IMPLEMENTASI METODE CERTAINTY FACTOR PADA REKOMENDASI KEMINATAN LABORATORIUM (STUDI KASUS: PROGRAM STUDI INFORMATIKA / ILMU KOMPUTER PTIIK UNIVERSITAS BRAWIJAYA)

M. Fariz Tiowiradin¹, Nurul Hidayat, S.Pd, M.Sc², Imam Cholissodin, S.Si, M.Kom³

¹⁾Mahasiswa, ²⁾Dosen Pembimbing, ³⁾Dosen Pembimbing

Program Studi Informatika/Ilmu Komputer

Program Teknologi Informasi dan Ilmu Komputer

Universitas Brawijaya, Malang 65145, Indonesia

tiowiradin@hotmail.com¹, ntayadih@ub.ac.id², imam.cholissodin@gmail.com³

ABSTRAK

Pemilihan keminatan laboratorium dengan menggunakan sistem rekomendasi berdasarkan nilai mata kuliah mahasiswa dipercaya dapat membantu meningkatkan tingkat efisiensi dan efektivitas mahasiswa dalam permasalahan pemilihan laboratorium untuk penunjang penyusunan skripsi mahasiswa. Saat ini mahasiswa umumnya dalam memilih keminatan laboratorium hanya dengan menggunakan perasaan atas keminatan pribadi terhadap kemampuan dalam bidang-bidang mata kuliah tertentu. Namun fenomena yang muncul yaitu, bahwa dalam pemilihan keminatan laboratorium di PTIIK Universitas Brawijaya adalah masih dapat terjadinya perubahan pemikiran mahasiswa terhadap keminatan laboratorium skripsinya yang telah dipilihnya. Kesalahan dalam pengambilan mata kuliah pilihan pada semester-semester sebelumnya dan yang secara langsung mengakibatkan pengerjaan skripsinya terhambat karena masih terdapat mata kuliah pilihan sebagai penunjang penyusunan skripsi yang belum diambil dan berkemungkinan untuk memulai dari awal lagi. Perkembangan teknologi serta implementasi teknologi informasi dalam dunia pendidikan dapat digunakan dalam hal ini. Untuk optimalisasi proses pemilihan keminatan laboratorium, permasalahan dalam kurangnya panduan serta perbandingan khusus dalam pemilihan dapat diminimalisir dengan memanfaatkan suatu sistem pakar. Perancangan sistem rekomendasi pendukung keputusan dengan menggunakan metode Certainty Factor dapat membantu dalam proses pemilihan laboratorium yang sesuai dengan keminatan dan kemampuan mahasiswa serta membantu dalam mencari rekomendasi yang terbaik. Berdasarkan hasil pengujian menunjukkan hasil tingkat akurasi implementasi sistem sebesar 76.67% dimana dapat dikatakan perancangan sistem ini dapat digunakan sebagai referensi tambahan bagi mahasiswa dalam pemilihan keminatan laboratoriumnya.

Kata kunci: keminatan, laboratorium, Certainty Factor

ABSTRACT

Laboratories selection using a recommendation system based on the student's grades is believed to help improving the efficiency and effectiveness of student's selection issues to support the students' research preparation. Currently it is common that students only using their senses and own belief to choose the laboratories which often raising issues in the decision-making. There are possibilities that they will making a mistake and of thought-changing from their decision. The students are often to making mistakes in taking classesfrom their past semester which is have an impact to their current class and ultimately, their research. Their research will be late in the process and likely will get their research started over from the beginning and that surely will harm them. Technologies development and implementation of information technology in education could be used in this case. For the optimization process of selecting a laboratory specialization, the use of expert systems can be used to minimize errors and provide guidance in assisting the selection process. The design of recommendation decision support system using Certainty Factor method can help the laboratories selection process which is suitable with the student's interest and capabilities. The system is believed will help students to facilitate the laboratories selection with the best recommendations. Based on the test, the results shows that the accuracy rate of the system is 76.67% which is it can be said that system design could be used to be a students' reference for their laboratories selection.

Keywords: interest, laboratory, Certainty Factor

1. PENDAHULUAN

Pada Program Teknologi Informasi dan Ilmu Komputer (PTIIK) Universitas Brawijaya, tugas akhir sangat berhubungan dengan jenis laboratorium yang digunakan. Setiap laboratorium ini memiliki karakteristik dan fasilitas masing-masing. Terdapat 5 jenis keminatan laboratorium untuk tugas akhir pada Program Studi Informatika / Ilmu Komputer PTIIK Universitas Brawijaya [PTIIK-12].

Pemilihan keminatan laboratorium ini berhubungan dengan mata kuliah yang diambil oleh mahasiswa dalam setiap perkuliahannya. Mahasiswa PTIIK Universitas Brawijaya memiliki kebebasan dalam memilih mata kuliah yang ingin diambil dalam Kartu Rencana Studi di tiap semesternya. Terdapat mata kuliah yang berhubungan antara satu dengan lainnya, dan ada juga yang menjadi syarat dalam pengambilan mata kuliah selanjutnya. Terdapat 2 kelompok mata kuliah, yaitu Mata Kuliah Wajib dan Mata Kuliah Pilihan, dimana mahasiswa dapat mulai mengambil mata kuliah pilihan pada semester 5 (lima) [PTIIK-12].

Pengambilan mata kuliah pilihan berhubungan erat dengan keminatan laboratorium, karena tiaptiap mata kuliah pilihan tersebut termasuk dalam naungan laboratorium masing-masing. Pengambilan mata kuliah pilihan dapat membantu mendapatkan basis pengetahuan demi menunjang penulisan serta pengerjaan Skripsi mahasiswa. Pada PTIIK Universitas Brawijaya, mahasiswa dibebaskan untuk memilih keminatan laboratorium pengerjaan skripsi mahasiswa.

Saat ini mahasiswa umumnya dalam memilih keminatan laboratorium hanya dengan insting atas keminatan pribadi menggunakan terhadap kemampuan dalam bidang-bidang mata kuliah tertentu. Namun fenomena yang muncul yaitu, bahwa dalam pemilihan keminatan laboratorium di PTIIK Universitas Brawijaya adalah masih dapat terjadinya perubahan pemikiran mahasiswa terhadap keminatan laboratorium skripsinya yang telah dipilihnya. Kesalahan dalam pengambilan mata kuliah pilihan pada semestersemester sebelumnya dan yang secara langsung mengakibatkan pengerjaan skripsinya terhambat dan berkemungkinan untuk memulai dari awal lagi.

Masih belum terdapat suatu bahan perbandingan atau panduan rekomendasi khusus dalam pemilihan suatu mata kuliah keminatan terhadap suatu laboratorium yang dapat membantu dalam menentukan dan memberikan gambaran serta panduan terhadap bidang keahlian laboratorium yang menunjang dan sesuai dengan kemampuan akademik dan minat mahasiswa tersebut. Di sisi lain, mahasiswa dibebaskan dalam memilih keminatan laboratorium sesuai dengan minat dan keinginannya mesikpun secara akademik menunjukkan data yang kurang mendukung terhadap bidang keahlian laboratorium yang dipilih.

Perkembangan teknologi serta implementasi teknologi informasi dalam dunia pendidikan dapat digunakan dalam hal ini. Untuk optimalisasi proses pemilihan keminatan laboratorium, permasalahan dalam kurangnya panduan serta perbandingan khusus dalam pemilihan dapat diminimalisir dengan memanfaatkan suatu sistem pakar. Perancangan sistem rekomendasi pendukung keputusan dengan menggunakan metode Certainty Factor dapat membantu dalam proses pemilihan laboratorium yang sesuai dengan keminatan dan kemampuan mahasiswa serta membantu dalam mencari rekomendasi yang terbaik.

Berdasarkan latar belakang yang dipaparkan maka rumusan masalah yang perlu diperhatikan adalah:

- Bagaimana mengimplementasikan metode Certainty Factor dalam rekomendasi pemilihan keminatan laboratorium dalam pengerjaan skripsi mahasiswa.
- 2. Bagaimana tingkat akurasi sistem rekomendasi keminatan laboratorium dalam pengerjaan skripsi mahasiswa dengan menggunakan metode Certainty Factor.

2. LANDASAN KEPUSTAKAAN

Pada bab ini akan diuraikan mengenai kajian pustaka dan teori dasar pada penelitian ini.

2.1 Laboratorium pada PTIIK Universitas Brawijaya

Laboratorium adalah suatu tempat dimana dilakukan kegiatan kerja untuk menghasilkan sesuatu (Sukarso, 2005). Laboratorium adalah tempat riset ilmiah, eksperimen, pengukuran ataupun pelatihan ilmiah yang berhubungan dengan ilmu komputer dan memiliki beberapa komputer dalam satu jaringan untuk penggunaan oleh kalangan tertentu.

Laboratorium berfungsi sebagai tempat bagi para peserta didik untuk mengembangkan ilmu pengetahuannya (Emha, 2002). Kegiatan pada laboratorium meliputi kegiatan praktikum, penggunaan peralatan laboratorium, penggunaan laboratorium untuk penelitian dan kerjasama penelitian, pengabdian masyarakat, praktik pembelajaran, diskusi, simulasi, pengerjaan skripsi, sertifikasi atau sejenisnya.

Pada program studi Informatika / Ilmu Komputer PTIIK Universitas Brawijaya terdapat 5 keminatan laboratorium, antara lain [PTIIK-12]:

- 1. Laboratorium Game.
- 2. Laboratorium Pemrograman Aplikasi Perangkat Bergerak (PAPB).
- 3. Laboratorium Komputasi dan Sistem Cerdas.
- 4. Laboratorium Jaringan Komputer.
- 5. Laboratorium Rekayasa Perangkat Lunak.

2.2 Pedoman Penilaian PTIIK Universitas Brawijaya

Pedoman Pendidikan Program Teknologi Informasi dan Ilmu Komputer (PTIIK) Universitas Brawijaya tahun 2011/2012-2015/2016 sudah menerapkan kurikulum berbasis kompetensi, yang sebagian besar merujuk pada ABET (Accreditation Board for Engineering and Technology). Buku Pedoman Pendidikan PTIIK ini dibuat dengan tujuan untuk memberikan gambaran tentang tata cara proses pendidikan di PTIIK Universitas Brawijaya kepada civitas akademika, pegawai dan masyarakat luas.

2.3 Certainty Factor

Faktor kepastian (Certainty Factor) diperkenalkan oleh shortliffe buchanan dalam pembuatan MYCIN (Wesley, 1984). Certainty Factor (CF) merupakan nilai parameter MYCIN untuk menunjukkan besarnya kepercayaan. Factor Kepastian (certainty Factor) menyatakan kepercayaan dalam sebuah kejadian (fakta atau hipotesis) berdasarkan bukti atau penilaian pakar (Tuban, 2005).

Certainty Factor menggunakan suatu nilai untuk mengasumsikan derajat keyakinan seorang pakar terhadap suatu data. Certainty Factor memperkenalkan konsep keyakinan dan ketidakyakinan yang kemudian diformulakan dalam rumusan dasar sebagai berikut :

$$CF[P,E] = MB[P,E] - MD[P,E]$$
 (2-1)

Aturan dalam *Certainty Factor* diekspresikan dalam bentuk pernyataan IF-THEN, seperti:

IF H[Hipotesis] **THEN E**[evidence]

Berikut ini adalah deskripsi beberapa kombinasi Certainty Factor terhadap berbagai kondisi:

1. *Certainty Factor* untuk kaidah dengan premis tunggal (*single premis rules*):

$$CF(H,E) = CF(E) * CF(rule)$$

= CF(user) * CF(pakar) (2.2)

2. *Certainty Factor* untuk kaidah dengan premis majemuk (*multiple premis rules*):

$$CF(A \text{ AND } B) = Minimum (CF(a), CF(b)) * CF (rule)$$
 (2.3)

$$CF (A OR B) = Maximum (CF (a), CF (b)) *$$

 $CF (rule)$ (2.4)

 Certainty Factor untuk kaidah dengan kesimpulan yang serupa (similarly concluded rules):

$$CF_{COMBINE}(CF_1, CF_2) = CF_1 + CF_2 * (1 - CF_1)$$
 (2.5)

CF(R) mengekspresikan konsep observasi dari sebuah evidence E, yang memberikan ppengaruh terhadap hipotesis H dalam aturan R. Secara garis besar ada dua cara dalam mendapatkan tingkat keyakinan (CF) dari sebuah aturan, yaitu:

1. Metode '*Net Belief*' yang diusulkan oleh E.H. Shotliffe dan B.G.Buchanan.

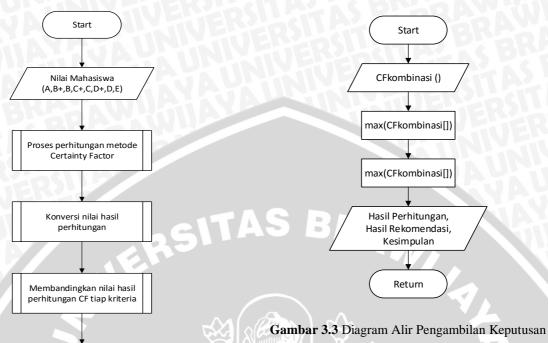
CF(Rule) = faktor kepastian

MB(H,E) = Measure of Belief

MD(H,E) = Measure of Disbelief

 Dengan cara mewawancarai seorang pakar Nilai CF (rule) didapat dari interpretasi term dari pakar yang diubah menjadi nilai CF tertentu sesuai tabel yang ditunjukkan pada table 2.1. [KUS-03].

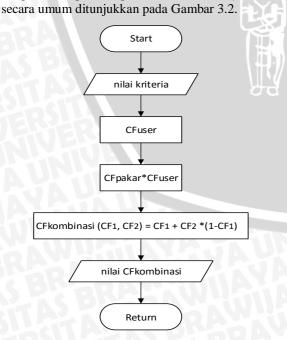
Tabel 2. 1 Nilai Interpretasi Pakar


No	Uncertainty Term	Certainty Factor		
1	Definetely not (pasti tidak)	-1.0		
2	Almost certainly not (hampir pasti tidak)	-0.8		
3	Probability not (kemungkinan besar tidak)	-0.6		
4	Maybe not (mungkin tidak)	-0.4		
5	Unknown (tidak tau)	-0.2 to 0.2		
6	Maybe (mungkin)	0.4		
7	Probably (kemungkinan besar)	0.6		
8	Almost certainly (hampir pasti)	0.8		
9	Definetely (pasti)	1.0		

3. METODOLOGI

Pada kegiatan penelitian ini, untuk mengimplementasikan metode *Certainty Factor* secara terstruktur serta perancangan sistem yang baik dijelaskan dalam bentuk diagram alir atau *flowchart*. Diagram alir merupakan visualisasi dari algoritma yang diterapkan untuk memecahkan persoalan dalam sistem pakar. Perancangan sistem dalam penelitian ini menggunakan metode *Certainty Factor* sebagai metode dalam proses penghitungan, dan perbandingan nilai terbesar untuk kesimpulan

akhir. Diagram alir sistem rekomendasi keminatan laboratorium secara umum ditunjukkan pada Gambar 3.1.

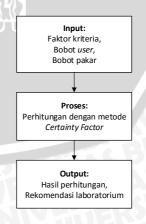

Diagram alir pengambilan keputusan secara umum digambarkan pada gambar 3.3.

4. PERANCANGAN

4.1. Blok Diagram Sistem

Diagram blok sebuah sistem merupakan penguraian logis dari fungsi-fungsi sistem dan memperlihatkan bagaimana bagian-bagian (blokblok) yang berbeda mempengaruhi satu sama lain. Interaksi ini digambarkan dengan anak panah antar blok-blok. Sebuah sistem yang diberikan biasanya direpresentasikan oleh beberapa model diagram blok yang berbeda tergantung seberapa detail prosesnya. Gambar 4.1 ditunjukkan garis perancangan blok diagram sistem.

Hasil perhitungan,


hasil rekomendasi, kesimpulan

END

Gambar 3.1 Diagram Alir Sistem Secara Umum

Diagram alir perhitungan metode Certainty Factor

Gambar 3.2 Diagram Alir Metode Certainty **Factor**

Gambar 4. 1 Blok Diagram Proses Sistem

4.2. Akuisisi Pengetahuan

Akusisi pengetahuan merupakan subsistem yang digunakan untuk memasukkan pengetahuan

dari seorang pakar dengan cara merekayasa pengetahuan agar bisa diproses oleh komputer dan menaruhnya dalam basis pengetahuan dengan format tertentu.

Pada penelitian ini, akusisi pengetahuan yang digunakan merupakan faktor kriteria mata kuliah yang digunakan beserta kecenderungan terhadap jenis laboratorium. Mata kuliah yang digunakan dalam penelitian ini ditentukan berdasarkan jenis mata kuliah yang bersifat wajib mulai dari semester 1 (satu) hingga semester 5 (lima) [PTIIK-12]. Pada Tabel 4.1 dijelaskan faktor kriteria suatu mata kuliah terhadap klasifikasi bidang keahlian laboratorium tertentu yang dinotasikan dengan simbol 'X' pada kolomnya.

Tabel 4. 1 Tabel Faktor Kriteria

	Faktor Kriteria	Klasifikasi BIdang Keahlian Laboratorium					
No.	(Mata Kuliah)	Game	PAPB	KC	JK	RPL	
1	PD	Х	Х			Х	
2	PTIIK						
3	SD	х			Х		
4	MK			Х			
5	BI						
6	Bing						
7	PL	Х	Х			Х	
8	AOK				Х		
9	MKL			х			
10	ASD		Х			Х	
11	SBD		Х	Х		Х	
12	SO		Х		Х		
13	IMK	Х					
14	PS			Х			
15	PBO		Х			Х	
16	JK				Х		
17	PP			х			
18	DAA					Х	
19	PW		Х				
20	GK	х					
21	APS					Х	
22	RPL	х				Х	
23	KB	х		х			
24	КЈ				х		

4.3. Basis Pengetahuan

Basis pengetahuan berisi pengetahuan yang diperlukan untuk memformulasikan, memahami, dan menyelesaikan masalah. Basis pengetahuan terdiri dari dua elemen dasar yaitu fakta dan aturan.

Teknik representasi pengetahuan yang digunakan dalam pembuatan sistem rekomendasi keminatan laboratorium berdasarkan faktor kriteria mata kuliah menggunakan teknik kaidah produksi. Kaidah ini merupakan hubungan impikasi dua bagian, yaitu bagian premise (jika) dan bagian konklusi (maka). Apabila bagian premis dipenuhi maka bagian konklusi akan bernilai benar. Berikut merupakan ilustrasi representasi pengetahuan dalam sistem yang menggunakan aturan produksi:

IF nilai Grafika Komputer tinggi *THEN* kecenderungan ke laboratorium Teknologi *Game*.

Rule diatas kemudian dikodekan menjadi bentuk yang dapat diproses oleh komputer.

IF K005 THEN L001

Aturan yang digunakan didasarkan kepada tingkat prioritas faktor kriteria mata kuliah terhadap kecenderungan jenis laboratorium.

Tabel faktor kriteria mata kuliah merupakan daftar seluruh mata kuliah yang dijadikan perhitungan yang berpengaruh terhadap pengelompokkan jenis laboratorium. Identifikasi faktor kriteria mata kuliah ke dalam kode faktor kriteria dijelaskan pada Tabel 4.2.

Tabel 4. 2 Tabel Identifikasi Kode Faktor Kriteria

Kode Faktor Krite	Faktor Kriteria Mata Kuliah				
K001	Pemrograman Dasar				
K002	Pengantar Teknologi Informasi dan Teknologi Informasi				
K003	Sistem Digital				
K004	Matematika Komputasi				
K005	Bahasa Indonesia				
K006	Bahasa Inggris				
K007	Pemrograman Lanjut				
K008	Arsitektur & Organisasi Komputer				
K009	Matematika Komputasi Lanjut				
K010	Algoritma & Struktur Data				
K011	Sistem Basis Data				
K012	Sistem Operasi				
K013	Interaksi Manusia & Komputer				
K014	Probabilitas & Statistika				
K015	Pemodelan Berorientasi Objek				
K016	Jaringan Komputer				
K017	Pengenalan Pola				
K018	Desain dan Analisis Algoritma				
K019	Pemrograman Web				
K020	Grafika Komputer				
K021	Analisis & Perancangan Sistem				
K022	Rekayasa Perangkat Lunak				
K023	Kecerdasan Buatan				
K024	Keamanan Jaringan				

Tabel ID Kriteria merupakan daftar klasifikasi bidang keahlian laboratorium yang digunakan sebagai hasil output dari sistem ini. Pada Tabel 4.3 dijelaskan mengenai kode kriteria klasifikasi laboratorium beserta definisinya.

Tabel 4. 3 Tabel Kode Kriteria Klasifikasi Bidang Keahlian Laboratorium

ID Kriteria	Klasifikasi Bidang Keahlian Laboratorium	Definisi
L001	Teknologi Game	Laboratorium Game Edukasi merupakan salah satu laboratorium yang memfokuskan diri pada bidang pengembangan permainan edukasi di PTIIK Universitas Brawijaya.
L002	Pemrograman Aplikasi Perangkat Bergerak	Laboratorium Pemrograman Aplikasi Perangkat Bergerak (PAPB) merupakan laboratorium di PTIIK Universitas Brawijaya yang memfokuskan diri pada bidang pengembangan aplikasi perangkat bergerak (mobile)
L003	Komputasi dan Sistem Cerdas	Laboratorium Rekayasa Perangkat Lunak merupakan laboratorium komputer di PTIIK Universitas Brawijaya yang memfokuskan diri pada bidang kecerdasan buatan dan sistem cerdas.
L004	Jaringan Komputer	Laboratorium Jaringan Komputer merupakan laboratorium komputer di PTIIK Universitas Brawijaya yang memfokuskan diri pada bidang pengembangan jaringan komputer.
L005	Rekayasa Perangkat Lunak	Laboratorium Rekayasa Perangkat Lunak merupakan laboratorium komputer di PTIIK Universitas Brawijaya yang memfokuskan diri pada bidang pengembangan perangkat lunak.

Nilai *input* yang digunakan *user* berupa nilai huruf.. Tabel 4.4 merupakan tabel representasi nilai bobot dari nilai yang dimasukkan *user* menjadi nilai bobot (nilai CF_{user}) yang digunakan pada sistem perhitungan.

Tabel 4. 4 Tabel Representasi Pembobotan Nilai *Input User*

No	Nilai Huruf	Bobot CF
1	А	1
2	B+	0.87
3	В	0.75
4	C+	0.63
5	С	0.5
6	D+	0.38
7	D	0.25
8	E	0

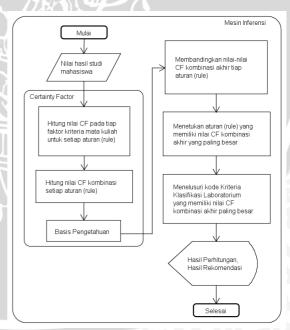
Tabel 4.5 merupakan tabel nilai bobot faktor kriteria mata kuliah terhadap klasifikasi bidang keahlian laboratorium. Pembobotan terdiri atas bobot masing-masing mata kuliah berdasarkan kecenderungan pengaruh terhadap laboratorium, dan nilai bobot yang digunakan dalam perhitungan Bobot Pakar adalah nilai masing-masing faktor kriteria terhadap tiap-tiap nilai bobot *rulebase* klasifikasi laboratorium.

Tabel 4. 5 Tabel Nilai Bobot Faktor Kriteria Mata

Kullali							
	Faktor Kriteria (Mata Kuliah)	Klasifikasi Nilai Bobot Bidang Keahlian Laboratorium					
No.		L001	L002	L003	L004	L005	
1	K001	СВ	СВ	KB	TB	SB	
2	K002	TB	TB	TB	TB	TB	
3	K003	KB	TB	TB	СВ	КВ	
4	K004	TB	TB	SB	TB	TB	
5	K005	TB	ТВ	TB	TB	ТВ	
6	К006	TB	TB	TB	TB	TB	
7	K007	СВ	СВ	KB	TB	SB	
8	K008	KB	КВ	TB	СВ	СВ	
9	К009	TB	КВ	SB	TB	ТВ	
10	K010	СВ	СВ	KB	TB	СВ	
11	K011	KB	СВ	TB	TB	СВ	
12	K012	KB	KB	TB	СВ	КВ	
13	K013	SB	СВ	TB	ТВ	КВ	
14	K014	ТВ	TB	SB	ТВ	ТВ	
15	K015	СВ	СВ	TB	TB	СВ	
16	K016	KB	КВ	TB	SB	ТВ	
17	K017	KB	KB	SB	ТВ	КВ	
18	K018	СВ	СВ	TB	ТВ	СВ	
19	K019	ТВ	ТВ	ТВ	СВ	ТВ	
20	K020	SB	КВ	TB	TB	ТВ	
21	K021	СВ	СВ	TB	ТВ	СВ	
22	K022	СВ	СВ	КВ	ТВ	SB	
23	K023	KB	KB	SB	ТВ	КВ	
24	K024	ТВ	ТВ	TB	SB	ТВ	

Keterangan:

TB = Tidak Berpengaruh, dengan nilai range antara 0 hingga 0.30


KB = Kurang Berpengaruh dengan nilai range antara 0.25 hingga 0.55

CB = Cukup Berpengaruh dengan nilai *range* antara 0.50 hingga 0.80

SB = Sangat Berpengaruh dengan nilai *range* antara 0.75 hingga 1.0

4.4. Mesin Inferensi

Metode inferensi yang digunakan adalah forward chaining. Metode forward chaining merupakan teknik pelacakan yang penalaran dari sekumpulan data fakta menuju suatu kesimpulan. Namun apabila untuk permasalahan yang kompleks dan tidak terdapat aturan yang didefinisikan permasalahn untuk membutuhkan aturan/rule yang sangat banyak dan tidak efisien. Sehingga untuk membantu mengatasi permasalahan tersebut, pada penelitian dikombinasikan dengan metode certainty factor, yang merupakan salah satu metode untuk mengatasi ketidakpastian. Diagram Proses Inferensi dijelaskan pada gambar 4.2

Gambar 4. 2 Diagram Proses Inferensi Sistem

5. HASIL DAN PEMBAHASAN

Berdasarkan informasi tersebut maka pada kasus ini Proses penghitungan diawali dengan pemecahan sebuah kaidah yang memiliki premis majemuk menjadi kaidah-kaidah yang memiliki premis tunggal. Kemudian menghitung nilai CF masing-masing aturan, sehingga diperoleh nilai CF untuk masing-masing aturan, kemudian nilai CF dari masing-masing aturan tersebut dikombinasikan. Setelah proses perhitungan nilai CF kombinasi tiaptiap kriteria dilakukan akan dilanjutkan dengan proses perbandingan nilai CF kombinasi Akhir terhadap tiap klasifikasi laboratorium, dimana nilai hasil CF yang dibandingkan sudah terlebih dahulu dikonversi ke dalam bentuk prosentase. Langkah selanjutnya adalah proses pengambil keputusan, dimana pada proses ini akan dihasilkan kesimpulan dari sistem.

Data yang digunakan sebagai contoh dalam pembahasan dengan klasifikasi kriteria sebagai berikut.

- Nilai dari mata kuliah Pemrograman Dasar adalah C
- Nilai dari mata kuliah Pengantar Teknologi Informasi dan Teknologi Informasi adalah A
- Nilai dari mata kuliah Sistem Digital adalah
 B+
- Nilai dari mata kuliah Matematika Komputasi adalah A
- Nilai dari mata kuliah Bahasa Indonesia adalah
 B
- Nilai dari mata kuliah Bahasa Inggris adalah B+
- Nilai dari mata kuliah Pemrograman Lanjut adalah B
- Nilai dari mata kuliah Arsitektur & Organisasi Komputer adalah C+
- Nilai dari mata kuliah Matematika Komputasi Lanjut adalah A
- Nilai dari mata kuliah Algoritma & Struktur Data adalah B+
- Nilai dari mata kuliah Sistem Basis Data adalah B
- Nilai dari mata kuliah Sistem Operasi adalah C+
- Nilai dari mata kuliah Interaksi Manusia & Komputer adalah B
- Nilai dari mata kuliah Probabilitas & Statistika adalah A
- Nilai dari mata kuliah Pemodelan Berorientasi Objek adalah C+
- Nilai dari mata kuliah Jaringan Komputer adalah C+
- Nilai dari mata kuliah Pengenalan Pola adalah
 B
- Nilai dari mata kuliah Desain dan Analisis Algoritma adalah B
- Nilai dari mata kuliah Pemrograman Web adalah A
- Nilai dari mata kuliah Grafika Komputer adalah **B**+

- Nilai dari mata kuliah Analisis & Perancangan Sistem adalah B+
- Nilai dari mata kuliah Rekayasa Perangkat Lunak adalah B+
- Nilai dari mata kuliah Kecerdasan Buatan adalah B+
- Nilai dari mata kuliah Keamanan Jaringan adalah **B**+

Hasil kriteria ini akan diproses menggunakan metode *Certainty Factor*. Berikut proses perhitungan:

- Menentukan nilai bobot untuk masing-masing nilai hasil studi mahasiswa terhadap nilai faktor kriteria mata kuliah di tiap nilai bobot rulebase klasifikasi bidang keahlian laboratorium. Nilai CF_{pakar} masing-masing faktor kriteria didapat merujuk pada Tabel 4.5.
 - Nilai CF_{pakar} terhadap *rulebase* klasifikasi bidang keahlian laboratorium Teknologi *Game* (L001):
 - $-(CF_{pakar}(K001) = 0.45)$
 - $CF_{pakar}(K002) = 0.15$
 - $-CF_{pakar}(K003) = 0.45$
 - $CF_{pakar}(K004) = 0.2$
 - $CF_{pakar}(K005) = 0.25$
 - $CF_{pakar}(K006) = 0.2$
 - $-CF_{pakar}(K007) = 0.5$
 - $CF_{pakar}(K008) = 0.4$
 - $CF_{pakar}(K009) = 0.2$
 - $CF_{pakar}(K010) = 0.55$
 - $CF_{pakar}(K011) = 0.4$
 - $CF_{pakar}(K012) = 0.35$
 - $CF_{pakar}(K013) = 0.6$
 - $CF_{pakar}(K014) = 0.2$
 - CF_{pakar} (K015) = 0.5
 - $CF_{pakar}(K016) = 0.45$
 - $-CF_{pakar}(K017) = 0.4$
 - $CF_{pakar}(K018) = 0.55$
 - $CF_{pakar}(K019) = 0.2$
 - $CF_{pakar}(K020) = 0.75$
 - $CF_{pakar}(K021) = 0.55$
 - $CF_{pakar}(K022) = 0.65$
 - $CF_{pakar}(K023) = 0.35$
 - $CF_{pakar}(K024) = 0.15$
- 2. Mengkonversi nilai yang di*input* oleh *user* ke dalam bentuk nilai bobot.
 - $CF_{user}(K001) = 0.5$
 - $CF_{user}(K002) = 1$
 - $CF_{user}(K003) = 0.87$
 - $CF_{user}(K004) = 1$

- $CF_{user}(K005) = 0.75$
- $CF_{user}(K006) = 0.87$
- $CF_{user}(K007) = 0.75$
- $CF_{user}(K008) = 0.63$
- $CF_{user}(K009) = 1$
- $CF_{user}(K010) = 0.87$
- $CF_{user}(K011) = 0.75$
- $CF_{user}(K012) = 0.63$
- $CF_{user}(K013) = 0.75$
- $CF_{user}(K014) = 1$
- $CF_{user}(K015) = 0.63$
- $CF_{user}(K016) = 0.63$
- $CF_{user}(K017) = 0.75$
- $CF_{user}(K018) = 0.75$
- $CF_{user}(K019) = 1$
- $CF_{user}(K020) = 0.87$
- $CF_{user}(K021) = 0.87$
- $CF_{user}(K022) = 0.87$
- $CF_{user}(K023) = 0.87$
- $CF_{user}(K024) = 0.87$
- Menghitung setiap nilai faktor kriteria di tiap rulebase klasifikasi laboratorium dengan rumus CF untuk evidence tunggal. Perhitungan nilai CF terhadap tiap rulebase klasifikasi laboratorium:
 - Nilai CF terhadap rulebase klasifikasi bidang keahlian laboratorium Teknologi Game (L001):
 - $CF_{game}1 = CF_{user} (K001) \times CF_{pakar}$ $(K001) = 0.5 \times 0.45 = 0.225$
 - $CF_{game}2 = CF_{user} (K002) \times CF_{pakar}$ $(K002) = 1 \times 0.15 = 0.15$
 - $CF_{game}3 = CF_{user} (K003) \times CF_{pakar}$ $(K003) = 0.87 \times 0.45 = 0.3915$
 - $CF_{game}4 = CF_{user} (K004) \times CF_{pakar}$ $(K004) = 1 \times 0.2 = 0.2$
 - $CF_{game}5 = CF_{user} (K005) \times CF_{pakar}$ $(K005) = 0.75 \times 0.25 = 0.1875$
 - $C_{Fgame}6 = CF_{user} (K006) \times CF_{pakar}$ $(K006) = 0.87 \times 0.2 = 0.174$
 - $CF_{game}7 = CF_{user} (K007) \times CF_{pakar}$ $(K007) = 0.75 \times 0.5 = 0.375$
 - $CF_{game}8 = CF_{user} (K008) \times CF_{pakar}$ $(K008) = 0.63 \times 0.4 = 0.252$
 - $CF_{game}9 = CF_{user} (K009) \times CF_{pakar}$ $(K009) = 1 \times 0.2 = 0.2$
 - $CF_{game}10 = CF_{user} (K010) \times CF_{pakar}$ $(K010) = 0.87 \times 0.55 = 0.4785$
 - $CF_{game}11 = CF_{user} (K011) \times CF_{pakar}$ $(K011) = 0.75 \times 0.4 = 0.3$

- $CF_{game}12 = CF_{user} (K012) \times CF_{pakar}$ $(K012) = 0.63 \times 0.35 = 0.2205$
- $CF_{game}13 = CF_{user} (K013) \times CF_{pakar}$ $(K013) = 0.75 \times 0.6 = 0.45$
- $CF_{game}14 = CF_{user} (K014) \times CF_{pakar}$ $(K014) = 1 \times 0.2 = 0.2$
- $CF_{game}15 = CF_{user} (K015) \times CF_{pakar}$ $(K015) = 0.63 \times 0.5 = 0.315$
- $CF_{game}16 = CF_{user} (K016) \times CF_{pakar}$ $(K016) = 0.63 \times 0.45 = 0.2835$
- $CF_{game}17 = CF_{user} (K017) \times CF_{pakar}$ $(K017) = 0.75 \times 0.4 = 0.3$
- $CF_{game}18 = CF_{user} (K018) \times CF_{pakar}$ $(K018) = 0.75 \times 0.55 = 0.4125$
- $CF_{game}19 = CF_{user} (K019) \times CF_{pakar}$ $(K019) = 1 \times 0.2 = 0.2$
- $CF_{game}20 = CF_{user} (K020) \times CF_{pakar}$ $(K020) = 0.87 \times 0.75 = 0.6525$
- $CF_{game}21 = CF_{user} (K021) \times CF_{pakar}$ $(K021) = 0.87 \times 0.55 = 0.4785$
- $CF_{game}22 = CF_{user} (K022) \times CF_{pakar}$ $(K022) = 0.87 \times 0.65 = 0.5655$
- $CF_{game}23 = CF_{user} (K023) \times CF_{pakar}$ $(K023) = 0.87 \times 0.35 = 0.3045$
- $CF_{game}24 = CF_{user} (K024) \times CF_{pakar}$ $(K024) = 0.87 \times 0.15 = 0.1305$
- Melakukan perhitungan CFkombinasi tiap faktor kriteria. Nilai CFkombinasiAkhir didapat dari hasil perhitungan keseluruhan CFkombinasi setiap rulebase. Pada sistem ini nilai angka di belakang koma dibatasi sampai 5 digit.
 - Nilai CF_{kombinasi} terhadap rulebase klasifikasi bidang keahlian laboratorium Teknologi Game (L001):
 - CF_{kombinasi} CF_{game}1 dengan CF_{game}2 $CF_{kombinasi}$ ($CF_{game}1$, $CF_{game}2$) = 0.225 + $0.15 \times (1 - 0.225) = 0.0.34125$
 - CF_{kombinasi} CF_{kom.game}1 dengan CF_{game}3 $CF_{kombinasi}$ ($CF_{kom.game}1$, $CF_{game}3$) $0.34125 + 0.0.3915 \times (1 - 0.34125) =$ 0. 0.599151
 - CF_{kombinasi} CF_{kom.game}2 dengan CF_{game}4 $CF_{kombinasi}$ ($CF_{kom.game}2$, $CF_{game}4$) = $0.599151 + 0.2 \times (1 - 0.599151) =$ 0.679321
 - $CF_{kom.game} 3 \ dengan \ CF_{game} 5$ $CF_{kombinasi}$ ($CF_{kom.game}3$, $CF_{game}5$) = $0.679321 + 0.1875 \times (1 - 0.679321) =$ 0.739448
 - CF_{kombinasi} CF_{kom.game}4 dengan CF_{game}6 CF_{kombinasi} (CF_{kom.game}4, CF_{game}6) $0.739448 + 0.174 \times (1 - 0.739448) =$ 0.784784
 - CF_{kombinasi} CF_{kom.game}5 dengan CF_{game}7

- $CF_{kombinasi}$ ($CF_{kom.game}5$, $CF_{game}7$) = 0.784784 + 0.375 × (1 0.784784) = 0.865490
- $\begin{array}{lll} \text{--} & CF_{kombinasi} & CF_{kom,game}6 \ dengan \ CF_{game}8 \\ CF_{kombinasi} & (CF_{kom,game}6, \ CF_{game}8) = \\ 0.865490 + 0.252 \times (1 0.865490) = \\ 0.899387 \end{array}$
- $CF_{kombinasi}$ $CF_{kom.game}$ 7 $dengan CF_{game}$ 9 $CF_{kombinasi}$ $(CF_{kom.game}$ 7, CF_{game} 9 = $0.899387 + 0.2 \times (1 0.899387) = 0.919509$
- $\begin{array}{lll} \text{-} & CF_{kombinasi} & CF_{kom.game}8 & dengan \\ & CF_{game}10 & \\ & CF_{kombinasi} & (CF_{kom.game}8, \ CF_{game}10) = \\ & 0.919509 + 0.4785 \times (1-0.919509) = \\ & 0.958024 & \end{array}$
- $\begin{array}{llll} \text{-} & CF_{kom, pame} & CF_{kom, game} 9 & dengan \\ & CF_{game} 11 & \\ & CF_{kom, pame} 9, & CF_{game} 11) = \\ & 0.958024 + 0.3 \times (1 0.958024) = \\ & 0.970617 & \end{array}$
- $\begin{array}{lll} \text{-} & CF_{kombinasi} & CF_{kom.game}11 & dengan \\ & CF_{game}13 & \\ & CF_{kombinasi} & (CF_{kom.game}11, \ CF_{game}13) = \\ & 0.977096 \, + \, 0.45 \, \times (1 \, \, 0.977096) = \\ & 0.987403 & \end{array}$
- $\begin{array}{lll} \text{-} & CF_{kombinasi} & CF_{kom.game}12 & dengan \\ CF_{game}14 & \\ CF_{kombinasi} & (CF_{kom.game}12, \ CF_{game}14) = \\ 0.987403 \ + \ 0.2 \ \times \ (1 \ \ 0.987403) = \\ 0.989922 & \end{array}$
- $\begin{array}{lll} \text{--} & CF_{kombinasi} & CF_{kom.game}13 & dengan \\ & CF_{game}15 & \\ & CF_{kombinasi} & (CF_{kom.game}13, \ CF_{game}15) = \\ & 0.989922 \, + \, 0.315 \, \times (1 0.989922) = \\ & 0.993097 & \end{array}$
- $\begin{array}{lll} \text{-} & CF_{kombinasi} & CF_{kom.game}14 & dengan \\ CF_{game}16 & \\ CF_{kombinasi} & (CF_{kom.game}14, \ CF_{game}16) = \\ 0.993097 + 0.2835 \times (1 0.993097) = \\ 0.995054 & \\ \end{array}$
- $\begin{array}{lll} \text{--} & CF_{kombinasi} & CF_{kom.game}15 & dengan \\ & CF_{game}17 & \\ & CF_{kombinasi} & (CF_{kom.game}15, \ CF_{game}17) = \\ & 0.995054 + 0.3 \times (1-0.\ 0.995054) = \\ & 0.996538 & \end{array}$
- $\begin{array}{lll} \text{-} & CF_{kombinasi} & CF_{kom,game}16 & dengan \\ & CF_{game}18 & \\ & CF_{kombinasi} & (CF_{kom,game}16, \ CF_{game}18) = \\ & 0.996538 + 0.4125 \times (1-0.\ 0.996538) \\ & = 0.997966 & \end{array}$
- $\begin{array}{ccc} \text{-} & CF_{kombinasi} & CF_{kom.game}17 & dengan \\ & CF_{game}19 & \end{array}$

- $CF_{kombinasi}$ ($CF_{kom.game}17$, $CF_{game}19$) = 0.997966 + 0.2 × (1 0. 0.997966) = 0.998373
- $\begin{array}{lll} \text{-} & CF_{kombinasi} & CF_{kom,game}18 & dengan \\ & CF_{game}20 & \\ & CF_{kombinasi} & (CF_{kom,game}18, \ CF_{game}20) = \\ & 0.998373 + 0.6525 \times (1-0.998373) = \\ & 0.999435 & \end{array}$
- $\begin{array}{lll} \text{-} & CF_{kombinasi} & CF_{kom.game}19 & dengan \\ & CF_{game}21 & \\ & CF_{kombinasi} & (CF_{kom.game}19, \ CF_{game}21) = \\ & 0.999435 + 0.4785 \times (1-0.999435) = \end{array}$

0.999705

- $\begin{array}{lll} \text{-} & CF_{kombinasi} & CF_{kom.game}20 & dengan \\ & CF_{game}22 & \\ & CF_{kombinasi} & (CF_{kom.game}20, \ CF_{game}22) = \\ & 0.999705 + 0.5655 \times (1-0.999705) = \\ & 0.999872 & \end{array}$
- $\begin{array}{lll} \text{-} & CF_{kombinasi} & CF_{kom,game}21 & dengan \\ & CF_{game}23 & \\ & CF_{kombinasi} & (CF_{kom,game}21, \ CF_{game}23) = \\ & 0.999872 + 0.3045 \times (1-0.999872) = \\ & 0.999911 & \end{array}$
- $\begin{array}{lll} \text{-} & CF_{kom:binasi} & CF_{kom:game}22 & dengan \\ & CF_{game}24 & \\ & CF_{kom:binasi} & (CF_{kom:game}22, \ CF_{game}24) = \\ & 0.999911 + 0.1305 \times (1 0.999911) \\ & CF_{kom:game}23 & = 0.999923 \end{array}$

Sehingga didapatkan nilai CF_{kom.game} Akhir sebesar 0.999923

Dengan proses perhitungan yang sama dilakukan terhadap keseluruhan *rulebase* tiap klasifikasi laboratorium untuk mendapatkan nilai CF_{kombinasiAkhir} masing-masing, sehingga didapatkan nilai CFakhir sebagai berikut:

- Nilai CF_{kom.papb} Akhir sebesar 0.999988
- Nilai CF_{kom,kc} Akhir sebesar 0.99997
- Nilai CF_{kom.jk} Akhir sebesar 0.99996
- Nilai CF_{kom.rpl} Akhir sebesar 0.999986
- 5. Mengkonversi hasil perhitungan CF ke dalam bentuk prosentase.
 - $CF_{kom,game}$ Akhir = 0.999923 × 100 = 99.9923%
 - $CF_{kom,papb}$ Akhir = 0.999988 × 100 = 99.9988 %
 - $CF_{kom.kc}$ Akhir = 0.99997× 100 = 99.997%
 - $CF_{kom,jk}$ Akhir = 0.99996 × 100 = 99.996%
 - $CF_{kom.rpl}$ Akhir = 0.999986 × 100 = 99.9986%

 Membandingkan dan mengurutkan nilai hasil perhitungan CF_{kombinasi}Akhir dari nilai yang terbesar ke nilai yang terkecil dari tiap *rulebase* klasifikasi laboratorium sebagai gambaran rekomendasi sistem.

CF = arsort(CF_{kombinasi} Akhir)

- $= arsort(CF_{kom,game}Akhir , CF_{kom,papb}Akhir , CF_{kom,kc}Akhir , CF_{kom,jk}Akhir , CF_{kom,rpl}Akhir)$
- = arsort(99.9923, 99.9988, 99.9997, 99.996, 99.9986)
- = (99.9997, 99.9988, 99.9986, 99.996, 99.9923)

Urutan akhir kode klasifikasi bidang keahlian laboratorium adalah

(L003:L002:L005:L004:L001)

- Pengambilan keputusan. Menampilkan data hasil perhitungan sebagai hasil kesimpulan sistem rekomendasi.
 - Urutan 1 : Laboratorium Komputasi dan Sistem Cerdas (99.9997%)
 - Urutan 2 : Laboratorium Pengembangan Aplikasi Perangkat Bergerak (99.9988%)
 - Urutan 3 : Laboratorium Rekayasa Perangkat Lunak (99.9986%)
 - Urutan 4 : Laboratorium Jaringan Komputer (99.996%)
 - Urutan 5 : Laboratorium Teknologi Game (99.9923%)

Berdasarkan hasil perhitungan yang telah dilakukan, hasil rekomendasi sistem yang didapatkan adalah Laboratorium Komputasi dan Sistem Cerdas sebagai pilihan pertama, dan Laboratorium Pengembangan Aplikasi Perangkat Bergerak sebagai pilihan kedua.

Tampilan input nilai pada program ditunjukkan pada gambar 5.1.

Gambar 5. 1 Tampilan Halaman Input Nilai

Tampilan implementasi Halaman Hasil Perhitungan pada program ditunjukkan pada gambar 5.2.

Gambar 5. 2 Tampilan Halaman Hasil Perhitungan

Tampilan implementasi Halaman Hasil Rekomendasi pada program ditunjukkan pada gambar 5.3.

Gambar 5. 3 Tampilan Halaman Hasil Rekomendasi

6. PENGUJIAN DAN ANALISIS

Pengujian akurasi digunakan untuk menguji tingkat akurasi antara perhitungan *Certainty Factor* secara manual dengan perhitungan *Certainty Factor* yang telah diimplementasikan ke dalam sistem. Pengujian akurasi sistem juga dilakukan dengan mencocokan antara data uji dengan *output* sistem

Pengujian akurasi sistem diuji dengan melakukan perhitungan melalui sistem dengan menggunakan nilai kriteria pada data uji sebagai data *input*. Dalam pengujian ini menggunakan 30 data uji. Pada akhir perhitungan, sistem akan memberikan 2 (dua) hasil rekomendasi berdasarkan 2 (dua) nilai hasil perhitungan yang paling besar diantara 5 (lima) nilai perhitungan.

Data pembanding yang digunakan untuk menguji kesesuaian hasil perhitungan sistem adalah data uji yang berasal dari mahasiswa jurusan Informatika / Ilmu Komputer PTIIK Universitas Brawijaya yang telah melakukan survei dan kuisioner yang dibagikan.

Pada tahap Analisis Pengujian Akurasi, tingkat akurasi sistem dilihat dengan cara membandingkan hasil perhitungan sistem dengan data uji. Jika *output* hasil perhitungan sistem dan nilai pilihan laboratorium pada data uji bernilai sama, berarti akurasi tersebut bernilai valid. Prosedur pengujian akurasi dilakukan dengan cara mencocokkan hasil keputusan *output* hasil perhitungan dan nilai pilihan akhir laboratorium pada data uji. Hasil akurasi sistem dijelaskan pada tabel 6.1.

Tabel 6. 1 Hasil Pengujian Data Uji

	DA	ILU ATA					
No	ID Data	Klasifikasi Skripsi	Hasil Rekomendasi 1	Nilai Perhitungan Rekomendasi 1	Hasil Rekomendasi 2	Nilai Perhitungan Rekomendasi 2	Akurasi Sistem
1	D001	RPL	RPL	0.99999800	KC 0.999997672		VALID
2	D002	PAPB	KC	0.999997371	RPL	0.999992121	TIDAK VALID
3	D003	KC	KC	0.999996509	RPL	0.999995151	VALID
4	D004	Jaringan	Jaringan	0.999998207	RPL	0.999989978	VALID
5	D005	KC	RPL	0.999996333	PAPB	0.999980622	TIDAK VALID
6	D006	PAPB	RPL	0.999935836	PAPB	0.999908536	VALID
7	D007	KC	PAPB	0.999991780	KC	0.999988051	VALID
8	D008	PAPB	PAPB	0.999962014	RPL	0.999935726	VALID
9	D009	Jaringan	RPL	0.999980598	Jaringan	0.999977584	VALID
10	D010	Jaringan	Jaringan	0.999994053	PAPB	0.999992877	VALID
11	D011	RPL	RPL	0.999839132	PAPB	0.999830682	VALID
12	D012	RPL	кс	0.999999534	RPL	0.999999531	VALID
13	D013	PAPB	кс	0.999997040	PAPB	0.999988030	VALID
14	D014	RPL	RPL	0.999999911	PAPB	0.999999244	VALID
15	D015	KC	кс	0.999990285	RPL	0.999967764	VALID
16	D016	KC	RPL	0.999989492	PAPB	0.999981351	TIDAK VALID
17	D017	PAPB	RPL	0.999989079	PAPB	0.999985246	VALID
18	D018	KC	PAPB	0.999963617	RPL	0.999949229	TIDAK VALID
19	D019	RPL	RPL	0.999947518	PAPB	0.999896193	VALID
20	D020	PAPB	KC	0.999987458	Jaringan	0.999987375	TIDAK VALID
21	D021	PAPB	RPL	0.999996018	Jaringan	0.999993905	TIDAK VALID
22	D022	Game	RPL	0.999998672	PAPB	0.999996393	TIDAK VALID
23	D023	Jaringan	Jaringan	0.999995322	RPL	0.999991933	VALID
24	D024	PAPB	RPL	0.999963139	PAPB	0.999953212	VALID
25	D025	RPL	RPL	0.999995023	PAPB	0.999994601	VALID
26	D026	KC	KC	0.999996124	PAPB	0.999995992	VALID
27	D027	RPL	KC	0.999996056	RPL	0.999994040	VALID
28	D028	RPL	RPL	0.999999612	PAPB	0.999997902	VALID
29	D029	RPL	KC	0.999998127	RPL	0.999992733	VALID
30	D030	RPL	кс	0.999999066	RPL	0.999999060	VALID

Berdasarkan 30 data yang diuji pada Tabel 6.3 terdapat 16 yang bernilai valid. Kemudian dari data tersebut dihitung tingkat akurasinya sesuai dengan jumlah data yang bernilai "valid" dibagi dengan jumlah total data uji, lalu dikalikan dengan 100 persen untuk mendapatkan tingkat prosentase kecocokan. Perhitungan akurasi dilakukan dengan merujuk Persamaan 2.13.

Akurasi Sistem =
$$\frac{23}{30} \times 100\% = 76.67\%$$

Berdasarkan hasil persentase tingkat akurasi *output* pada pengujian akurasi, didapatkan peresentase akurasi sebesar 76.67%. Sehingga terdapat persentase kesalahan atau ketidakakurasian sebesar 23.33%.

7. PENUTUP

7.1. Kesimpulan

Berdasarkan hasil analisis perancangan, implementasi dan pengujian sistem Implementasi Metode *Certainty Factor* pada Rekomendasi Keminatan Laboratorium, didapatkan kesimpulan sebagai berikut :

- 1. Metode *Certainty Factor* telah berhasil diimplementasikan pada model kasus pada penelitian ini, dan metode ini dapat diimplementasikan terhadap kasus penelitian ini.
- 2. Sistem Implementasi Metode *Certainty Factor* pada Rekomendasi Keminatan Laboratorium telah dibuat dan dilakukan pengujian sesuai perancangan dan dapat melakukan identifikasi klasifikasi keminatan laboratorium mahasiswa dengan didapatkan tingkat akurasi sebesar 76.67%.
- 3. Pada penelitian ini sistem hanya menggunakan satu faktor sebagai bahan perhitungannya, yaitu faktor kriteria nilai dari mata kuliah dari data uji.
- 4. Hasil Tingkat Akurasi Sistem dipengaruhi oleh nilai bobot yang didapatkan berdasarkan referensi pengetahuan yang dimiliki oleh pakar.
- 5. Keterbatasan referensi dan pengetahuan yang dimiliki pakar mempengaruhi hasil perhitungan metode *Certainty Factor*.

7.2. Saran

Saran yang dapat diberikan untuk pengembangan sistem *online* Implementasi Metode *Certainty Factor* pada Rekomendasi Keminatan Laboratorium antara lain :

- Pada pengimplementasian metode Certainty Factor referensi dari pakar sangat berpengaruh terhadap hasil keluaran sistem. Pada penelitian ini hanya menggunakan satu faktor penilaian, yaitu Faktor Kriteria. Penggunaan referensi-referensi tambahan dalam penentuan bobot dan faktor-faktor kriteria lain diharapkan dapat menunjang penelitian dan menghasilkan tingkat akurasi yang lebih baik.
- 2. Melakukan penambahan subjek penelitian dan faktor kriteria penelitian. Hal ini dimaksudkan agar menambah referensi basis pengetahuan sistem pakar, dan didapatkan hasil tingkat akurasi yang lebih tinggi, serta perhitungan yang menjadi lebih valid.
- Menggunakan parameter negatif dalam optimasi nilai bobot untuk perhitungan sehingga hasil perhitungan diharapkan menjadi lebih bervariatif dan valid.

DAFTAR PUSTAKA

- [PTIIK-12] PTIIK, 2012. Buku Pedoman Pendidikan Program Teknologi Informasi dan Ilmu Komputer. Tersedia di http://filkom.ub.ac.id/page/read/dokumen-resmi/cfd415a [Diakses 1 September 2015]
- [KUS-08] Kusrini, 2008. Penggunaan Certainty Factor Dalam Sistem Pakar untuk Melakukan Diagnosis dan Memberikan Terapi Penyakit Epilepsi dan Keluarganya, STMIK AMIKOM Yogyakarta.
- [KUS-03] Kusumadewi, Sri. 2003. Artificial Intelligence Teknik dan Aplikasinya. Yogyakarta. Graha Ilmu.
- [TRI-08] Tristianto, Didik. 2008. Aplikasi sistem pakar untuk menentukan profil manuasia berdasarkan konsep passion. http://puslit2.petra.ac.id/ejournal/index. php/tik/article/viewPDFInterstitial/169 38/1692. (diakses tanggal 3 September 2015).
- [SUT-11] Sutojo, T., Mulyanto, Edi. dan Suhartono, Vincent. 2011. Kecerdasan Buatan, ANDI, Yogyakarta

BRAWIUAL