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Recently, with the increasing interest in using handheld devices, the application of navigation systems 
that provide driving information to the drivers has become widespread in daily life. An efficient route 
guidance system should consider the influential factors of traffic flow such as traffic density and 
allowable velocity limits of the roads. As the number of influential factors and amount of nodes in road 
network increase, the computational cost increases. On navigation systems, using handheld devices 
with limited processing speed and memory capacity, it is not feasible to find the exact optimal solution in 
real-time for the road networks with excessive number of nodes using deterministic methods such as 
Dijkstra algorithm. This paper proposes a Genetic Algorithm approach applied to a route guidance 
system to find the shortest driving time. Constant length chromosomes have been used for encoding the 
problem. It was found that the mutation operator proposed in this algorithm provided great contribution 
to achieve optimum solution by maintaining the genetic diversity. The efficiency of the genetic algorithm 
was tested by applying it on the networks with different sizes. 
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INTRODUCTION 
 
The use of navigation systems that provide driving 
information to the drivers has become widespread in daily 
life. The logic behind this kind of systems provides the 
users with the shortest path between beginning and end 
points. The downside of the current navigation systems 
ignores the important decision variables including the 
traffic density and allowable velocity limits of the roads. 
However, the shortest path suggested by a system 
cannot be the optimal route in every case, if these 
variables are not being considered. Therefore, an ideal 
navigation system should not only consider the distances, 
but also the traffic density and allowable velocity limits 
between intersection points in real-time. 
 
 
The shortest path problem 
 
The shortest  path  problem  is  to find  the   shortest path 
 
 
 
*Corresponding author. E-mail: ismail.karas@karabuk.edu.tr. 
Tel: +90370 4332021 (Ext. 188). Fax: +90370 4333290.  

between two vertices of a directed graph where each arc 
has been weighted. The shortest path is considered as 
one of the most fundamental network optimization 
problems. This problem comes up in practice and arises 
as a sub problem in many network optimization 
algorithms (Xu et al., 2007). As a brief explanation, let G 
= (N, A) be a simple directed graph, where N is the set of 
the nodes, of cardinality n, and A is the set of the arcs, of 
cardinality m.  

Let c: A → R be a function which assigns a cost cij to 
each (i, j) ∈ A. Given a root r ∈ N, the problem of the 
shortest path tree (SPT) is seen in finding a directed tree 
T such that the (only) path from r to i in T is one of the 
shortest paths from r to i in G, and for each i ∈ N which is 
connected to r, a directed path from r to i exists 
(Pallottino and Grazia, 1996). The computation of the 
shortest paths is an important task in network analysis 
and transportation related analysis. One of the most 
popular algorithm is the conceived Dijkstra's algorithm, 
which solves the shortest path problem in O (n2) time on 
a graph with n number of nodes and positive edge 
weights (Dijkstra, 1959).  
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Genetic algorithm 
 
Deterministic methods used by researchers from all over 
the world may not reach the solution for the nonlinear 
problems and they are subject to excessive solution time 
as the number of parameters increase. These disadvan-
tages direct the researchers to use other methods such 
as heuristic techniques. Unlike the deterministic methods, 
heuristic techniques do not guarantee optimal solutions, 
but they can find good/near optimal solutions within a 
reasonable time (Aruga et al., 2005). Genetic algorithm 
(GA) is a heuristic technique developed by John Holland 
in 1975 based on genetic and natural selection principles 
(Holland, 1975). Goldberg (1989) proved that genetic 
algorithm is one of the powerful search methods in both 
theory and practice. Genetic algorithm starts with 
generating an initial population by random selection of 
the individuals named chromosomes that each encodes 
the solution of the problem. Each chromosome that 
encodes a candidate solution of the problem is made with 
a combination of significant genes (Whitley, 1994). 

The genetic algorithm founded is based on two 
fundamental evolutionary concepts: 
 
1. A Darwinian notion of fitness, which describes an 
individual’s ability to survive. 
2. Genetic operators, which determine the next 
generation’s genetic makeup based on the current 
generation (De Jong, 1988). 
 
Conventionally, genetic operations are achieved through 
crossover and mutation operators. The crossover 
operator generates new individuals called offspring, by 
recombining the genetic material of two individuals, 
deemed as the parents. Individuals with higher fitness 
scores are selected with greater probability to be parents 
and ‘‘pass on’’ their genes to the next generation. This is 
known as the fitness proportional selection method. 
Crossovers allow exploitation of successful subspaces of 
the solution space. The mutation operator randomly 
alters one or more genes in an individual. Mutations add 
genetic diversity to the population, in that through 
mutation, GAs can search previously unexplored sections 
of the solution space. Consequently, mutations ensure 
that the entire search space is connected (Cedric and 
Pawan, 2003).  

In the genetic algorithm, the initial population is 
evaluated on the optimal solution by crossover and 
mutation operations. The first step starts with obtaining 
the values that the fitness function returns for each 
chromosome and selects the best chromosomes of the 
initial population, which will form the individuals of the 
next generation. The parents selected for regeneration 
are replaced by crossover operation and changed by 
mutation operation to produce child chromosomes. The 
chromosomes that are not passed through crossover or 
mutation and the newly generated child chromosomes  
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form a new population (Holland, 1975; Whitley, 1994). 
The generation of new populations is repeated for a 
defined number of times in advance or is being continued 
until there are no better chromosomes (Figure 1). 

In the last decade, there have been a number of 
approaches used by GA in the solution of the shortest 
path problems. Munemoto et al. (1998) implemented a 
GA, which is practically feasible on the wired or wireless 
network environment. For encoding the problem, they 
used chromosomes with variable lengths. They defined 
crossing points as the loci (positions of nodes in a route), 
where identical genes (nodes) in both chromosomes 
(routes) are found at the same location and at the 
selected location of the crossing point, randomly.  

Inagaki et al. (1999) proposed an algorithm with fixed 
length chromosomes. The chromosomes in the algorithm 
are sequences of integers and each gene represents a 
node ID that is selected randomly from the set of nodes 
connected with the node corresponding to its locus 
number. In the crossover phase, one of the genes (from 
two parent chromosomes) is selected at the locus of the 
starting node ID and put in the same locus of an 
offspring. One of the genes is then selected randomly at 
the locus of the previously chosen gene’s number. This 
process is continued until the destination node is 
reached. 

Ahn and Ramakrishna (2002) reported that the 
algorithm proposed by Munemoto required a relatively 
large population for an optimal solution due to the con-
straints on the crossover mechanism. Furthermore, it was 
reported that this was not suitable for large networks or 
real-time communications, since Dijkstra’s algorithm had 
a prohibitive computational cost. On the other hand, they 
suggested that the algorithm proposed by Inagaki et al. 
(1999) required a large population to attain an optimal or 
high quality of solution due to its inconsistent crossover 
mechanism. Some offspring might generate new chromo-
somes that resemble the initial chromosomes in fitness, 
thereby retarding the process of evolution. Ahn and 
Ramakrishna (2002) proposed a GA for solving the 
shortest path problem that uses chromosomes with 
variable lengths. A chromosome (routing path) encodes 
the problem by listing node IDs from its source node to its 
destination node based on the topological information 
database (routing table) of the network. The gene of the 
first locus is always reserved for the source node and the 
gene of the second locus is randomly selected from the 
nodes connected with the source node. A chosen node is 
removed from the topological information database to 
prevent the node from being selected twice, thereby 
avoiding loops in the path. It is possible that the algorithm 
encounters a node for which all of the neighboring nodes 
have already been visited.  

In this case, the defective chromosome is refreshed 
and reinitialized. In the crossover phase, a set of node 
pairs, which is commonly included in the two (chosen) 
chromosomes (but without positional consistency) is  
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Figure 1. Steps of genetic algorithm. 

  
 
 
formed in the first phase. Then, one pair is randomly 
chosen and the locus of each node becomes a crossing 
site of each chromosome. Each partial route is 
exchanged and assembled and thus, two new routes are 
produced eventually. In the mutation phase, the proposed 
genetic algorithm generates an alternative partial-route 
from the mutation node to the destination node using 
topological database. After crossover and mutation 
phases, some repair functions are taken to avoid 
infeasible chromosomes. Ahn and Ramakrishna (2002) 
worked on networks with 15 to 50 nodes through 
randomly assigned link costs. The quality results of the 
proposed algorithm were compared with the algorithms of 
Munemoto et al. (1998) and Inagaki et al. (1999), which 
indicated that the solution quality of the proposed 
algorithm was much higher than the others. Ahn and 
Ramakrishna (2002) showed that as the number of the 
nodes becomes more than 20, the computing time by 
adopting the  GA   becomes   less   than   that  when   the  

Djikstra algorithm is adopted.  
Hasan et al. (2007) produced a different solution for the 

shortest path problem using GA. They employed a 
chromosome-coding scheme using node indices and 
distance weights. The complete chromosome of a 
candidate was divided into node fields, which were equal 
to the number of nodes in the network. Each node was 
represented by three genes. The first value represents 
the previous array in the classical Dijkstra’s algorithm, 
while the second value is the node number itself and the 
third value is used to store the cost of the path from the 
source to the target node. The first node of every 
candidate path is the source node. Other entries are 
random nodes, covering all other nodes in the graph, with 
random predecessors, preventing self-edge nodes. They 
proposed different crossover and mutation methods, 
which are appropriate in encoding their chromosomes. 
They tested their proposed algorithm on networks with 
10, 20, 50 and 100 routers, and the results  demonstrated 



                          
 

 

 
 
 
 
consistent and speedy convergence for the tested 
scenarios. 

Lin et al. (2009) designed a route guidance system 
based on the genetic algorithm of Ahn and Ramakrishna 
(2002) for finding the shortest driving time which is their 
application on virtual maps of square matrix with 
appropriate to be used on handheld devices. They tested 
sizes of 4 x 4, 8 x 8, 16 x 16 and 32 x 32, and on a real 
map with 8039 nodes. They adopted both Dijkstra and 
GA for the shortest driving time, but they only reported 
the results of GA as the memory required by the Dijkstra 
algorithm went beyond the limited memory of the portable 
device. As a result, they reported that the shortest driving 
time approach, which can be computed by the GA on 
handheld device, was feasible to be used in the route 
guidance system. 
 
 
Objectives and organization 
 
Increasing the number of nodes in a network, and the 
parameters considered in calculating the shortest driving 
time, increases the resource consumption and compu-
tational cost of the handheld device with limited 
processing speed and memory capacity. To overtake 
these problems, heuristic algorithms with approximate 
solutions can be used rather than deterministic 
algorithms with exact solutions. The GA is one of them. 

This study presents a route guidance system and a GA 
approach applied on this routing system to find the 
shortest driving time. The proposed guidance system 
provides the driving advice for the drivers considering not 
only the distances, but also the traffic density and the 
allowable velocity limits of the roads. Thus, it computes 
the shortest driving time instead of the shortest path. 

For encoding the problem, chromosomes with constant 
length have been used. The length of the chromosome is 
the number of nodes on the network. The genes of a 
chromosome represent nodes included in a path between 
a designated pair of source and destination nodes. 

The crossover used in the algorithm is identical to the 
method proposed by Ahn and Ramakrishna (2002) 
except a difference on implementation. To produce the 
initial population DFS (depth of first search), the algorithm 
was reorganized to make a random selection of the 
nodes from source to destination and the same approach 
was also used in the mutation phase to produce alter-
native paths from the mutation point to the destination 
point. 

The remaining parts of this paper is organized as 
follows: a description of the shortest driving time problem 
and the genetic algorithm proposed to solve this problem;  
the basic design of the proposed route guidance system; 
the experimental results of the genetic algorithm obtained 
from the networks with different sizes; and the general  
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conclusions of the study. 
 
 
THE PROPOSED GENETIC ALGORITHM FOR THE 
ROUTE GUIDANCE SYSTEM 
 
Shortest driving time 
 
It is possible to describe this network with a directed 
graph  
 
G = (N,  
 
A) where N is the set of the nodes of cardinality n, and A 
is the set of the arcs of cardinality m. There is a cost Tij 
for each (i, j) ∈ A. 

These costs are defined in a cost matrix C = [Tij]. 
Source and destination nodes are respectively shown as 
B and V. The connection information of the nodes with 
each other is described in an adjacency matrix Iij shown 
as follows (Ahn and Ramakrishna, 2002): 

 
In the shortest driving time problem, the cost which is Tij 
defines the driving time from node i to node j. Using these 
definitions, the shortest driving time problem can be 
formulated as a combinatorial optimization problem, 
minimizing the objective function as follows (Ahn and 
Ramakrishna, 2002): 
 

Minimize                              (1) 
        

subject to                               (2) 
          
    

and                                          (3) 
 
In the shortest driving time problem, cost Tij is calculated 
as follows: 
 
dij = distance from node i to node j; 
vij = allowable velocity limit from node i to node j; 
yij = traffic density from node i to node j. 
 
On calculation of the driving time from node i to node 
j,allowable velocity limits and traffic densities from node  i 
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Figure 2. Chromosome, encoding a routing path.  

 
 
 
to node j are considered. In this case, driving time can be 
formulated as follows: 
 

   (4) 
 
 
Genetic representation 
 
In the chromosome structure of the proposed GA, node 
numbers of the route from source to destination are 
stored as positive integer numbers. Each locus of the 
chromosome represents an order of a node in a routing 
path. The chromosome length is static, and the total 
number of nodes N is the length of each chromosome in 
the network. The node numbers that represent the 
routing path from source (B) to destination (V) are 
encoded in the chromosome. If the node number of the 
solution is smaller than the total node number N, unused 
genes of the chromosome are assigned by a zero value. 
The chromosome encoding the proposed GA is shown in 
Figure 2. 
 
 
Initialization of the population 
 
To produce the initial population of the DFS (depth of first  
search), the algorithm is reorganized to produce random 
paths from source to destination. The pseudo code for 
population initialization is as follows: 

{Step 1: Store the source node in the gene of the first  
locus of the chromosome. 
Step 2: Randomly select a node among the nodes that 
the current node is directly connected to and not visited 
before. 
Step 3: If there is no node to select, cancel the 
chromosome and go to Step 1. 
Step 4: Store the selected chromosome in the gene of 
the next locus of the chromosome. 
Step 5: If the selected node is not the destination node, 
go to Step2.  
Step 6: If the selected node is the destination node, store 
the node in the gene of the next locus of the 
chromosome.} 
 
 
Fitness function 
 
The fitness function is the object to be optimized. The 
fitness function must accurately measure the quality of 
the chromosome in the population and must have 
computational efficiency; therefore, the fitness function 
has a critical importance. The cost of the fitness function 
described by Ahn and Ramakrishna (2002) rearranged 
according to the formula given in “the shortest driving 
time” to compute the shortest driving time is as follows: 
 
fi: fitness function of the i th chromosome; 
gi ( j ): j th gene of the i th chromosome; 
 l: length of the chromosome; 
D: distance between two nodes; 



                          
 

 

 
 
 
 
V: allowable velocity limit between two nodes; 
Y: traffic density between two nodes. 
 

          (5) 
 
 
Selection (reproduction) of a new generation 
 
The selection (reproduction) operator is intended to 
improve the average quality of the population by giving 
the high-quality chromosomes a better chance to be 
copied into the next generation. In this study, roulette 
wheel selection method, which is a proportionate 
selection method that picks out chromosomes based on 
their fitness values relative to the fitness of the other 
chromosomes in the population, was performed. In 
roulette wheel selection method, the probability (p) of the 
n number of chromosomes with the fitness function of f is 
calculated. However, the probability of the k th 
chromosome is calculated as follows: 
 

                                (6) 
 
Subsequently, the cumulative sum of the probabilities of 
each chromosome in the population is calculated. The 
cumulative sum for the k th chromosome is calculated as 
follows: 
 

               (7) 
 
After that, a random number between 0 and 1 is 
generated, and the particular cumulative sum that has the 
number is searched. If the generated random number is  
equal or less than the first cumulative value, the first 
chromosome is passed on to the new generation directly. 
Otherwise, the chromosome with greater cumulative sum 
is passed on to the new generation. This process is 
continued as population size increases. 
 
 
Crossover 
 
Crossover operation is applied to obtain better chromo-
somes. The crossover used in the proposed algorithm is 
identical to the method proposed by Ahn and 
Ramakrishna    (2002),     except     the      difference     in  
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implementation. Ahn and Ramakrishna (2002) searched 
the same nodes on two chromosomes in crossover 
toindicate the potential crossover points, and thus, select 
one of the points randomly among them. In the first-
matched gene search method proposed in this study, the 
first genes matched on two chromosomes as crossover 
points were selected. The difference of the crossover 
phase used in this study from the classical crossover is 
that crossover points do not have to be in the same locus 
of chromosomes. The crossover points may be different 
for each parent chromosomes in the crossover phase, in 
that the crossover is done in a loop that is repeated as a 
number of chromosomes. At each cycle of the loop, a 
random number between 0 and 1 is generated and 
checked if it is smaller than the crossover rate. If so, two 
chromosomes from the population are randomly selected 
for crossover, otherwise, the loop is continued. In the end 
of the crossover operation, two child chromosomes are 
obtained. If these child chromosomes are infeasible, a 
repair function for dealing with the infeasible 
chromosomes is performed. The pseudo code used for 
the crossover phase is as follows: 
 
{Step 1 : Generate a random number between 0 and 1. 
Step 2 : If the random number is smaller than the 
crossover rate, go to Step 3, otherwise go to the next 
cycle of the loop. 
Step 3 : Select two chromosomes randomly from the 
population. 
Step 4 : Search for the matching gene starting from the 
gene of the second locus of the first chromosome. Select 
the locus numbers of the chromosomes in which the first 
matched genes are included as crossover points.  
Step 5 : Starting from the crossover point, exchange the 
genes between the chromosomes.  
Step 6 : If the newly generated chromosomes have 
loops (feasible), remove the loops. 
Step 7: Move the possible zero gene values, which may 
occur after removing loops, to the highest locus numbers 
of the chromosomes. 
Step 8 : Pass the newly generated chromosomes to the 
population.} 
 
Steps of the crossover phase are shown in Figure 3. 
 
 
Mutation 
 
Mutation operation maintains the genetic diversity of the 
population and changes the genes of the selected 
chromosomes, thereby keeping them away from local 
optima. In this study, mutation is done in a loop that is 
repeated as a number of chromosomes. At each cycle of 
the loop, a random number between 0 and 1 is generated 
and checked if it is smaller than the mutation rate. If so, a  
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Figure 3. Crossover phase. 

 
 
 
chromosome from the population is randomly selected. 
The mutation point of the chromosome is randomly 
selected among the genes excluding the source and 
destination points. A random path is generated using the 
algorithm described in the “initialization of the population” 
from the mutation node to the destination node. This 
random generated path is exchanged with the genes 
starting from the mutation point, due to the fact that the 
mutated chromosome may be feasible. In this case, a 
repair function for dealing with these infeasible 
chromosomes is performed. The pseudo code used for 
the mutation phase is as follows:  
 
{Step 1: Generate a random number between 0 and 1.    
Step 2: If the random number is smaller than the mutation 
rate, go to Step 3, otherwise go to the next cycle of the 
loop. 
Step 3: Select a chromosome randomly from the 
population. 
Step 4: Select a random gene from the chromosome as 
the mutation point, excluding the source and destination 
genes. 
Step 5: Generate a random path from the mutation node 
to the destination node.  
Step 6 : Exchange the generated path with the genes 
starting from the mutation point.  
Step 7: If the newly generated chromosomes have loops 
(feasible), remove the loops. 
Step 8: Move the possible zero gene values which may 
occur   after   removing   the  loops  to  the  highest  locus  

numbers of the chromosome. 
Step 9: Pass the mutated chromosome to the 
population.} 
 
Steps of the mutation phase are shown in Figure 4. 
 
 
Steps of the proposed genetic algorithm and 
termination 
 
To terminate the genetic algorithm, the fitness value of 
the best chromosome on each generation is checked. If 
the fitness value of the best chromosome obtained does 
not change for 10 generations, the algorithm is stopped. 
The pseudo code of the algorithm is a follows:  
 
{Step 1: Initialize the crossover rate, mutation rate and 
population size. 
Step 2: Read the graph. 
Step 3: Create the initial population. 
Step 4: Calculate the fitness values of the chromosomes. 
Step 5: Counter = 0, Generation = 1.  
Step 6: The values are repeated in the infinite loop. 
Step 7: Roulette wheel selection. 
Step 8: Crossover on selected chromosomes. 
Step 9: Mutation on selected chromosomes. 
Step 10: Calculate the fitness values of the new 
chromosomes. 
Step 11: If (Generation>1 and minimum_fitness of the 
value [Generation 1]== minimum_fitness_value 
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Figure 4. Mutation phase.  
 
 
 

 
 
Figure 5. Route guidance system.  
 
 
 
[Generation-2]) Counter++; If (Counter>10), stop loop. 
Step 12: Counter = 0; 
Step 13: Generation ++; Go to Step 7.} 
 
 
Basic principles of the designed route guidance 
system 
 
The route guidance system proposed was recommended 
to the drivers on the path with the least driving time from 
source to destination by considering the parameters that 
affect driving time, like traffic density and allowable 
velocity, in real-time. The system had been designed for 
navigation devices and for pocket computers that use 
processor    capacities   even   on   large   networks   with 

thousands of nodes. Real-time traffic conditions are 
obtained from a XML service and this service produces 
XML data based on the traffic condition periodically.Client 
devices also take the data periodically. The maps that are 
supposed to be used in the route guidance system 
should be loaded on the device in advance and therefore, 
only the traffic density should be obtained from the XML 
service over internet connection in real-time. The route 
guidance system is shown in Figure 5 and the traffic 
density is simulated in the map loaded on the navigation 
device. Colors of the roads on the map are based on the 
final velocity limits of the roads calculated by considering 
the traffic densities and allowable velocity limits of the 
roads. The roads are divided into four groups according 
to the final velocit y limits.   The   color   codes   of   these  
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Table 1. Velocity ranges for coloring the map in the 
route guidance system. 
 
Colors Velocity limit ranges (km/h) 
Red 0 to 30 
Orange 30 to 50 
Yellow 50 to 70 
White 70 to 90 

 
 
 

  
 
Figure 6. Map screen for the route guidance system. 
 
 
 
groups are described in Table 1. A sample map loaded 
on a pocket pc is shown in Figure 6, while the obtained 
road after calculation is shown to users in blue color. 

 
 
 
 
Table 2. Effect of the crossover rate. 
 

Crossover 
rate (%) 

Average 
generation number 

Average difference 
(%) 

10 16 42 
20 15 37 
30 14 36 
40 14 34 
50 14 29 
60 14 28 
70 14 23 
80 14 22 
90 13 21 

100 13 15 
 
 
 
RESULTS  
 
The route guidance system had been developed using 
C# programming language. Windows Mobile 5.0 Pocket 
PC R2 emulator installed on Microsoft Visual Studio 2008 
is used on experiments. Random generated graphs with 
10, 50, 250 and 1000 nodes are used. Distances, velocity 
limits and updated traffic density obtained from XML 
service are periodically generated randomly. The experi-
ments done 100 times for each case are given on the 
result tables. On a graph with 50 nodes, when the 
population size was 100 and the mutation rate was set to 
be 5%, the average difference of the exact solution found 
by Dijkstra's algorithm and the approximate solution 
found by the proposed genetic algorithm was shown on 
Table 2 in order to confirm the effect of the crossover 
operator. 

As given in Table 2, by increasing the crossover rate, 
the average difference of the exact and approximate 
solutions had decreased and no notable difference had 
been seen on average generations. When the crossover 
rate was 70%, the average difference was decreased 
from 42 to 23% and after this point, it was not less than 
15% even on 100% crossover rate. With the increase in 
the crossover rate, the processor and memory 
consumption increased. Thus, it is feasible to select the 
crossover rate between ranges of 70 and 80%. On a 
graph with 50 nodes, the average difference of the 
exactsolution found by Dijkstra's algorithm and the 
approximate solution found by the proposed genetic 
algorithm was shown on Table 3 in order to show the 
effect of the mutation operator when the population size 
was 100 and the crossover rate was set to be 75%. As 
given in Table 3, the algorithm, found in the approximate 
solutions with average difference between the ranges of 
2 and 5%, started from the mutation rate of 30%. 
Variation on the   mutation   rate   affected   the   average  
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Table 3. Effect of the mutation rate. 
 

Mutation rate (%) Average generation number Average difference (%) 
1 20 71 
5 19 34 

10 18 23 
20 18 12 
30 17 5 
40 19 4 
50 20 2 
60 18 2 
70 18 2 
80 19 2 
90 20 2 

100 20 2 
 
 
 

Table 4. Average generations to find the optimum path. 
 

 
Number of nodes 

10 50 250 1000 

Population size 

30 17.05 19.43 33.09 36.4 
50 14.16 19.41 30.57 33.2 

100 12.45 16.13 27.53 28.2 
200 12.01 13.22 25.24 27.6 
400 12 12.21 21.37 23.43 
800 12 12.01 18.14 20.12 

 
 
 
difference rather than the average generations. By 
increasing the mutation rate from 1 to 30%, the average 
difference of the exact and approximate solutions was cut 
from 71 to 5%. Considering the resources consumption, it 
was feasible to select the mutation rate at about 30%. 
Table 4 shows the average generations of the genetic 
algorithm to find the shortest driving time. As given in 
Table 4, even the number of nodes grew to 1000, while 
the average generation to find the optimum path was not 
much than 36.4, which is in a worst case, and by 
increasing the population size, it was seen that the 
algorithm found solutions in fewer generations. When the 
number of nodes grew 10 times from 10 to 1000, the time 
needed for finding the solution grew only almost twice. 
Fitness function evolution of the proposed genetic 
algorithm is shown in Figure 7. It can be seen on the 
graph that on each step to the next generation, the 
minimum fitness function and average fitness function of 
the chromosomes in the population converge with each 
other. The average fitness values of the proposed genetic 
algorithm that converges with the exact solution found by 
Dijkstra algorithm is shown in Figure 8. Table 5 shows 
the average difference of the exact and approximate 
routes found by the proposed genetic algorithm. 
According to the results given in Table 5, the approximate 
solutions found by the proposed  genetic  algorithm  were 

very close to the exact solutions with node number 10 
and 50. On a graph with 10 nodes, the exact solutions 
were obtained when the population size was 50 or 
greater than 50. When the node number grew to 50, the 
exact solutions were obtained with the population starting 
from 400. By increasing the population size, it was seen 
that the algorithm got closer to the exact solutions. When 
the node number was 1000, the average difference of the 
exact and approximate routes was cut from 159.3 to 
12.4% with the increase of the population size from 30 to 
800.  
 
 
Conclusions 
 
An efficient route guidance system should provide driving 
advice considering the influential factors of traffic flow 
such as traffic density and allowable velocity limits of the 
roads obtained from internet based information providers 
rather than showing only the shortest path from source to 
destination. On handheld devices, it is not proper to find 
the exact solutions when the amount of the data being 
processed is too large. The GA presented in this paper 
finds the acceptable approximate solutions effectively 
even on large networks, while considering real-time 
information. Results obtained from the experiments  show  
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.  
 
Figure 7. Convergence property of the genetic algorithm. 

 
 
 

 
 
Figure 8. Convergence property of the proposed genetic algorithm and Dijkstra algorithm. 

 
 
 

Table 5. Average difference of the exact and approximate routes in %. 
 

 
Number of nodes 

10 50 250 1000 

Population size 

30 0.6 20.7 140.1 159.3 
50 0 9.1 79.8 87.3 

100 0 3.6 57.1 71.2 
200 0 0.3 34.7 52.8 
400 0 0 20.2 33.1 
800 0 0 4 12.4 

 
 
 
 
that a route guidance system that computes the shortest 
driving time considering the real-time traffic information 
can be designed using GA for handheld devices 
produced with limited processor and memory capacities. 
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