana Sains dalam bidang matematika

oleh :
RINA FARIDATUS S
0110940053-94

PROGRAM STUDI MATEMATIKA
JURUSAN MATEMATIKA
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
UNIVERSITAS BRAWIJAYA
MALANG
2007

LEMBAR PENGESAHAN TUGAS AKHIR

FAKTOR - FAKTOR YANG MEMPENGARUHI PEMILIHAN SARANA TRANSPORTASI KE KAMPUS MENGGUNAKAN ANALYTIC HIERARCHY PROCESS (AHP) (Studi Kasus di Kampus Universitas Brawijaya Malang)

oleh :
RINA FARIDATUS S
0110940053-94

Setelah dipertahankan di depan Majelis Penguji pada tanggal 13 Juni 2007 dan dinyatakan memenuhi syarat untuk memperoleh gelar Sarjana Sains dalam bidang Matematika

Pembimbing I

Pembimbing II

Drs. H. Sobri Abusini, MT

Kwardiniya A., SSi, MSi

NIP. 131 759 591

NIP. 132 206 317

Mengetahui, Ketua Jurusan Matematika Fakultas MIPA Universitas Brawijaya

Dr. Agus Suryanto, MSc.

NIP. 132 126 049

LEMBAR PERNYATAAN

Saya yang bertanda tangan di bawah ini:

Nama : Rina Faridatus Sholikhah

NIM : 0110940053-94 Jurusan : Matematika

Penulis Tugas Akhir berjudul: Faktor - Faktor yang Mempengaruhi Pemilihan Sarana Transportasi ke Kampus

Menggunakan Analytic Hierarchy Process (AHP)

(Studi Kasus di Kampus Universitas Brawijaya Malang)

Dengan ini menyatakan bahwa:

- 1. Isi dari Tugas Akhir yang saya buat adalah benar benar karya sendiri dan tidak menjiplak karya orang lain, selain nama nama yang termaktub di isi dan tertulis di daftar pustaka dalam Tugas Akhir ini.
- 2. Apabila dikemudian hari ternyata Tugas Akhir yang saya tulis terbukti hasil jiplakan, maka saya akan bersedia menanggung segala resiko yang akan saya terima.

Demikian pernyataan ini dibuat dengan segala kesadaran.

Malang, 13 Juni 2007 Yang menyatakan,

(Rina Faridatus Sholikhah) NIM. 0110940053-94

KATA PENGANTAR

Puji Syukur kepada Allah SWT atas berkat dan rahmat yang diberikan sehingga penyusunan tugas akhir ini dapat diselesaikan dengan baik. Tugas akhir dengan judul Faktor — Faktor yang Mempengaruhi Pemilihan Sarana Transportasi ke Kampus Menggunakan *Analytic Hierarchy Process* (AHP) (Studi Kasus di Kampus Universitas Brawijaya Malang), disusun sebagai salah satu syarat mendapatkan gelar Sarjana Sains dalam bidang Matematika di Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Brawijaya Malang.

Selama penyelesaian tugas akhir ini, penulis banyak mengucapkan terima kasih kepada :

- 1. Drs. H. Sobri Abusini, MT., selaku Dosen Pembimbing I, atas segala bimbingan, saran, kritik dan kesabaran selama menyusun tugas akhir ini.
- **2.** Kwardiniya A., SSi, Msi., selaku Dosen Pembimbing II, atas segala saran dan kesabaran selama proses pembimbingan tugas akhir.
- **3.** Drs. Marji, MT., selaku Pembimbing Akademik, atas segala nasehat dan bimbingan selama masa studi.
- **4.** Dr. Agus Suryanto, MSc., selaku Ketua Jurusan Matematika Fakultas MIPA Universitas Brawijaya.
- **5.** Kedua orang tua, adik dan semua keluargaku yang memberikan doa, semangat, dorongan dan kesabaran untuk segera dapat menyelesaikan tugas akhir ini.
- **6.** Semua pihak yang turut membantu, yang tidak dapat disebutkan satu persatu.

Dengan penulisan tugas akhir ini, semoga apa yang dihasilkan dapat bermanfaat bagi mahasiswa Fakultas MIPA pada khususnya dan pembaca pada umumnya. Dengan segala kerendahan hati, penulis menyadari bahwa tugas akhir ini masih jauh dari sempurna sehingga diharapkan kritik dan saran yang membangun dalam upaya meningkatkan kualitas tugas akhir ini.

Malang, Juni 2007

Penulis

SRAWIJAYA

DAFTAR ISI

Hala	ıman
INIXTUENZOSII AAS PROF	
HALAMAN JUDUL	1
HALAMAN PENGESAHAN	
HALAMAN PERNYATAAN	
ABSTRAK	
ABSTRACT	ix
	хi
DAFTAR ISI	
DAFTAR GAMBAR	
DAFTAR TABEL	
DAFTAR LAMPIRAN	xix
BAB I PENDAHULUAN 1.1. Latar Belakang	
1.1. Latar Belakang	1
1.2. Perumusan Masalah	1
1.3. Batasan Masalah	1
1.4. Tujuan	2
1.5. Manfaat	2
BAB II TINJAUAN PUSTAKA	
2.1. Gambaran Umum Analytic Hierarchy Process (AHP)	3
2.1.1. Definisi Analytic Hierarchy Process (AHP)	3
2.1.2. Keuntungan Analytic Hierarchy Process (AHP)	4
2.1.3. Langkah-Langkah Dasar <i>Analytic</i>	
Hierarchy Process (AHP)	5
2.2. Hirarki	5
2.2.1. Definisi Hirarki	5
2.2.2. Penggolongan Hirarki	6
2.2.3. Penyusunan Hirarki	6
2.3. Matriks Pairwise Comparison (Matriks Perbandingan	
Berpasang)	7
2.4. Sintesis	11
2.4.1. Nilai Eigen dan Vektor Eigen	11
2.4.2. Pengambilan Keputusan	13
2.5. Pengujian Konsistensi	14
2.6. Pengujian Kuisioner	15
2.6.1. Uji Validitas	15

2.6.2. Uji Reliabilitas	16
2.7. Rata-rata Geometrik dan Nilai Skala Banding	16
2.8. Penarikan Sampel	18
BAB III METODOLOGI	
3.1. Sumber Data	19
3.2. Metode Analisis	19
BAB IV HASIL DAN PEMBAHASAN	
4.1. Penyusunan Hirarki	23
4.2. Pengujian Kuisioner Survei Pendahuluan	
4.3. Perhitungan Hasil Kuisioner	25
4.4. Penyusunan Entri Matriks Banding Berpasang,	
Perhitungan Vektor Eigen, Nilai Eigen, dan Uji	
Konsistensi	25
4.4.1. Kriteria	25
4.4.2. Sub kriteria berdasarkan kriteria keamanan	26
4.4.3. Sub kriteria berdasarkan kriteria kenyamanan	26
4.4.4. Sub kriteria berdasarkan kriteria biaya	26
4.4.5. Sub kriteria berdasarkan kriteria waktu	27
4.4.6. Alternatif berdasarkan sub kriteria	27
4.4.7. Alternatif berdasarkan kriteria biaya	30
4.5. Pengambilan Keputusan	31
4.5.1. Prioritas Lokal (<i>Local Priority</i>)	31
4.5.2. Prioritas Menyeluruh (<i>Global Priority</i>)	33
4.5.3. Pengadaan Angkutan Kampus	35
BAB V KESIMPULAN DAN SARAN	
5.1. Kesimpulan	37
5.2. Saran	37
DAFTAR PUSTAKA	39

DAFTAR GAMBAR

Hala	man
Gambar 2.1 Hirarki Tiga Tingkat AHP	7
Gambar 3.1 Diagram Alir Metode Penelitian	21
	22
Gambar 4.1 <i>Global Priority</i> Sarana Transportasi ke Kampus	34

DAFTAR TABEL

	Hala	man
Tabel 2.1	Contoh tabel matriks <i>pairwise comparison</i> (a _{ii})	8
Tabel 2.2	Skala perbandingan berpasang	10
Tabel 2.3	Tabel prioritas menyeluruh	13
Tabel 2.4	Random consistency index (CR)	14
Tabel 4.1	Nilai korelasi dan <i>alpha cronbach</i> pertanyaan	
	bagian I	24
Tabel 4.2	Matriks pairwise comparison antar kriteria	25
Tabel 4.3	Consistency ratio (CR) untuk matriks perbandingan	
	antar alternatif berdasarkan sub kriteria	27
Tabel 4.4	Matriks pairwise comparison antar alternatif	28
Tabel 4.5	Tabel $_{ij} = a_{ij} w_j / w_i$	29
Tabel 4.6		
	sub kriteria resiko kecelakaan	30
Tabel 4.7	Local priority kriteria keamanan	31
Tabel 4.8	Local priority kriteria kenyamanan	32
Tabel 4.9	Local priority kriteria biaya	32
Tabel 4.10	Local priority kriteria waktu	33
Tabel 4 11	Global priority alternatif kenutusan	34

DAFTAR LAMPIRAN

	11alai	Hall
Lampiran 1.	Hirarki untuk Menentukan Faktor-Faktor yang Mempengaruhi Pemilihan Sarana Transportasi	
	ke Kampus	41
Lampiran 2.	Nilai Kritik dan Koefisien Korelasi r	42
Lampiran 3.	Hasil perhitungan nilai korelasi dan alpha cronbach	
	menggunakan SPSS 11.5	43
Lampiran 4.	Kuisioner Penelitian	49
Lampiran 5.	Skor Jawaban Kuisioner	54
Lampiran 6.	Frekuensi dan rata-rata geometrik skor jawaban	
	kuisioner	56
Lampiran 7.	Nilai Skala Banding	61
Lampiran 8.	Matriks perbandingan berpasang, vektor eigen, nilai	
	eigen, dan uji konsistensi antar kriteria	63
Lampiran 9.	Matriks perbandingan berpasang, vektor eigen, nilai	
	eigen, dan uji konsistensi sub kriteria berdasarkan	
	kriteria	64
Lampiran 10	. Matriks perbandingan berpasang, vektor eigen, nilai	Y
	eigen, dan uji konsistensi alternatif berdasarkan sub	
	kriteriakriteria	69
Lampiran 11	. Local Priority dari Sub Kritria	91
	. Global Priority Pemilihan Sarana Transportasi ke	
	Kampus	94

FAKTOR - FAKTOR YANG MEMPENGARUHI PEMILIHAN SARANA TRANSPORTASI KE KAMPUS MENGGUNAKAN ANALYTIC HIERARCHY PROCESS (AHP)

(Studi Kasus di Kampus Universitas Brawijaya Malang)

TUGAS AKHIR

oleh :
RINA FARIDATUS S
0110940053-94

PROGRAM STUDI MATEMATIKA
JURUSAN MATEMATIKA
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
UNIVERSITAS BRAWIJAYA
MALANG
2007

FAKTOR – FAKTOR YANG MEMPENGARUHI PEMILIHAN SARANA TRANSPORTASI KE KAMPUS MENGGUNAKAN ANALYTIC HIERARCHY PROCESS (AHP)

(Studi Kasus di Kampus Universitas Brawijaya Malang)

TUGAS AKHIR

Sebagai salah satu syarat untuk memperoleh gelar Sarjana Sains dalam bidang matematika

oleh :
RINA FARIDATUS S
0110940053-94

PROGRAM STUDI MATEMATIKA
JURUSAN MATEMATIKA
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
UNIVERSITAS BRAWIJAYA
MALANG
2007

LEMBAR PENGESAHAN TUGAS AKHIR

FAKTOR - FAKTOR YANG MEMPENGARUHI PEMILIHAN SARANA TRANSPORTASI KE KAMPUS MENGGUNAKAN ANALYTIC HIERARCHY PROCESS (AHP) (Studi Kasus di Kampus Universitas Brawijaya Malang)

oleh :
RINA FARIDATUS S
0110940053-94

Setelah dipertahankan di depan Majelis Penguji pada tanggal 13 Juni 2007 dan dinyatakan memenuhi syarat untuk memperoleh gelar Sarjana Sains dalam bidang Matematika

Pembimbing I

Pembimbing II

Drs. H. Sobri Abusini, MT

Kwardiniya A., SSi, MSi

NIP. 131 759 591

NIP. 132 206 317

Mengetahui, Ketua Jurusan Matematika Fakultas MIPA Universitas Brawijaya

Dr. Agus Suryanto, MSc.

NIP. 132 126 049

LEMBAR PERNYATAAN

Saya yang bertanda tangan di bawah ini:

Nama : Rina Faridatus Sholikhah

NIM : 0110940053-94 Jurusan : Matematika

Penulis Tugas Akhir berjudul: Faktor - Faktor yang Mempengaruhi Pemilihan Sarana Transportasi ke Kampus

Menggunakan Analytic Hierarchy Process (AHP)

(Studi Kasus di Kampus Universitas Brawijaya Malang)

Dengan ini menyatakan bahwa:

- 1. Isi dari Tugas Akhir yang saya buat adalah benar benar karya sendiri dan tidak menjiplak karya orang lain, selain nama - nama yang termaktub di isi dan tertulis di daftar pustaka dalam Tugas Akhir ini.
- 2. Apabila dikemudian hari ternyata Tugas Akhir yang saya tulis terbukti hasil jiplakan, maka saya akan bersedia menanggung segala resiko yang akan saya terima.

Demikian pernyataan ini dibuat dengan segala kesadaran.

Malang, 13 Juni 2007 Yang menyatakan,

(Rina Faridatus Sholikhah) NIM. 0110940053-94

KATA PENGANTAR

Puji Syukur kepada Allah SWT atas berkat dan rahmat yang diberikan sehingga penyusunan tugas akhir ini dapat diselesaikan dengan baik. Tugas akhir dengan judul Faktor — Faktor yang Mempengaruhi Pemilihan Sarana Transportasi ke Kampus Menggunakan *Analytic Hierarchy Process* (AHP) (Studi Kasus di Kampus Universitas Brawijaya Malang), disusun sebagai salah satu syarat mendapatkan gelar Sarjana Sains dalam bidang Matematika di Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Brawijaya Malang.

Selama penyelesaian tugas akhir ini, penulis banyak mengucapkan terima kasih kepada :

- 1. Drs. H. Sobri Abusini, MT., selaku Dosen Pembimbing I, atas segala bimbingan, saran, kritik dan kesabaran selama menyusun tugas akhir ini.
- **2.** Kwardiniya A., SSi, Msi., selaku Dosen Pembimbing II, atas segala saran dan kesabaran selama proses pembimbingan tugas akhir.
- **3.** Drs. Marji, MT., selaku Pembimbing Akademik, atas segala nasehat dan bimbingan selama masa studi.
- **4.** Dr. Agus Suryanto, MSc., selaku Ketua Jurusan Matematika Fakultas MIPA Universitas Brawijaya.
- **5.** Kedua orang tua, adik dan semua keluargaku yang memberikan doa, semangat, dorongan dan kesabaran untuk segera dapat menyelesaikan tugas akhir ini.
- **6.** Semua pihak yang turut membantu, yang tidak dapat disebutkan satu persatu.

Dengan penulisan tugas akhir ini, semoga apa yang dihasilkan dapat bermanfaat bagi mahasiswa Fakultas MIPA pada khususnya dan pembaca pada umumnya. Dengan segala kerendahan hati, penulis menyadari bahwa tugas akhir ini masih jauh dari sempurna sehingga diharapkan kritik dan saran yang membangun dalam upaya meningkatkan kualitas tugas akhir ini.

Malang, Juni 2007

Penulis

BRAWIJAY

DAFTAR ISI

Hala	man
HALAMAN JUDUL	
HALAMAN JUDULHALAMAN PENGESAHAN	1
HALAMAN PENYATAAN	
ABSTRAK	vii
ABSTRACT	ix
	xi
DAFTAR ISI	
DAFTAR GAMBAR	
DAFTAR TABEL	
DAFTAR LAMPIRAN	viv
	AIA
RAR I PENDAHIILIJAN	
1 1 Latar Belakang	1
BAB I PENDAHULUAN 1.1. Latar Belakang	1
1.3. Batasan Masalah	1
1.4. Tujuan	2
1.5. Manfaat	2
BAB II TINJAUAN PUSTAKA	
2.1. Gambaran Umum Analytic Hierarchy Process (AHP)	3
2.1.1. Definisi Analytic Hierarchy Process (AHP)	3
2.1.2. Keuntungan Analytic Hierarchy Process (AHP)	4
2.1.3. Langkah-Langkah Dasar <i>Analytic</i>	
Hierarchy Process (AHP)	5
2.2. Hirarki	5
2.2.1. Definisi Hirarki	5
2.2.2. Penggolongan Hirarki	6
2.2.3. Penyusunan Hirarki	6
2.3. Matriks <i>Pairwise Comparison</i> (Matriks Perbandingan	
Berpasang)	7
2.4. Sintesis	11
2.4.1. Nilai Eigen dan Vektor Eigen	11
2.4.2. Pengambilan Keputusan	13
2.5. Pengujian Konsistensi	14
2.6. Pengujian Kuisioner	15
2.6.1. Uji Validitas	15

2.6.2. Uji Reliabilitas	16
2.7. Rata-rata Geometrik dan Nilai Skala Banding	16
2.8. Penarikan Sampel	18
BAB III METODOLOGI	
3.1. Sumber Data	19
3.2. Metode Analisis	19
BAB IV HASIL DAN PEMBAHASAN	
4.1. Penyusunan Hirarki	23
4.2. Pengujian Kuisioner Survei Pendahuluan	23
4.3. Perhitungan Hasil Kuisioner	25
4.4. Penyusunan Entri Matriks Banding Berpasang,	
Perhitungan Vektor Eigen, Nilai Eigen, dan Uji	
Konsistensi	25
4.4.1. Kriteria	25
4.4.2. Sub kriteria berdasarkan kriteria keamanan	26
4.4.3. Sub kriteria berdasarkan kriteria kenyamanan	26
4.4.4. Sub kriteria berdasarkan kriteria biaya	26
4.4.5. Sub kriteria berdasarkan kriteria waktu	27
4.4.6. Alternatif berdasarkan sub kriteria	27
4.4.7. Alternatif berdasarkan kriteria biaya	30
4.5. Pengambilan Keputusan	31
4.3.1. Prioritas Lokai (<i>Local Priority</i>)	31
4.5.2. Prioritas Menyeluruh (Global Priority)	33
4.5.3. Pengadaan Angkutan Kampus	35
BAB V KESIMPULAN DAN SARAN	
5.1. Kesimpulan	37
5.2. Saran	37
	31
DAFTAR PUSTAKA	39

DAFTAR GAMBAR

Hala	man
Gambar 2.1 Hirarki Tiga Tingkat AHP	7
Gambar 3.1 Diagram Alir Metode Penelitian	21
Gambar 3.2 Diagram Alir Langkah Metode AHP	22
Gambar 4.1 <i>Global Priority</i> Sarana Transportasi ke Kampus	34

DAFTAR TABEL

	Пата	man
Tabel 2.1	Contoh tabel matriks <i>pairwise comparison</i> (a _{ii})	8
Tabel 2.2	Skala perbandingan berpasang	10
Tabel 2.3	Tabel prioritas menyeluruh	13
Tabel 2.4	Random consistency index (CR)	14
Tabel 4.1	Nilai korelasi dan <i>alpha cronbach</i> pertanyaan	
	bagian I	24
Tabel 4.2	Matriks <i>pairwise comparison</i> antar kriteria	25
Tabel 4.3	Consistency ratio (CR) untuk matriks perbandingan	
	antar alternatif berdasarkan sub kriteria	27
Tabel 4.4	Matriks pairwise comparison antar alternatif	28
Tabel 4.5	Tabel $_{ij} = a_{ij} w_j / w_i$	29
	Matriks pairwise comparison antar alternatif	
	sub kriteria resiko kecelakaan	30
Tabel 4.7	Local priority kriteria keamanan	31
Tabel 4.8	Local priority kriteria kenyamanan	32
Tabel 4.9	Local priority kriteria biaya	32
Tabel 4.10	Local priority kriteria waktu	33
Tabal / 11	Global priority alternatif kanutugan	2.1

DAFTAR LAMPIRAN

	araman
Lampiran 1. Hirarki untuk Menentukan Faktor-Faktor yang Mempengaruhi Pemilihan Sarana Transportasi	
ke Kampus	41
Lampiran 2. Nilai Kritik dan Koefisien Korelasi r	42
Lampiran 3. Hasil perhitungan nilai korelasi dan alpha cronbo	ach
menggunakan SPSS 11.5	43
Lampiran 4. Kuisioner Penelitian	49
Lampiran 5. Skor Jawaban Kuisioner	54
Lampiran 6. Frekuensi dan rata-rata geometrik skor jawaban	
kuisioner	56
Lampiran 7. Nilai Skala Banding	61
Lampiran 8. Matriks perbandingan berpasang, vektor eigen,ni	lai
eigen, dan uji konsistensi antar kriteria	63
Lampiran 9. Matriks perbandingan berpasang, vektor eigen, n	
eigen, dan uji konsistensi sub kriteria berdasarka	n
kriteria	64
Lampiran 10. Matriks perbandingan berpasang, vektor eigen, n	ilai
eigen, dan uji konsistensi alternatif berdasarkan s	sub
kriteriakriteria	69
Lampiran 11. Local Priority dari Sub Kritria	91
Lampiran 12. Global Priority Pemilihan Sarana Transportasi k	
Kampus	94