BAB IV HASIL DAN PEMBAHASAN

4.1 Pengumpulan Data

Mesin/objek yang dijadikan penelitian adalah pada Lini Z. Setiap proses produksi Lini ini hanya memiliki satu mesin saja, sehingga saat salah satu mesin mati akan menghambat proses produksi berikutnya.

Sasaran penerapan TPM adalah meminimumkan six big losses yang terdapat pada mesin drilling, sehingga dapat diperoleh efektifitas mesin maksimal. Terlebih dahulu dilakukan perhitungan pada tingkat efektifitas mesin dengan menggunakan indikator OEE. Dengan meningkatkan nilai OEE maka dapat menghasilkan peningkatan efisiensi pada mesin drilling.

Data yang digunakan pada mesin *drilling* dalam periode 1 Mei 2015-31 Desember 2015, yaitu:

1. Data waktu mesin

Downtime adalah waktu yang digunakan untuk melakukan proses produksi akan tetapi dikarenakan kerusakan pada mesin mengakibatkan mesin tidak dapat bekerja secara optimal atau mesin berhenti beroperasi.

Data downtime didapatkan dari penjumlahan waktu breakdown dan waktu setup. Waktu breakdown adalah waktu kerusakan pada mesin yang menyebabkan mesin berhenti sementara dengan satuan jam. Sedangkan waktu setup adalah waktu yang dibutuhkan untuk melaksanakan pengaturan mesin mulai mesin berhenti sampai mesin menyala kembali. Waktu setup yang dilakukan adalah 0,5 jam pada setiap mesin per shift. Data waktu breakdown dan setup dapat dilihat pada tabel 4.1 sedangkan data downtime pada tabel 4.2.

Tabel 4.1 Data breakdown dan setup Lini Z periode 1 Mei 2015-31 Desember 2015

	Setup		JIMA	Breaka	lown (jam)	T. P. K	
Bulan	<i>time</i> (jam)	Drawing (I-II)	Cutting	Press (I-II)	Forming (I-II)	Grooving	Drilling
Mei	37,5	2,775	0,5	12,5	1,205	0,25	1,56
Juni	43,5	10,3	1,02	0,255	0,25	0,5	7,71
Juli	37,5	0,565	2,19	3,87	1,275	0,355	0
Agustus	42	17,97	0	0	0	35,795	0,50
September	40,5	0	1,03	0	0	0,56	13,27
Oktober	42	47,255	0	3,62	59,13	0,165	18,52
November	45	3,155	0	29,81	2,38	0,75	0,73
Desember	40,5	0,775	0	60,765	0	0	0
Total	328,5	82,795	4,74	110,82	64,24	38,375	42,29

Tabel 4.2 Data downtime Z periode 1 Mei 2015-31 Desember 2015

		~	Downti	ime (jam)		
Bulan	Drawing (I-II)	Cutting	Press (I-II)	Forming (I-II)	Grooving	Drilling
Mei	40,275	38	50	38,705	37,75	39,06
Juni	53,8	44,52	43,755	43,75	44	51,21
Juli	38,065	39,69	41,37	38,775	37,855	37,5
Agustus	59,97	42	42	42	77,795	42,5
September	40,5	41,35	40,5	40,5	441,06	53,77
Oktober	89,255	42	45,62	101,13	42,165	60,52
November	48,155	45	74,81	47,38	45,75	45,73
Desember	41,275	40,5	101,265	40,5	40,5	40,5
Total	411,295	333,06	439,32	392,74	766,875	370,79

Sumber: PT. Pindad Turen

Data waktu produksi mesin

Waktu proses produksi adalah total waktu yang digunakan untuk melakukan proses produksi tiap bulannya dengan satuan jam. Di PT. Pindad dalam sehari ada 3 shift yang dilakukan untuk melakukan proses produksi. Sedangkan pada hari Sabtu dan Minggu tetap dihitung hari kerja karena pada hari tersebut terdapat proses produksi. Perhitungan total jam kerja per bulan terdapat pada tabel 4.3.

Tabel 4.3 Data waktu proses produksi Lini Z periode 1 Mei 2015-31 Desember 2015

Bulan	Hari kerja	Jam kerja 3	Waktu kerja
Dulan	Hall Kelja	shift (jam)	(jam)
Mei	25	21	525
Juni	29	21	609
Juli	25	21	525
Agustus	28	21	588
September	27	21	567
Oktober	28	21	588
November	30	21	630
Desember	27	21	567
Tot	tal		4599
Sumber: PT. Pi	ndad Turen		100
		GIT	AS BRA
		92.	
0 0 1			

3. Data produksi mesin

Data produksi mesin yang dihasilkan pada Lini Z adalah sebagai berikut:

- Total produk adalah total dari produk yang dihasilkan oleh mesin dengan satuan buah per bulan. Dapat dilihat pada tabel 4.4.
- Produk reject adalah produk jumlah produk yang cacat dikarenakan faktor-faktor tertentu dengan satuan buah per bulan. Dapat dilihat pada tabel 4.5.

Pada setiap proses produksi pada Lini Z terdapat produk yang tidak sesuai dengan standart. Kecacatan yang terjadi pada setiap proses produksi antara lain: cacat penyok, ketidak suaian dimensi hasil produksi dengan desain, dan cacat gores. Pada penelitian ini tidak membahas cacat lebih lanjut.

Tabel 4.4 Data produk yang dihasilkan Lini Z periode 1 Mei 2015-31 Desember 2015

5514	Mesin								
Bulan	Drawing (I-II)	Cutting	Press (I- II)	Forming (I-II)	Grooving	Drilling			
Mei	313000	1042000	1345200	1331000	1653000	937000			
Juni	1674000	1714000	1401000	1321000	1194000	1087000			
Juli	647000	513000	716000	810000	761000	934000			
Agustus	1987000	1865000	1510000	1240000	2004000	2047000			
September	1823000	1995000	1361000	1688000	1220000	1135000			
Oktober	1169000	1077000	1122000	1192000	1472000	1630000			
November	1977000	1794000	1206000	1971000	1899000	1962000			
Desember	1352000	1330000	1005000	1451000	1229000	1080000			

Sumber: PT. Pindad Turen

Tabel 4.5 Data produk reject Lini Z periode 1 Mei 2015-31 Desember 2015

MAUL		LAT	N	I esin		
Bulan	Drawing (I-II)	Cutting	Press (I-II)	Forming (I-II)	Grooving	Drilling
Mei	0	0	2200	2000	5000	0
Juni	0	0	3000	5000	2000	0
Juli	0	0	2000	2000	5000	2000
Agustus	0	0	4000	2000	12000	8000
September	0	3000	10000	10000	39000	22000
Oktober	1000	0	17000	6000	8000	9000
November	0	0	10000	4000	19000	4000
Desember	0	0	5000	0	69000	0
Sumber: PT	T. Pindad Tu	iren	517	AS	BRA	Mr.

4.2 Pengolahan Data

Setelah data dikumpulkan, selanjutnya adalah pengolahan data. Pada pengolahan data akan dilakukan perhitungan efektifitas mesin menggunakan perhitungan OEE, analisis losess menggunakan six big losses, diagram pareto, diagram fish bone, dan rancangan penerapan TPM.

4.2.1 Perhitungan Overall Equipment Effectiveness (OEE)

Untuk menghitung efektifitas mesin pada Lini Z terlebih dahulu menghitung nilai availability, performance efficiency, dan rate of quality.

4.2.1.1 Perhitungan Availability

Availability merupakan rasio antara operation time (loading time – down time) dan loading time. Untuk menghitung nilai availability digunakan rumusan sebagai berikut:

$$Availability = \frac{operation\ time}{loading\ time}\ x\ 100\% \dots (4-1)$$

Keterangan:

Operation time : waktu operasi yang tersedia tanpa *down time* (tanpa kerusakan)

(Loading time – down time) (jam)

Down time : waktu berhenti mesin yang tidak terencana (jam)

Loading time : waktu operasi mesin (jam)

Contoh perhitungan nilai availability pada mesin produksi di Lini Z adalah sebagai berikut:

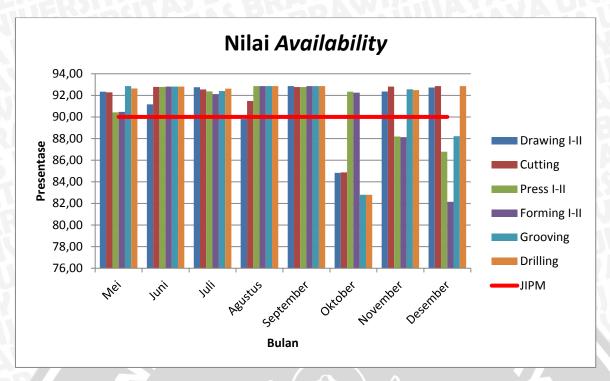
Operating time = 525 - 39,06 = 485,94 jam

Loading time = 525 jam

Availability =
$$\frac{485,94}{525}$$
 x 100% = 92,56%

Dengan perhitungan yang sama untuk menghitung *availability* pada mesin produksi di Lini Z periode bulan 1 Mei 2015-31 Desember 2015 dapat dilihat pada tabel 4.7.

Tabel 4.6 Nilai *Operating time* Lini Z periode 1 Mei 2015-31 Desember 2015


UNIFOR	Operating time (jam)					
Bulan	Drawing (I-II)	Cutting	Press (I- II)	Forming (I-II)	Grooving	Drilling
Mei	484,725	487	475	486,295	487,25	485,94
Juni	555,2	564,48	565,245	565,25	565	557,79
Juli	486,935	485,31	483,63	486,225	487,145	487,5
Agustus	528,03	546	546	546	510,205	545,5
September	526,5	525,47	526,5	526,5	525,94	513,23
Oktober	498,745	546	542,38	486,835	545,835	527,48
November	581,845	585	555,19	582,62	584,25	584,27
Desember	525,725	526,5	465,735	526,5	526,5	526,5
Total	4187,705	4265,76	4159,68	4206,225	4232,125	4228,21

Sumber: PT. Pindad Turen

Tabel 4.7 Nilai *Availability* Lini Z periode Mei 2015-Desember 2015

			Availab	ility (%)	122	
Bulan	Drawing (I-II)	Cutting	Press (I-II)	Formin g (I-II)	Groovin g	Drilling
Mei	92,33	92,76	90,48	92,63	92,81	92,56
Juni	91,17	92,69	92,82	92,82	92,78	91,59
Juli	92,75	92,44	92,12	92,61	92,79	92,86
Agustus	89,80	92,86	92,86	92,86	86,77	92,77
September	92,86	92,68	92,86	92,86	92,76	90,52
Oktober	84,82	92,86	92,24	82,80	92,83	89,71
November	92,36	92,86	88,13	92,48	92,74	92,74
Desember	92,72	92,86	82,14	92,86	92,86	92,86
Rata-rata	91,10	92,75	90,46	91,49	92,04	91,95

Sumber: PT. Pindad Turen

Gambar 4.1 Grafik Availability mesin-mesin pada Lini Z periode 1 Mei 2015-31 Desember 2016

Dari hasil perhitungan dapat disimpulkan bahwa nilai availability pada periode 1 Mei 2015-31 Desember 2015 tidak semua mesin sesuai dengan standar Japan Institute of Plant Maintenance (JIPM) yang bernilai 90% (Nakajima, 1998) dikarenakan mesin-mesin tersebut mengalami breakdown yang besar pada bulan tersebut, sebaliknya beberapa dari mesin-mesin tersebut sudah sesuai standart dikarenakan mengalami breakdown yang kecil. Grafik nilai availability dapat dilihat pada gambar 4.1. Nilai availability tertinggi terdapat pada mesin yang memiliki jam breakdown 0 sebesar 92,86%, sedangkan nilai availability terendah pada mesin Press (I-II) pada bulan Desember sebesar 82,14% dikarenakan mengalami jam *breakdown* terbesar yaitu 60,765 jam.

4.2.1.2 Perhitungan *Performance Efficiency*

Performance Efficiency adalah hasil perkalian dari jumlah produksi dengan waktu setting dibagi dengan waktu operasi (tanpa kerusakan). Untuk menghitung nilai performance efficiency digunakan rumusan sebagai berikut:

Performance Efficiency =
$$\frac{processed\ amount\ x\ ideal\ cycle\ time}{operating\ time}\ x\ 100\%\(4-2)$$

Keterangan:

Processed amount: banyaknya jumlah produksi yang dihasilkan (buah)

Ideal cycle time : waktu siklus ideal (jam/buah)

: waktu operasi yang tersedia tanpa down time (tanpa kerusakan) (jam) Operating time

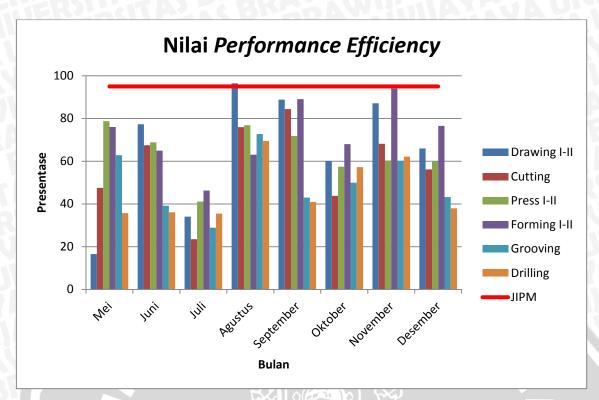
Nilai performance efficiency pada mesin produksi di Lini Z adalah sebagai berikut:

Ideal cycle time =
$$\frac{1}{kapasitas \ real \ mesin}$$
 = $\frac{1}{3900}$ = 0,00025 (jam/buah)

Performance Efficiency =
$$\frac{313000 \times 0,000256}{484,725} \times 100\% = 16,557\%$$

Nilai ideal cycle time pada setiap mesin produksi di Lini Z dapat dilihat pada tabel 4.8, nilai operating time dapat dilihat pada tabel 4.6 dan banyaknya jumlah produksi dapat dilihat pada tabel 4.4. Dengan perhitungan yang sama untuk menghitung performance efficiency pada mesin produksi di Lini Z periode bulan 1 Mei 2015-31 Desember 2015 dapat dilihat pada tabel 4.9.

Tabel 4.8 Ideal cycle time mesin produksi di Lini Z


Mesin	Ideal cycle time
Wiesiii	(jam/buah)
Drawing (I-II)	0,000256
Cutting	0,000222
Press (I-II)	0,000277
Forming (I-II)	0,000277
Grooving	0,000185
Drilling	0,000185
a 1 pm pt 1 1 m	

Sumber: PT. Pindad Turen

Tabel 4.9 Nilai Performance efficiency Lini Z periode 1 Mei 2015-31 Desember 2015

Milai I erjormi	What I erjormance efficiency Lini Z periode I Wei 2013-31 Desember 2013							
		unce efficiency (%)						
Bulan	Drawing (I-II)	Cutting	Press (I- II)	Forming (I-II)	Grooving	Drilling		
Mei	16,56	47,55	78,67	76,03	62,82	35,71		
Juni	77,31	67,48	68,85	64,92	39,13	36,09		
Juli	34,07	23,49	41,12	46,27	28,93	35,48		
Agustus	96,49	75,91	76,82	63,09	72,74	69,49		
September	88,78	84,37	71,81	89,06	42,96	40,95		
Oktober	60,10	43,83	57,46	68,01	49,94	57,23		
November	87,12	68,15	60,34	93,97	60,19	62,19		
Desember	65,94	56,14	59,94	76,55	43,23	37,99		
Rata-rata	65,80	58,37	64,38	72,24	49,99	46,89		

Sumber: PT. Pindad Turen

Gambar 4.2 Grafik Performance Efficiency pada Lini Z periode 1 Mei 2015-31 Desember 2015

Dari hasil perhitungan dapat disimpulkan bahwa nilai performance efficiency pada periode 1 Mei 2015-31 Desember 2015 masih dibawah standar JIPM yang bernilai 95% (Nakajima, 1998). Dikarenakan performa mesin dan waktu yang tersedia tidak maksimal sehingga target mesin tidak tercapai. Grafik performance efficiency dapat dilihat pada gambar 4.2. Nilai performance efficiency yang paling tinggi terdapat pada bulan Agustus pada mesin Drawing (I-II) yaitu sebesar 96,49% dengan total produk sebesar 1987000 buah, waktu siklus ideal sebesar 0,000256 dan operating time 528,03, sedangkan nilai performance efficiency yang paling rendah terdapat pada bulan Mei pada mesin drawing (I-II) yaitu sebesar 16,56% dengan total produk sebesar 313000 buah.

4.2.1.3 Perhitungan Rate of Quality

Rate of Quality (tingkat kualitas) adalah efektifitas produksi berdasarkan kualitas produk yang dihasilkan. Untuk menghitung nilai rate of quality digunakan rumusan sebagai berikut:

Rate of Quality =
$$\frac{Processed \ amount-defect \ amount}{Processed \ amount} \ x \ 100\% \ \dots (4-3)$$

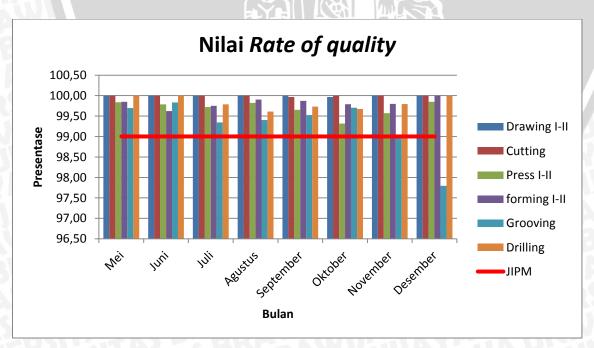
Keterangan:

Processed amount: jumlah produk yang dihasilkan (buah)

Defect amount : jumlah produk cacat dalam proses produksi (buah)

Nilai rate of quality pada mesin produksi di Lini Z adalah sebagai berikut:

 $Processed\ amount = 1345200\ buah$


Defect amount = 2200 buah

Data jumlah produksi dapat dilihat pada tabel 4.4 dan data jumlah produk reject pada tabel 4.5. Dengan perhitungan yang sama untuk menghitung rate of quality pada mesin produksi di Lini Z periode bulan 1 Mei 2015-31 Desember 2015 dapat dilihat pada tabel 4.10.

Tabel 4.10 Nilai Rate of quality Lini Z periode 1 Mei 2015-31 Desember 2015

		46	Rate of	quality (%)		M.
Bulan	Drawing (I-II)	Cutting	Press (I-II)	Forming (I-II)	Grooving	Drilling
Mei	100	100	99,84	99,85	99,70	100
Juni	100	100	99,79	99,62	99,83	100
Juli	100	100	99,72	99,75	99,34	99,79
Agustus	100	100	99,82	99,90	99,40	99,61
September	100	99,97	99,65	99,87	99,53	99,73
Oktober	99,97	100	99,32	99,79	99,70	99,67
November	100	100	99,57	99,80	99,0	99,80
Desember	100	100	99,85	100	97,79	100
Rata-rata	99,996	99,996	99,695	99,823	99,286	99,825

Sumber: PT. Pindad Turen

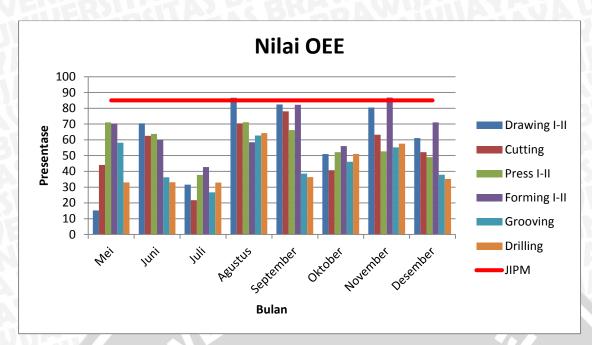
Gambar 4.3 Grafik Rate of Quality Lini Z periode 1 Mei 2015-31 Desember 2016

Dari hasil perhitungan dapat disimpulkan bahwa nilai *rate of quality* pada periode 1 Mei 2015-31 Desember 2015 sudah diatas standar JIPM yang bernilai 90% (Nakajima, 1998). Dikarenakan jumlah produksi pada Lini Z memiliki jumlah cacat yang sedikit. Grafik *rate of quality* dapat dilihat pada gambar 4.3.

4.2.1.4 Perhitungan Nilai OEE

Setelah nilai *availability*, *performance efficiency*, dan *rate of quality* pada mesin produksi Lini Z maka dapat dilakukan perhitungan nilai OEE untuk mengetahui besarnya efektivitas penggunaan mesin produksi pada Lini Z. perhitungan nilai OEE adalah sebagai berikut:

 $OEE = Availability \ x \ Performance \ Efficiency \ x \ Rate \ of \ Quality \dots (4-4)$ Untuk mesin produksi pada Lini Z:


 $OEE = (0.923 \times 0.166 \times 1) \times 100\% = 15.287 \%$

Dengan perhitungan yang sama untuk menghitung nilai OEE pada mesin produksi di Lini Z periode bulan 1 Mei 2015-31 Desember 2015 dapat dilihat pada tabel 4.11.

Tabel 4.11 Nilai OEE Lini Z periode 1 Mei 2015-31 Desember 2015

	OEE (%)					
Bulan	Drawing (I-II)	Cutting	Press (I-	Forming (I-II)	Grooving	Drilling
Mei	15,29	44,11	71,06	70,32	58,13	33,05
Juni	70,48	62,54	63,77	60,03	36,25	33,05
Juli	31,60	21,71	37,78	42,78	26,67	32,87
Agustus	86,65	70,48	71,15	58,48	62,74	64,22
September	82,44	78,07	66,19	82,21	38,57	36,35
Oktober	50,93	40,70	52,20	56,03	46,11	51,05
November	80,46	63,28	52,73	86,73	55,26	57,55
Desember	61,14	52,13	48,99	71,09	37,89	35,27
Rata-rata	59,87	54,13	57,98	65,96	45,20	42,93

Sumber: PT. Pindad Turen

Gambar 4.4 Grafik OEE Lini Z periode 1 Mei 2015-31 Desember 2015

Dari hasil perhitungan dapat disimpulkan bahwa nilai rata-rata OEE pada periode 1 Mei 2015-31 Desember 2015 masih dibawah standar JIPM yang bernilai 85% (Nakajima, 1998). Dikarenakan performa mesin dan waktu yang tersedia tidak maksimal sehingga target mesin tidak tercapai yang menyebabkan nilai OEE rendah. Grafik OEE dapat dilihat pada gambar 4.4. Nilai OEE yang paling tinggi terdapat pada mesin *Drawing (I-II)* bulan Agustus sebesar 86,65% dan pada mesin Forming (I-II) bulan November sebesar 86,73%.

4.2.2 Perhitungan Six Big Losses

Setelah menghitung nilai OEE pada periode 1 Mei 2015-31 Desember 2015, langkah selanjutnya adalah menghitung nilai six big losses yang berpengaruh terhadap nilai OEE pada mesin drilling Lini Z. Sehingga dapat diketahui faktor mana yang berpengaruh paling tinggi dan menyebabkan menurunnya efektivitas mesin produksi. Perhitungan six big losses dibagi menjadi 3 kategori yaitu: downtime losses, speed losses, dan defect losses.

4.2.2.1 Downtime Losses

Downtime adalah waktu yang digunakan untuk melakukan proses produksi akan tetapi dikarenakan kerusakan pada mesin (equipment failures) mengakibatkan mesin tidak dapat bekerja secara optimal atau mesin berhenti beroperasi. Dalam perhitungan OEE, equipment failures dan waktu setup and adjustment digolongkan sebagai kerugian waktu (downtime losses).

Equipment Failures (Breakdown losses) 1.

Kegagalan mesin melakukan proses (equipment failures) atau breakdown losses adalah kehilangan waktu produksi yang menyebabkan mesin berhenti sementara. Breakdown menjadi kerugian bagi perusahaan karena waktu yang seharusnya digunakan untuk menghasilkan produk menjadi terbuang untuk melakukan perbaikan mesin. Data yang dibutuhkan untuk menghitung besarnya breakdwon losses adalah data downtime dan loading time.

Besarnya presentase efektivitas mesin yang hilang akibat kerugian breakdown dapat dihitung menggunakan rumus berikut:

$$Breakdown \ Losses = \frac{Total \ breakdown \ time}{Loading \ time} \ x \ 100\%....(4-5)$$

Dengan menggunakan rumusan tersebut maka dapat diperoleh perhitungan breakdown sebagai berikut:

Breakdown Losses =
$$\frac{1,56}{525}$$
 x 100% = 0,297 %

Hasil perhitungan breakdown losses dengan menggunakan rumus yang sama terdapat pada tabel 4.12.

Tabel 4.12 Breakdown losses Mesin Drilling periode 1 Mei 2015-31 Desember 2015

Bulan	Total <i>breakdown</i> (jam)	Loading time (jam)	Breakdwon losses (%)
Mei	1,56	525	0,297
Juni	7,71	609	1,266
Juli	0	525	
Agustus	0,5	588	0,085
September	13,27	567	2,340
Oktober	18,52	588	3,150
November	0,73	630	0,116
Desember	0	567	0

Sumber: PT. Pindad Turen

Dari hasl perhitungan breakdown losses diketahui bahwa losses yang tertinggi ada pada bulan Oktober yaitu sebesar 3,150% dikarenakan total breakdown yang tinggi pula. Salah satu penyebab breakdown lama adalah bor makita rusak, mata bor patah, pompa air konslet, dan putaran bor lemah. Sedangkan lama perbaikan disebabkan oleh ketersediaan spare part yang kurang, pengambilan spare part di gudang perlu

beberapa prosedur yang cukup memakan waktu. Kurangnya tindakan preventif juga menyebabkan jam breakdown yang cukup lama.

2. Setup and adjustment

Waktu setup adalah waktu yang dibutuhkan untuk melaksanakan pengaturan mesin mulai mesin berhenti sampai mesin menyala kembali. Dalam perhitungan setup and adjustment losses dipergunakan data waktu setup mesin dan loading time.

Untuk mengetahui besarnya presentase downtime losses yang diakibatkan oleh waktu setup and adjustment digunakan rumusan berikut:

Setup and adjustment losses =
$$\frac{\text{Total setup and adjustment time}}{\text{Loading time}} \times 100\% \dots (4-6)$$

Dengan menggunakan rumus tersebut maka dapat dihitung setup and adjustment losses.

Setup and adjustment losses =
$$\frac{37.5}{525}$$
 x 100% = 7,143%

Dengan menggunakan perhitungan yang sama untuk periode 1 Mei 2015-31 Desember 2015 dapat dilihat pada tabel 4.13.

Tabel 4.13 Setup and adjustment losses Mesin Drilling periode 1 Mei 2015-31 Desember 2015

Bulan	Setup Time	Loading	Setup and adjustment
Dulan	(jam)	time (jam)	losses (%)
Mei	37,5	525	7,143
Juni	43,5	609	7,143
Juli	37,5	525	7,143
Agustus	42	588	7,143
September	40,5	567	7,143
Oktober	42	588	7,143
November	45	630	7,143
Desember	40,5	567	7,143

Sumber: PT. Pindad Turen

Berdasarkan tabel 4.13 dapat diketahui nilai setup and adjustment losses pada mesin Drilling Lini Z sebesar 7,143% dikarenakan waktu setup operator hanya 0,5 jam per shift atau 1,5 jam dalam sehari. Setup pada mesin drilling meliputi: membersihkan mesin sebelum beroperasi, pengecekan mata pahat, dan input setting.

Faktor yang mempengaruhi *speed losses* adalah *idling and minor stoppage losses* dan *reduced losses*. *Speed losses* terjadi saat mesin tidak beroperasi sesuai dengan kecepatan produksi maksimum yang sesuai dengan kapasitas mesin yang dirancang.

1. Idling and minor stoppage losses

Idling and minor stoppage losses terjadi saat mesin bekerja tanpa menghasilkan produk. Untuk mengetahui besarnya efektivitas yang hilang karena faktor idling and minor stoppage digunakan rumusan sebagai berikut:

Idling and minor stoppage losses =
$$\frac{non \, productive \, time}{loading \, time} \, x \, 100\% \dots (4-7)$$

Non productive time = Operation time - Actual Production time

Perhitungan *idling and minor stoppage losses* pada mesin *drilling* pada bulan Mei adalah seabgai berikut:

Idling and minor stoppage losses =
$$\frac{0}{525}$$
 x 100% = 0%

Nilai *idling and minor stoppage losses* mesin *drilling* Lini Z adalah 0. Dikarenakan nilai *non productive time* yang terjadi adalah 0 yang berarti bahwa nilai *operation time* dan *actual production time* bernilai sama yaitu 485,94. Sehingga pada mesin *drilling* hanya berhenti beroperasi dikarenakan terjadi *breakdown* dan *setup* mesin saja. Hal ini juga terjadi pada bulan Juni 2015-Desember 2015.

2. Reduced losses

Reduced losses adalah selisih antara waktu kecepatan produksi aktual dengan waktu kecepatan produksi ideal. Untuk mengetahui besarnya presentase reduced losses digunakan rumus berikut:

Reduced losses =
$$\frac{operating \ time-ideal \ production \ time}{loading \ time} \times 100\%....(4-8)$$

Reduced losses =
$$\frac{operating \ time - (ideal \ cycle \ time \ x \ product)}{loading \ time} \ x \ 100\%.....(4-9)$$

Perhitungan *reduced losses* pada mesin *drilling* bulan Mei 2015 adalah sebagai berikut:

Reduced losses =
$$\frac{485,94 - (0,0001852 \times 937000)}{525} \times 100\% = 59,51\%$$

Dengan menggunakan perhitungan yang sama, maka dapat dihitung *reduced losses* periode 1 Mei 2015-31 Desember 2015 pada tabel 4.14.

Tabel 4.14 Reduced losses Mesin Drilling periode 1 Mei 2015-31 Desember 2015

Bulan	Operating Time	Loading time	Jumlah Produksi (buah)	Ideal cycle time (jam/buah)	Reduced losses (%)
Mei	(jam) 37,5	(jam) 525	937000	0,0001852	59,51
Juni	43,5	609	1087000	0,0001852	58,54
Juli	37,5	525	934000	0,0001852	59,91
Agustus	42	588	2047000	0,0001852	28,30
September	40,5	567	1135000	0,0001852	53,45
Oktober	42	588	1630000	0,0001852	38,37
November	45	630	1962000	0,0001852	35,07
Desember	40,5	567	1080000	0,0001852	57,58

4.2.2.3 Defect Losses

Defect losses adalah mesin tidak tidak menghasilkan produk yang sesuai dengan spesifikasi dan standart kualitas produk yang telah ditentukan. Defect losses terdiri dari dua faktor yaitu process defect dan yield losses.

asitas Braw

Process defect

Process defect adalah kerugian yang diakibatkan lamanya mesin dalam proses produksi ketika produk tidak sesuai atau cacat. Untuk mengetahui besarnya presentase process defect dapat menghitung menggunakan rumus berikut:

$$Process \ defect = \frac{ideal \ cycle \ time \ x \ defect \ product}{loading \ time} \ x \ 100\% \dots (4-10)$$

Perhitungan process defect mesin drilling Lini Z pada bulan Mei 2015 adalah sebagai berikut:

$$Process \ defect = \frac{0,0001852 \ x \ 0}{525} \ x \ 100\%$$

Dengan menggunakan perhitungan yang sama, maka dapat dihitung process defect periode 1 Mei 2015-31 Desember 2015 pada tabel 4.15.

Tabel 4.15 Process defect Mesin Drilling periode 1 Mei 2015-31 Desember 2015

Bulan	Loading time (jam)	Produk cacat (buah)	Ideal cycle time (jam/buah)	Process defect (%)
Mei	525	0	0,0001852	0
Juni	609	0	0,0001852	0
Juli	525	2000	0,0001852	0,07
Agustus	588	8000	0,0001852	0,25
September	567	22000	0,0001852	0,72
Oktober	588	9000	0,0001852	0,28
November	630	4000	0,0001852	0,12
Desember	567	0	0,0001852	0
Sumber: PT. F	Pindad Turen	ا6م	TAS	BRA

Yield Losses

Yield Losses adalah kerugian yang timbul selama proses produksi belum mencapai keadaan yang stabil saat proses produksi mulai dilakukan. Untuk mengetahui besarnya presentase *yield defect* dapat dihitung menggunakan rumus berikut:

$$Yield\ Losses = \frac{ideal\ cycle\ time\ x\ defect\ product}{loading\ time}\ x\ 100\%\(4-11)$$

Defect product pada rumus diatas adalah jumlah cacat pada saat melakukan setting. Perhitungan Yield losses pada mesin drilling pada bulan Mei adalah seabgai berikut:

Yield losses =
$$\frac{0,0001852 \times 0}{525} \times 100\% = 0\%$$

Nilai Yield losses mesin drilling Lini Z adalah 0. Dikarenakan pada Lini Z tidak ada kerugian material atau cacat produk saat melakukan setting. Hal ini juga terjadi pada bulan Juni 2015-Desember 2015.

4.2.3 Analisis Six Big Losses

Setelah melakukan perhijungan faktor losses maka nilai-nilai kerugian dapat dilihat pada tabel 4.16.

Tabel 4.16 Data Six Big Losses Mesin Drilling periode 1 Mei 2015-31 Desember 2015

Bulan	Breakdown Losses (%)	Setup and adjustment Losses (%)	Reduced Losses (%)	Processs defect (%)
Mei	0,297	7,143	59,51	0
Juni	1,266	7,143	58,54	0
Juli	0	7,143	59,91	0,07
Agustus	0,085	7,143	28,30	0,25
September	2,340	7,143	53,45	0,72
Oktober	3,150	7,143	38,37	0,28
November	0,116	7,143	35,07	0,12
Desember	0	7,143	57,58	0

Berdasarkan nilai losses pada mesin drilling maka dapat dihitung time losses terbesar selama periode 1 Mei 2015-31 Desember 2015. Time losses dapat dihitung dengan perkalian nilai masing-masing losses dengan loading time. Contoh perhitungan time losses pada bulan Mei yaitu sebagai berikut:

 $Breakdown\ losses\ (jam) = Persentase\ breakdown\ x\ loading\ time$

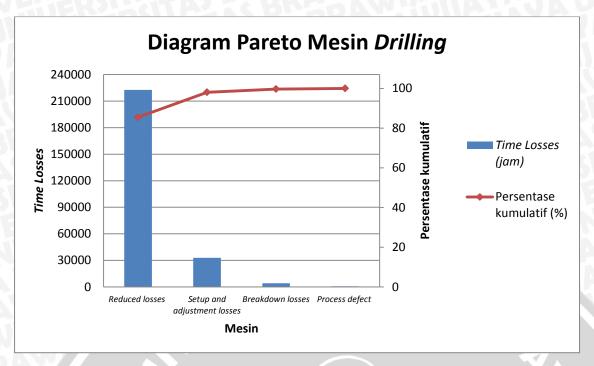
 $Breakdown\ losses\ (jam)=0,297\ x\ 525=156\ jam$

Dengan menggunakan rumus yang sama maka dapat menghitung nilai time losses periode bulan Juni 2015-Desember 2015 yang dapat dilihat pada tabel 4.17.

Tabel 4.17 Hasil perhitungan Time Loses Mesin Drilling periode 1 Mei 2015-31 Desember 2015

Bulan	Breakdown Losses (jam)	Setup and adjustment Losses (jam)	Reduced Losses (jam)	Processs defect (jam)
Mei	156	3750	31242,15	08
Juni	771	4350	35649,37	0
Juli	0	3750	31453,70	37,04
Agustus	50	4200	16642,59	148,15
September	1327	4050	30304,48	407,41
Oktober	1852	4200	22562,81	166,67
November	73	4500	22093,67	74,07
Desember	0	4050	32650	0
Total	4229	32850	222598,8	833,33

Berdasarkan total time losses dapat dihitung persentase dan persentase kumulatifnya pada tabel 4.18.


Tabel 4.18
Persentase kumulatif *Time Loses* Mesin *Drilling* periode 1 Mei 2015-31 Desember 2015

Jenis <i>losses</i>	Six big losses	Time loss (jam)	Persentase (%)	Persentase Kumulatif (%)
Speed losses	Reduced losses	222598,8	85,45	85,45
Downtime losses	Setup and adjustment losses	32850	12,61	98,06
	Breakdown losses	4229	1,62	99,68
Defect losses	Process defect	833,33	0,32	100
To	otal	260511,1	100	

Dari tabel 4.18 dapat dilihat bahwa faktor kerugian terbesar yang mempengaruhi efektivitas mesin *drilling* adalah faktor *reduced losses* yaitu sebesar 85,45%. Sedangkan faktor *process defect* dan *yield losses* memberikan pengaruh yang paling kecil yaitu sebesar 0,32%.

4.2.4 Diagram Pareto Faktor Losses Mesin Drilling

Diagram pareto adalah diagram yang digunakan untuk mengetahui kesalahan atau kerugian dari hasil analisis *six big losses* yang paling besar dan membantu memusatkan penyelesaian masalah. Dengan membuat diagram pareto dari presentase masing-masing faktor dalam *six big losses* pada mesin *drilling* terhadap total *time loss* yang disebabkan oleh keenam faktor kerugian dapat membantu memusatkan penyelesaian satu faktor yang berdampak paling besar saja. Berdasarkan tabel 4.18 dapat digambarkan diagram pareto untuk pengaruh *six big losses* dapat dilihat pada gambar 4.5.

Gambar 4.5 Diagram pareto mesin drilling periode Mei 2015-Desember 2015

Dari gambar 4.5 terlihat bahwa losses yang paling tinggi adalah reduced losses yaitu sebesar 85,45%, sedangkan losses yang paling kecil/paling tidak berpengaruh adalah process defect yaitu sebesar 0,32%. Untuk mengetahui lebih lanjut faktor yang berpengaruh terhadap besarnya reduced losses maka perlu dilakukan analisis kerugian menggunakan diagram sebab-akibat (cause and effect diagram).

4.2.5 Diagram Sebab-Akibat (Cause and Effect Diagram)

Diagram ini dikenal dengan istilah diagram tulang ikan (fish bone diagram). Diagram ini digunakan untuk menganalisis dan menemukan faktor-faktor yang berpengaruh secara signifikan terhadap penentuan karakteristik kualitas output kerja. Berdasarkan diagram pareto yang telah dibuat, dapat diketahui bahwa reduced losses adalah faktor terbesar yang mempengaruhi rendahnya efektivitas mesin drilling, maka dilakukan identifikasi masalah pada faktor losses tersebut. Gambar 4.6 menunjukkan diagram sebab-akibat untuk faktor bahwa reduced losses.

Faktor kerugian pada reduced losses disebabkan oleh perbandingan waktu produksi aktual dan teori cukup besar. Salah satu penyebabnya adalah efektifitas mesin yang masih dibawah standar sehingga menyebabkan mesin beroperasi tidak sesuai dengan kapasitas sebenarnya dan banyaknya jumlah produksi yang tidak sebanding dengan besarnya kapasitas aktual mesin. Untuk mengetahui penyimpangan-penyimpangan lebih lanjut pada mesin *drilling*, maka ada 5 faktor yang perlu diperhatikan yaitu: 5M (*Man*, *Method*, *Material*, *Machine*, *Mothernature*). Berdasarkan batasan masalah pada bab I faktor *Material* diabaikan. Penjelasan lebih lanjut tentang penyimpangan yang terjadi pada mesin *drilling* dapar dilihat pada tabel 4.19.

Tabel 4.19 Analisis 5M pada *reduced losses* mesin *drilling*

Faktor	Cause	Sub-cause	Penyelesaian masalah
Man (manusia)	Kurang responsifKurang terlatih	 Operator kurang memahami gejala kerusakan Operator lamban dalam menangani kerusakan 	Perlu adanya pelatihan pada operator agar lebih responsif dan lebih cekatan dalam menangani mesin yang mengalami kerusakan terlebih lagi dalam menangani mesin yang rusak ringan
Methode (metode)	 Pengawasan pada mesin kurang baik Manajemen pemeliharaan kurang tepat Prosedur pengadaan barang lama 	 Perawatan hanya saat mesin mengalami kerusakan Pergantian komponen hanya saat terjadi kerusakan Tidak ada standar dalam melakukan perawatan mesin 	Perlu adanya SOP perawatan tertulis dan <i>autonomous</i> maintenance agar menghindari berhentinya proses produksi secara tiba tiba, sehingga dapat mengurangi jam breakdown.
Machine (mesin)	 Pemakaian komponen mesin melebihi masa pakai Mesin sering rusak 	 Mesin berhenti beroperasi Mata bor sering patah Motor pompa rusak Motor bor makit rusak 	Pemakaian komponen sesuai dengan prosedur pemakaian dan penggantian komponen tidak saa mesin berhenti beroperasi (rusak) saja agar jam breakdown tidak terlalu lama dan sering.
Mothernature (lingkungan)	 Pengaturan tempat kerja yang tidak baik 	 Banyak barang hasil produk yang menumpuk 	Hasil produk segera dipindahkan ke Lin selanjutnya agar

Tempat kerja kotor	5=	Jarak mesin	tidak terjadi	
		terlalu dekat	penumpukan	
		Saluran	produk. Kebersihan	
		pembuangan air	area kerja perlu	
		tidak sesuai	diperhatikan.	
	7	Gram pada mesin	SILELAS	
		jarang		
		dibersihkan		

4.2.6 Perhitungan Mean Time to Failure (MTTF)

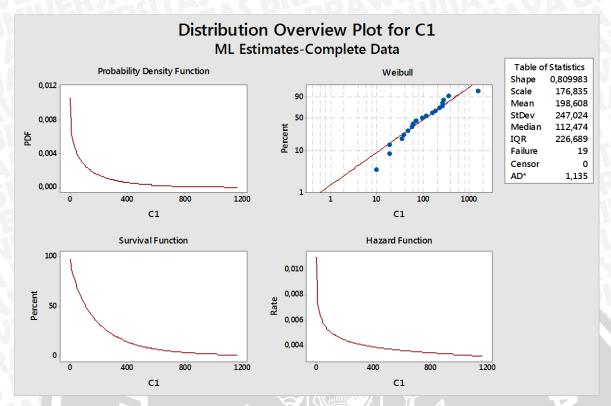
Perhitungan nilai MTTF digunakan untuk mengetahui jumlah jam rata-rata breakdown. Distribusi yang digunakan adalah distribusi Weibull karena untuk mengetahui laju kerusakan baik meningkat maupun menurun, menggunakan data kerusakan mesin selama periode 1 Mei 2015-31 Desember 2015, kemudian diolah menggunakan software minitab 17. Agar nilai parameter bentuk (shape) dan skala (scale) dapat diketahui, digunakan fitur "Distribution Overview Plot" dengan menggunakan distribusi Weibull. Parameter-parameter distribusi Weibull dapat dilihat pada gambar 4.7.

Nilai MTTF dapat dihitung juga menggunakan rumus berikut:

$$MTTF = \theta \Gamma \left(1 + \frac{1}{\beta} \right) \tag{4-12}$$

Keterangan:

MTTF = Mean Time to Failure


= parameter skala (scale)

Γ = fungsi gamma

= parameter bentuk (*shape*)

Ben-Daya (2009)

Gambar 4.6 Diagram sebab-akibat mesin drilling

Gambar 4.7 Parameter-parameter distribusi Weibull mesin Drilling

Berdasarkan hasil Distribution Overview Plot dapat diketahui parameter bentuk (shape) sebesar 0,809983 dan parameter skala (scale) sebesar 176,835. Dapat menghitung MTTF berdasarkan persamaan (4-12) sebagai berikut:

$$MTTF = \theta \Gamma \left(1 + \frac{1}{\beta} \right)$$
 $MTTF = 176,835 \Gamma \left(1 + \frac{1}{0,809983} \right)$
 $MTTF = 176,835 \times 1,123128$
 $MTTF = 198,6083 \text{ jam}$

Nilai MTTF didapat sebesar 198,6083 jam, artinya dalam rentang waktu 198,6083 jam terjadi breakdown. Sehingga perawatan yang dapat dilakukan adalah planned maintenance atau perawatan terjadwal atau predictive maintenance, dengan melakukan perawatan yang terjadwal dapat meningkatkan rentang waktu terjadinya breakdown.

4.3 Rancangan Penerapan TPM

Dari hasil analisis kerugian six big losses maka dapat dilakukan rancangan penerapan TPM. Berdasarkan pilar-pilar TPM, maka rancangan penerapan TPM sebagai berikut:

1. Pilar dasar 5S

Pilar dasar TPM adalah 5S yaitu Seiri, Seiton, Seiso, Seikestsu dan Shitsuke yang dalam bahasa indonesia berarti 5R yaitu Ringkas, Rapi, Resik, Rawat, Rajin. Berdasarkan konsep dasar TPM tersebut dapat diberikan usulan sebagai berikut:

Seiri/ringkas

Peralatan yang sudah tidak digunakan seharusnya dibuang dan yang masih dibutuhkan dipisahkan sesuai dengan fungsinya agar lingkungan kerja menjadi lebih luas. Contohnya di Lini Z masih ada beberapa peralatan yang masih menumpuk dan tidak pada tempatnya.

b. Seiton/rapi

Menyusun dokumen, peralatan, tools sesuai dengan tempatnya untuk memudahkan pengambilan barang. Mengembalikan peralatan, dokumen, tools pada tempatnya. Memberikan worksheet agar dapat selalu mengecek kerapian meja kerja dan menyusun sesuai dengan tempatnya.

Seiso/resik

Membersihkan tempat kerja adalah termasuk dari kegiatan inspeksi. Oleh karena itu operator harus selalu membersihkan tempat kerja sesudah dan sebelum proses produksi dimulai. Membersihkan sekitar mesin dari gram-gram proses produksi.

Seiketsu/rawat

Adanya prosedur dalam melakukan perawatan mesin drilling seperti: membersihkan bagian luar mesin, membersihkan saluran pembuangan air pendinginan, membersihkan tools yang bisa digunakan masih mengembalikan tools sesuai pada tempatnya.

Shitsuke/rajin e.

Menciptakan lingkungan kerja yang disiplin dan berperilaku baik. Mengajarkan pada setiap orang tentang pentingnya pekerjaan yang sedang dikerjakan agar setiap orang memiliki rasa tanggung jawab yang lebih kepada lingkungan sekitar, sehingga setiap orang akan lebih disiplin dan proses produksipun dapat lebih efektif.

Autonomous maintenance

Kegiatan autonomous maintenance ini melibatkan seluruh karyawan mulai dari pemimpin sampai operator. Dengan adanya kegiatan autonomous maintenance ini maka operator akan terlibat langsung dalam perawatan dan penanganan awal

terhadap mesin. Berikut adalah kegiatan-kegiatan autonomous maintenance yang dapat dilakukan oleh operator:

- Operator diwajibkan membersihkan mesin sesudah dan sebelum mesin beroperasi. Hal ini bertujuan untuk meminimalisir kerugian akibat faktor eksternal.
- Sebelum mesin mulai beroperasi operator harus melakukan pengecekan pada mesin drilling (level pelumas, bor makita, mata bor, sensor lubang, pengencangan sambungan, suara mesin, dan kelistrikan pada panel listrik), sehingga dapat meminimalisir berhentinya mesin akibat inspeksi yang tidak tepat.
- Membuat standar pembersihan dan pemeriksaan yang tepat dan sesuai dengan instruksi yang tepat atau sesuai dengan SOP pemeriksaan mesin drilling sehigga dapat mengurangi waktu yang dibutuhkan untuk membersihkan dan memeriksa dengan tahapan yang teratur dan tepat.
- d. Membuat check sheet pemeriksaan agar memudahkan operator untuk melakukan pemeriksaan, karena dalam sehari terdapat 3 shift.
- Sesuai dengan kesepakatan bagian departemen perawatan terlebih dahulu, operator diberikan wewenang untuk melakukan perbaikan dan inspeksi ringan untuk memperkecil jam breakdown mesin. Contohnya seperti melakukan pengencangan mur dan baut. Karena target produksi yang tinggi membuat mesin bekerja secara terus menerus sehingga perlu adanya perbaikan kecil sewaktuwaktu yang tidak membuat mesin berhenti beroperasi.

Focused maintenance

Berdasarkan losses yang paling tinggi dipengaruhi oleh reduced defect, dikarenakan jumlah produksi yang tinggi sedangkan kapasitas mesin kecil dan lamanya kerusakan yang terjadi. Dari diagram sebab-akibat diketahui penyebab kerugian adalah motor bor makita rusak dan mata bor sering patah, hal ini terjadi karena tingginya jumlah produksi tetapi siklus ideal mesin dan kapasitas mesin kecil.

Untuk mengurangi losses yang disebabkan oleh reduced defect, maka terlebih dahulu yang dilakukan adalah dengan mengurangi kerusakan pada mesin drilling. Jika kerusakan dapat berkurang maka operating time dapat meningkat sehingga mampu mengurangi reduced speed.

4. Planned maintenance

Dari data yang diperoleh, kegiatan perawatan yang dilakukan masih corrective maintenance atau perawatan yang dilakukan saat terjadi kerusakan saja. Sehingga ada beberapa peralatan yang pemakaiannya melebihi masa pakai tidak sesuai dengan standar yang dapat berdampak pada breakdown tinggi dan dapat membuat mesin berhenti beroperasi. Oleh karena itu planned maintenance harus diterapkan untuk meminimalisir kerusakan yang terjadi dan dapat memprediksi kerusakan yang akan terjadi pada mesin. Planned maintenance yang dimaksud adalah dengan melakukan preventif maintenance seperti melakukan inspeksi secara teratur dan berkala, melakukan rekondisi pada peralatan, penggantian peralatan sesuai dengan jadwal yang sudah ditentukan dan umur pakai, menjaga peralatan dalam kondisi ideal, melakukan penjadwalan perawatan mesin untuk mencegah kerusakan yang tidak terduga atau kondisi yang menyebabkan proses produksi terhenti.

5. Quality maintenance

Dari hasil *rate of quality* dan *quality losses* pada mesin *drilling* masih sangat baik. Pada mesin *drilling* cacat hasil produksi yang terjadi disebabkan karena hanya terbentuk 1 lubang, tempat lubang tidak sesuai dengan desain. Hal ini dikarenakan untuk penentuan titik lubang menggunakan sensor, sedangkan sensor pada mesin *drilling* masih sering mengalami kerusakan.

6. Education and training

Sebelum melakukan serangkaian rancangan *maintenance* diatas, perlu diperhatikan pula kinerja dari operator mesin. Operator yang handal dan cekatan dapat membantu meningkatkan efektifitas mesin dan membantu dalam implementasi TPM. Oleh karena itu perlu diadakan pelatihan kepada operator seperti cara membersihkan mesin dengan benar, mengatur, mengoperasikan dan mengecek mesin sesuai dengan prosedur perusahaan, serta diberikan pelatihan tentang *autonomous maintenance* untuk menunjang pengimplementasian TPM.

7. Safety, Health and environment

Safety, Health and environment atau dalam bahasa indonesia lebih dikenal dengan sebutan K3 (Keselamatan dan Kesehatan Kerja). Target dari pilar ini adalah zero accident,, zero fires, dan zero health damage. Kesadaran K3 dari setiap karyawan perlu ditingkatkan dengan melakukan pelatihan dan seminar pentingnya K3 dalam lingkungan kerja. Yang termasuk K3 seperti memakai helm, masker penutup hidung, ear plug, sepatu kerja, dan sarung tangan.

8. Office TPM

Office TPM atau organisasi kerja TPM dibentuk setelah mengimplementasikan autonomous maintenance, focused maintenance, planned maintenance, dan quality maintenance. Organisasi TPM digunakan untuk mengontrol apakah pilar-pilar yang lainnya sudah dapat berjalan dengan baik atau tidak.

9. Development Management

Manajemen pengembangan yang dimaksudkan adalah dengan melakukan pengembangan pada sistem administrasi dan proses pembuatan order kerusakan. Dengan melakukan pengembangan dapat meningkatkan efektifitas mesin dengan mendukung perawatan dan proses produksi.

4.4 Master Plan Penerapan TPM

Berdasarkan perencanaan penerapan *Total Productive Maintenance* diatas, dapat dibuat *master plan* dari penerapan TPM pada perusahaan PT.Pindad. Rancangan *master plan* dapat dilihat pada tabel 4.20.

Tabel 4.20
Rancangan *master plan* penerapan TPM

Periode	Tahap	Kegiatan
3 bulan	Persiapan	 Pengenalan kepada semua karyawan tentang TPM Menyiaplan SDM yang memadai Pelatihan dini tentang implementasi TPM Membentuk organisasi TPM Menetapkan sistem kerja dan target penerapan TPM
4 bulan berikutnya	Penerapan	 Mengadakan pelatihan kepada operator Menerapkan autonomous maintenance, focused maintenance, planned maintenance, dan quality maintenance Meningkatkan kesadaran K3
7 bulan berikutnya	Evaluasi	 Menggunakan perhitungan OEE dan six big losses Analisis penyelesaian dari masalah Evaluasi penerapan K3
1-2 tahun berikutnya	Pengembangan	 Melakukan pengembangan dari implementasi TPM yang sudah ada untuk meningkatkan efektivitas mesin