BAB III METODOLOGI PENELITIAN

3. 1 Metode Penelitian

Metode yang digunakan dalam penelitian ini adalah metode penelitian sebenarnya (*true experimental research*) yaitu bertujuan untuk menyelidiki dan mengetahui pengaruh variasi *depth of cut* terhadap *surface roughness* pada proses *surface grinding* material baja ST37. Kajian literatur dari berbagai sumber baik dari buku, penelitian sebelumnya dan jurnal yang berhubungan untuk menambah informasi yang diperlukan.

3. 2 Waktu dan Tempat Penelitian

Penelitian ini mulai dilakukan dari awal bulan Oktober 2015 sampai dengan selesai. Tempat yang digunakan dalam melakukan penelitian adalah:

- Bengkel Mesin Perkakas, Jurusan Teknik Mesin Politeknik Negeri Malang.
- Laboratorium Metrologi Industri, Jurusan Teknik Mesin Universitas Brawijaya Malang.

3.3 Variabel Penelitian

Terdapat tiga variabel dalam penelitian ini, yaitu variabel bebas, variabel terikat dan variabel terkontrol.

1. Variabel bebas

Variabel bebas adalah variabel yang besarnya ditentukan sebelum penelitian dan harganya divariasikan. Variabel bebas yang digunakan pada penelitian ini adalah depth of cut: 0,002 mm, 0,004 mm, 0,006 mm, 0,008 mm, 0,01 mm.

2. Variabel terikat

Variabel terikat yaitu variabel yang nilainya dapat dipengaruhi oleh variabel bebas yang telah ditentukan. Variabel terikat dalam penelitian ini adalah nilai kekasaran permukaan aritmatik (R_a) .

3. Variabel terkontrol

Variabel terkontrol yaitu variabel yang nilainya dijaga konstan selama proses penelitian berlangsung. Variabel terkontrol dalam penelitian ini adalah putaran batu gerinda 3500 rpm, kecepatan translasi meja 50 mm/s dan penggunaan *cutting fluid* dromus.

3. 4 Peralatan dan Bahan yang Digunakan

3.4.1 Peralatan yang Digunakan

1. Mesin Gerinda Datar (Surface Grinding)

Mesin gerinda datar (*surface grinding*) digunakan untuk menggerinda spesimen yang akan diteliti, sehingga didapatkan hasil penggerindaan yang diinginkan. Gambar mesin gerinda datar dapat dilihat di bawah ini.

Gambar 3.1 Mesin Gerinda Datar (*Surface Grinding*) Sumber: Bengkel Mesin Perkakas, Jurusan Teknik Mesin Politeknik Negeri Malang

Spesifikasi:

• Merek : G. Brand

• Jenis : Surface Grinding

• Model : Compact 600

• Buatan : Inggris

• Tahun pembuatan : 1983

• Dimensi meja magnet : 1000 x 300 mm

• X -axis : 1200 mm

• Y -axis : 400 mm

• Z -axis : 350 mm

• Diameter maks. batu gerinda: 350 mm

2. Batu Gerinda (Grinding Wheel)

Gambar 3.2 Batu Gerinda (*Grinding Wheel*) Sumber: Katalog Batu Gerinda KINIK

Batu gerinda (*grinding wheel*) yang digunakan pada penelitian ini adalah jenis batu gerinda dengan merek Kinik WA46-G12V 10" x 3/4" x 1- 1/4".

Arti dari kode tersebut adalah:

- WA bahan: Al₂O₃ (*Alumunium oxides*).
- merupakan ukuran serbuk abrasif 46 (medium) .
- G merupakan kekerasan atau kekuatan ikatan batu gerinda, kode G merupakan grade yang lunak.
- merupakan nomer simbol rasio *abrasive* batu gerinda 38%.
- V merupakan jenis bahan pengikat *vitrified*.
- 10" diameter gerinda (10 inchi)
- ³/₄" lebar batu gerinda (3/4 inchi)
- 1- 1/4" diameter lubang bushing batu gerinda

BRAWIJAYA

3. Surface Roughness Tester

Surface roughness tester digunakan untuk mengukur kekasaran permukaan spesimen hasil penggerindaan.

Gambar 3.3 Surface Roughness Tester

Sumber: Buku Panduan Praktikum Laboratorium Metrologi Industri Jurusan Teknik Mesin Universitas Brawijaya

Spesifikasi:

• Merek : Mitutoyo

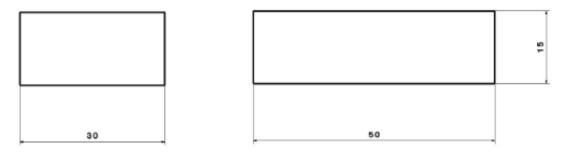
• Type : SJ 301

• Buatan : Jepang

• Tahun : 2001

• Ketelitian : 0,01 µm

3.4.2 Bahan yang Digunakan


1. Spesifikasi Benda Kerja

Jenis benda kerja : ST 37

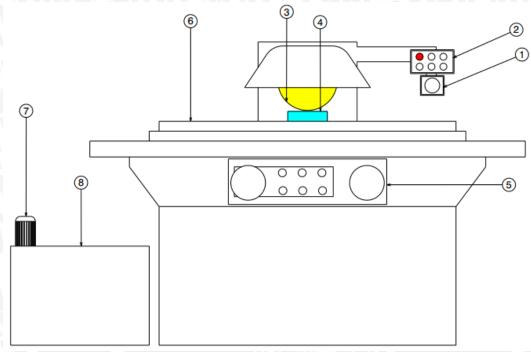
• Lebar : 30 mm

• Panjang : 50 mm

• Tebal : 15 mm

Gambar 3.4 Dimensi benda kerja Sumber: Dokumentasi Pribadi

3.5 Prosedur Penelitian


Prosedur penelitian sebelum melakukan proses penggerindaan adalah:

- 1. Mempersiapkan plat atau benda kerja.
- 2. Memotong plat atau benda kerja sehingga sesuai dengan ukuran yang diinginkan, menggunakan mesin potong.

3.5.1 Proses Penggerindaan

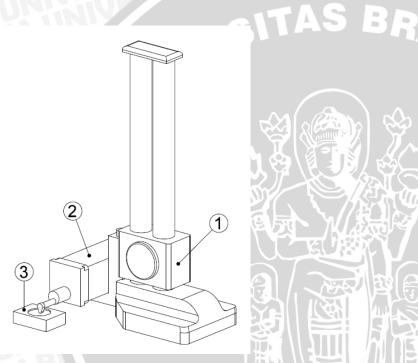
Langkah-langkah yang digunakan dalam proses penggerindaan adalah:

- 1. Mempersiapkan mesin gerinda datar serta kelengkapannya.
- 2. Menghidupkan mesin gerinda dengan memutar switch on.
- 3. Dresser roda gerinda terlebih dahulu bila diperlukan.
- 4. Mencekam benda kerja dengan *magnetic table*/meja magnet.
- 5. Mengatur langkah memanjang dan langkah melintang meja mesin. Mengatur kecepatan translasi meja 50 mm/s.
- 6. Menurunkan batu gerinda sampai jarak aman dan menurunkan sedikit demi sedikit sampai muncul percikan api.
- 7. Menghidupkan pompa cutting fluid.
- 8. Menggerinda permukaan bawah terlebih dahulu untuk menjadikan alas spesimen uji rata. Kemudian membalik ke permukaan atas.
- 9. Melakukan proses pemakanan dengan *depth of cut* yang telah divariasikan (0,002mm, 0,004mm, 0,006mm, 0,008 mm, 0,01 mm).
- 10. Mematikan mesin dan melepas benda kerja yang sudah selesai digerinda dari meja kerja pada mesin gerinda datar.
- 11. Memberikan tanda agar benda kerja yang telah selesai dikerjakan tidak tertukar.
- 12. Membersihkan mesin setelah proses pengelasan selesai.

Gambar 3.5 Instalasi Mesin Gerinda Datar

Sumber: Dokumentasi Pribadi

Keterangan:


- 1. Grinding Wheel Manual Control
- 2. Main Control
- 3. Work Piece
- 4. Grinding Wheel
- 5. Tablework Manual Control
- 6. Tablework
- 7. Motor
- 8. Coolant Tank

3.5.2 Proses Pengujian Surface Roughness

Langkah pengujian adalah sebagai berikut:

- 1. Memeriksa kelengkapan peralatan,
- 2. Memasangkan semua perlatan pada posisi masing-masing lalu kemudian menyalakan alat dengan menekan tombol on.
- 3. Mengatur kedudukan sensor dan melakukan kalibrasi.
- 4. Menyiapkan spesimen yang akan diuji dan mengatur kedudukan sensor seusai spesimen tersebut.

- 5. Mengatur batang sensor sehingga ujung dari sensor berada dalam posisi stabil (di tengah skala) pada pembacaan skala tekanan terhadap permukaan objek pengukuran.
- 6. Pada saat pengambilan data, posisi sensor bergerak dengan konstan sesuai dengan sumbu horizontal dan sejajar benda uji (berada pada garis lurus).
- 7. Mengatur parameter nilai Ra dan panjang profil yang akan diuji.
- 8. Lakukan pengukuran dan cetak hasil pengukuran, pengambilan data dilakukan pada 3 tempat setiap spesimen.
- 9. Ulangi pengukuran kekasaran permukaan pada setiap spesimen yang diuji.

Gambar 3.6 Instalasi Pengambilan Data Surface Roughness Sumber: Dokumentasi Pribadi

Keterangan:

- 1. Height Gauge (sebagai jig fixture)
- 2. Surface Roughness Tester
- 3. Benda kerja

3.6 Rancangan Penelitian

Rancangan penelitian digunakan untuk mencari pengaruh dari variasi depth of cut terhadap surface roughness hasil penggerindaan datar pada baja ST 37.

3.7 Analisa Data

Pengujian ini meliputi uji kekasaran permukaan pada material baja ST 37 yang mengalami proses penggerindaan datar dengan *variasi depth of cut*. Data yang didapat akan dicatat dan diolah, kemudian dimasukkan kedalam tabel data hasil kekuatan uji kekasaran permukaan.

3.8 Analisa Grafik

Analisa grafik dilakukan dengan menggunakan bantuan software microsoft exel. Analisa grafik dilakukan dengan pengamatan perubahan *trend* data pada grafik yang diperoleh dari ploting data.

Gambar 3.7 Diagram Alir Penelitian