BRAWIJAYA

BAB IV

HASIL DAN PEMBAHASAN

4.1 Gambaran umum pekerjaan Beton Bertulang

Bangunan gedung X yang dianalisis terdiri dari beberapa gedung yang terpadu dalam satu kawasan dengan bentuk dan spesifikasi yang berbeda. Pada proyek X tersebut memiliki variasi beton bertulang yang banyak dari ukuran, bentuk dan mutu beton bertulang. Namun bangunan tersebut memiliki analisa harga satuan pekerjaan yang sama dalam kontrak tidak dibedakan sesuai bangunan masing-masing atau sesuai dengan variasi setiap bangunan pada gedung di proyek X.

4.1.1 Pekerjaan Kolom

Pekerjaan kolom pada proyek X terdiri dari beberapa macam variasi setiap gedung. Spesifikasi dan variasi pekerjaan kolom dapat dilihat pada tabel 4.1.

Tabel 4.1. Variasi Dimensi Kolom Proyek X

Gedung	Variasi	Mutu	Gedung	Variasi	Mutu	
	Kolom (cm)		Kolom (cm)			
В	50/50	K-300	D	50/50	K-300	
	Ø50	K-300		Ø50	K-300	
	40/40	K-300	7) \ 当	15/12	K-175	
	15/15	K-175	E	35/35	K-300	
	15/12	K-175	F	50/50	k-300	
C	50/50	K-300		40/40	K-300	
	30/30	K-300	_	30/30	K-300	
	20/20	K-200		30/40	K-300	
	15/12	K-175		15/15	K-175	

Sumber: Data proyek X

BRAWIJAYA

4.1.2 Pekerjaan Balok

Pekerjaan Balok pada proyek X terdiri dari beberapa macam variasi setiap gedung, Spesifikasi dan variasi pekerjaan Balok dapat dilihat pada tabel 4.2.

Tabel 4.2. Variasi Dimensi Balok Proyek X

Gedung	Variasi Balok	Mutu	Gedung	Variasi Balok	Mutu
	(cm)			(cm)	
В	70/40	K-300	D	30/40	K-300
	60/30	K-300		15/20	K-300
	40/30	K-300		20/30	K-300
	20/30	K-300	TAS	15/12	K-175
	15/20	K-300	Е	50/20	k-300
	12/15	K-175		40/20	K-300
C	30/60	K-300	_√F. Ø	60/40	K-250
	30/40	K-300		50/30	K-250
	20/30	K-300		40/20	K-250
	15/12	K-175		40/30	K-250
D	40/70	K-300	人人	20/15	K-250
	30/60	K-300		25/15	K-250

Sumber: Data proyek X

4.1.3 Pekerjan Pelat

Pekerjaan Pelat pada proyek X terdiri dari beberapa macam variasi setiap gedung. Spesifikasi dan variasi pekerjaan Pelat dapat dilihat pada tabel 4.3.

Tabel 4.3. Variasi Dimensi Pelat Proyek X

Gedung	MIL	Variasi Pelat(cm)				
VAL	Notasi	Ukuran	Tebal			
В	A	300/300	12	K-300		
	В	300/300	10	K-300		
BRA	C	150/100	10	K-225		
C	A	300/300	12	K-300		
	В	350/300	10	K-300		

UTH	C	250/300	10	K-300
	D	270/300	10	K-300
	Е	150/100	10	K-225
D	A	250/300	12	K-300
	В	270/300	12	K-300
	C	270/300	10	K-300
	D	150/100	10	K-225
E	A	160/100	10	K-225
F	A	300/300	12	K-300
	В	300/400	12 12	K-300
	C	300/300	10	K-300
	D	300/400	10	K-300
	Е	150/100	10	K-225

Sumber: Data proyek X

4.2 Analisa Harga Satuan Pekerjaan Beton Bertulang.

Harga satuan pekerjaan sudah diatur dalam Standart Nasional Indonesia (SNI) dalam penyusunanya dilakukan oleh tim ahli yang profesional dalam bidanya. Satuan dari harga satuan beton bertulang bisa dalam Rp/m³, Rp/m², dan Rp/m³ sesuai dengan kebutuhan analisa pada perencanaan. Penyusunan analisa harga satuan berdasarkan perhitungan dari 3 komponen utama dalam beton bertulang yaitu:

- 1. Analisa untuk harga satuan campuran beton bertulang dengan mutu yang sesuai persyaratan.
- 2. Analisa pembesian sesuai dengan jenis dan mutu yang direncanakan.
- 3. Analisa untuk bekisting kolom.

Dari ketiga analisa diatas maka akan membentuk analisa harga satuan beton bertulang sesuai dengan mutu dan spesifikasi yang direncanakan. Perhitungan analisa ini dengan melakukan perkalian antara koefisien indek dengan harga bahan dari setiap komponen dan upah pekerja untuk persatuan volume pekerjaan. Pada proyek X secara umum mutu dari beton adalah K-300 namun selain itu masih ada mutu lainya yaitu K-225 dan K-175 sesuai dengan fungsi dari beton bertulang. Hal sama pada pembesian yaitu terdapat 2 jenis besi yang digunakan yaitu besi ulir dan besi polos. Jumlah dan diameter

tulangan sudah dijelaskan secara detail dalam Detail Engineering Desing (DED) pada proyek X. Sedangkan pekerjaan bekisting juga memerlukan banyak klasifikasi antara lain bekisting untuk kolom, balok dan pelat lantai dan *canopy*.

Analisa Harga Satuan Pekerjaan Beton Bertulang telah di tetapkan dalam SNI-7394:2008, dalam SNI tersebut menjelaskan dua (2) kelompok pemakaian indek harga satuan. Dalam SNI-7394:2008 telah dijelaskan penggunaan tersebut harus sesuai dengan pasal 5.2 poin e yang berbunyi" Analisa (6.1 s/d 6.27) digunakan untuk gambar rencana yang sudah detail dan Analisa (6.28 s/d 6.36) untuk gambar rencana yang belum mempunyai gambar detail". Pada gedung X sudah terdapat DED atau gambar detail yang jelas maka sudah seharunya analisa harga satuan proyek X mengunakan point 6.1 s/d 6.27 sesuai dengan kebutuhan dari spesifikasi teknis yang ada. Yaitu antara lain yang bisa digunakan adalah:

- 1. Analisa nomor 6.10, 6.7, 6.5 untuk pekerjaan membuat 1 m³ beton mutu f'c = 26.4MPa (K-300); f'c = 19.3 MPa (K-255); f'c = 14.5 MPa (K-175);
- Analisa nomor 6.17 untuk pekerjaan 10 kg pembesian dengan besi polos atau besi ulir;
- Analisa nomor 6.22 untuk pekerjaan memasang 1 m² bekisting kolom; 3.
- Analisa nomor 6.23 untuk pekerjaan memasang 1 m² bekisting balok; dan 4.
- Analisa nomor 6.24 untuk pekerjaan memasang 1 m² bekisting pelat. 5.

Analisa Harga satuan pekerjaan sesuai dengan DED

4.3.1 Analisis *Unit Cost* Bahan

Perhitungan Unit Cost Bahan per m³ pekerjaan ini dengan melakukan perkalian koefisien dari SNI dengan Harga bahan dan Upah pekerja. Adapun koefisien sesuai SNI-7394;2008 antara lain:

1. 1 m^3 beton mutu f'c = 14,5 Mpa (K-175)

Bahan:

PC		326	kg
Pasir Bet	on	760	kg
Krikil	(max 30 mm)	1029	kg
Air		215	Liter
Upah:			
Pekerja		1,650	ОН
Tukang E	Batu	0,275	ОН

BRAWIUAL

Kepala Tukang	0,028	OH
Mandor	0,083	ОН

2. $1 \text{ m}^3\text{beton mutu f'c} = 19,3 \text{ Mpa (K-225)}$

Bahan:

PC 371 kg
Pasir Beton 698 kg
Krikil (max 30 mm) 1047 kg
Air 215 Liter

Upah:

Pekerja 1,650 OH
Tukang Batu 0,275 OH
Kepala Tukang 0,028 OH
Mandor 0,083 OH

3. $1 \text{ m}^3\text{beton mutu f'c} = 26,4 \text{ Mpa (K-300)}$

Bahan:

PC 413 kg

Pasir Beton 681 kg

Krikil (max 30 mm) 1021 kg

Air 215 Liter

Upah:

Pekerja 1,650 OH

Tukang Batu 0,275 OH

Kepala Tukang 0,028 OH

Mandor 0,083 OH

Didalam SNI 7394:2008 dicantumkan bahwa bobot isi pasir = 1400 kg/m^3 dan bobot isi kerikil = 1350 kg/m^3 , maka nilai koefisien dalam SNI tersebut di bagi dengan bobot isi.

4. 10 kg pembesian dengan besi polos atau besi ulir :

Bahan:

Besi beton (polos/ulir) 10,500 kg Kawat beton 0,150 kg

Upah:

Pekerja 0,070 OH

Tukang besi	0,070	ОН
Kepala tukang	0,007	ОН
Mandor	0,004	ОН

5. 1m² bekisting kolom:

Bahan:

 0.040 m^3 Kayu kelas III Paku 5-12 cm 0,400 kg Minyak bekisting 0,200 liter Balok kayu kelas II 0.015 m^3 0,350 lbr Plywood 9 mm

Dolken kayu galam, 4m2,000 batang BRAWIUAL

Upah

0,660 OH Pekerja Tukang kayu 0,330 OH Kepala tulang 0,033 OH

Mandor 0,033 OH

6. 1m² bekisting balok :

Bahan:

 0.040 m^3 Kayu kelas III

0,400 kg Paku 5-12 cm

Minyak bekisting 0,200 liter

 0.018 m^3 Balok kayu kelas II

Plywood 9 mm 0,350 lbr

Dolken kayu galam, 4m2,000 batang

Upah:

Pekerja 0,660 OH Tukang kayu 0,330 OH Kepala tulang 0,033 OH Mandor 0,033 OH

7. 1m² bekisting pelat:

Bahan:

Kayu kelas III	0.040 m^3	
Paku 5–12 cm	0,400 kg	
Minyak bekisting	0,200 liter	
Balok kayu kelas II	0.015 m^3	
Plywood 9 mm	0,350 lbr	

Dolken kayu galam, 4m6,000 batang

Upah:

Pekerja	0,660	ОН
Tukang kayu	0,330	ОН
Kepala tulang	0,033	ОН
Mandor	0,033	ОН

Nilai harga bahan dan upah pekerjaan yang digunakan dalam proyek X bisa dilihat pada tabel 4.4 dan Tabel 4.5.

BRAWIUA

Tabel 4.4. Daftar Harga Bahan pada Proyek X

No.	Nama Bahan	Satuan	Harga Satuan (Rp)
1	Semen Portland (PC)	Kg	1.535,00
2	Pasir cor beton	m3 V	245.925,00
3	Koral beton (Batu Pecah 1/2)	m3	271.545,00
4	Besi beton ulir	Kg	11.780,00
5	Besi beton polos	Kg	10.245,00
6	Kawat beton	Kg	14.345,00
7	Plywood tebal 9 mm, 122x244	Lbr	122.960,00
8	Kayu 5/7 (meranti)	m3	4.098.800,00
9	Kayu kelas III	m3	4.098.800,00
10	Dolken kayu Ø 8-10/400 cm	Btg	35.860,00
11	Paku biasa 2"-5"	Kg	23.565,00
12	Minyak bekisting	Ltr	7.685,00

Sumber : Data Proyek X

Tabel 4.5. Daftar Harga Upah pada Proyek X

No.	Tenaga Kerja	Satuan	Harga Satuan (Rp)
12	Pekerja tak terampil	ОН	50.000,00
2	Tukang batu	ОН	65.000,00
3	Tukang kayu	ОН	70.000,00
4	Tukang besi	ОН	70.000,00
5	Kepala tukang	ОН	75.000,00
6	Mandor	ОН	80.000,00

Sumber: Data Proyek X

Perhitungan 1 m³ beton mutu K-175 adalah sebagai berikut:

Bahan:

Semen Portland (PC) = koefisien x Harga Bahan

= 326 x Rp. 1.535,00 = Rp. 500.410,00

Pasir Beton (PB) = koefisien x Harga Bahan

= (760/1400) m³ x Rp. 245,925 = Rp. 133.502,00

Krikil = koefisien x Harga Bahan

= (1029/1350) m³ x Rp. 271.545,00 = Rp. 206.978,00

Upah:

Pekerja = Koefisien x Upah Pekerja

= 1,65 x Rp.50.000,00 = Rp. 82.500,00

Tukang Batu = Koefisien x Upah Pekerja

 $= 0.275 \times \text{Rp.}65.000,00 = \text{Rp.} 17.875,00$

Kepala Tukang = Koefisien x Upah Pekerja

= 0.028 x Rp. 75.000,00 = Rp. 2.100,00

Mandor = Koefisien x Upah Pekerja

= 0.083 x Rp.80.000,00 = Rp. 6.640,00

Bahan = Rp. 500.410,00 + Rp. 133.502,00 + Rp. 206.978,00

=Rp. 840.890,00

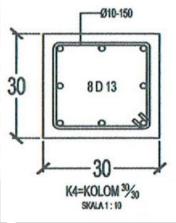
Upah = Rp. 82.500,00 + Rp. 17.875,00 + Rp. 2.100,00 + Rp. 6.640,00 = Rp.190.115,0

Maka harga 1 m³ beton mutu K-175 adalah sebagai berikut : Rp. 950.005,00

Tabel 4.6. Daftar Harga Unit Cost

NO	Pekerjaan	Unit Cost Bahan		
Harg	a Beton		W/	
1	Membuat 1 m3 Beton Mutu K-300	Rp	1.067.878	
2	Membuat 1 m3 Beton Mutu K-225	Rp	1.011.809	
3	Membuat 1 m3 Beton Mutu K-175	Rp	950.005	
Harg	a Besi			
1	10 kg Pembesian Besi Polos	Rp/	118.969	
2	10 kg Pembesian Besi Ulir	Rp	135.087	
Harg	a Bekisting	E THE	V 61	
N	1 m2 Bekisting Untuk Kolom	Rp	412.778	
TA	1 m2 Bekisting Untuk Balok	Rp	427.534	
SA	1 m2 Bekisting Untuk Sloof	Rp	541.462	
	D 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- V - I - I - I - I - I - I - I - I - I		

Sumber: Pengolahan data proyek X


Analisa *Unit Cost* Bahan selanjutkan akan dikalikan dengan volume kebutuhan bahan untuk 1 m³ pekerjaan, seperti 1 m³ pekerjaan Kolom 50/50. Namun sebelum itu harus dilakukan perhitungan Volume variasi ukuran dari beton bertulang baik Kolom, Balok, dan Pelat Lantai seta Pelat Canopy. Volume yang muncul akan dijadikan satuan Kg/m³ beton.

4.3.2 Analisa Volume bahan

Berikut ini diberikan contoh perhitungan Volume satuan elemen bangunan Kolom, Balok dan Pelat. Perhitungan selengkapnya ditampilkan dalam bentuk tabel seperti diperlihatkan pada tabel dibawah

1. Kolom

Untuk perhitungan volume kolom dipilih kolom dengan ukuran 30x30, detail ukuran dan penampang pada gambar 4.1.

SITAS BRAWN

Gambar 4.1. Detail Penampang Kolom 30x30 cm

Diambil panjang kolom $30 \times 30 = 1$ m

Volume kolom 30×30 sepanjang $1 \text{ m} = 0.3\times0.3\times1 = 0.09 \text{ m}^3$

Volume beton per m^3 kolom = 0,09/0,09 = 1 m^3

➤ Besi D13 (ulir diameter 13 mm)

Berat besi D13 berdasarkan SNI 07-2052-2002 :2,23 kg/m²

Jumlah besi D13 : 8 batang

Panjang besi D13 : 1 m

Berat total besi D13 = $1,04 \times 8 \times 1 = 8,32 \text{ kg}$

Berat besi ulir per m^3 kolom = 8,32/0,09 = 92,44 kg

➤ Besi Ø10 (polos diameter 10 mm)

Berat besi Ø10 berdasarkan SNI 07-2052-2002 :0,617 kg/m'

Panjang 1 sengkang = $4 \times (0.3 - 2 \times 0.04) + 0.05 \times 2$: 0.98 m

Jumlah sengkang untuk 1 m kolom = 1/0.15 : 6,667 buah

Berat total besi $\emptyset 10 = 0.617 \times 0.98 \times 6.667$: 4.03 kg

Berat besi polos per m^3 kolom = 4,03/0,09 = 44,79 kg

➤ Bekisting

Luas bekisting untuk 1 m kolom = $4 \times 0.3 \times 1 = 1.2 \text{ m}^2$

Luas bekisting per m^3 kolom = 1,2/0,09 = 13,33 m^2

Analisa seterusnya dilakukan untuk setiap kolom dengan variasi ukuran disetiap gedung yang ada. Dengan penggunaan rumus dan cara yang sama maka didapatkan volume setiap kolom pada Proyek X dapat dilihat pada Tabel 4.7 sampai Tabel 4.11.

Tabel 4.7. Volume setiap Kolom dalam Gedung B

Gedung	Variasi Kolom	Keterangan	Volume	Satuan
В	K1.A	Beton	0,33	m3
	(50/65)	Berat Besi Ulir per m3 kolom	120,34	kg
	cm	Berat Besi Polos per m3 kolom	48,92	kg
NU		Luas Bekisting per m3 kolom	7,08	m2
417	K3.A	Beton	0,22	m3
	(40/55)	Berat Besi Ulir per m3 kolom	121,64	kg
	cm	Berat Besi Polos per m3 kolom	60,91	kg
		Luas Bekisting per m3 kolom	8,64	m2
	K1	Beton	0,25	m3
	(50/50)	Berat Besi Ulir per m3 kolom	154,37	kg
	cm	Berat Besi Polos per m3 kolom	42,15	kg
		Luas Bekisting per m3 kolom	8	m2
	K2	Beton	0,1963	m3
	(Ø50)	Berat Besi Ulir per m3 kolom	113,63	kg
31	cm	Berat Besi Polos per m3 kolom	39,78	kg
31		Luas Bekisting per m3 kolom	8 (5)	m2
M M	K3	Beton	0,16	m3
	(40/40)	Berat Besi Ulir per m3 kolom	167,25	kg
	cm	Berat Besi Polos per m3 kolom	51,06	kg
		Luas Bekisting per m3 kolom	10	m2
TAS	K4	Beton	0,09	m3
	(30/30)	Berat Besi Ulir per m3 kolom	92,44	kg
	cm	Berat Besi Polos per m3 kolom	44,79	kg
		Luas Bekisting per m3 kolom	13,33333333	m2
	KP	Beton	0,02	m3
	(12/15)	Berat Besi Polos per m3 kolom	236,92	kg
VA.	cm	Luas Bekisting per m3 kolom	30	m2

Tabel 4.8. Volume setiap Kolom dalam Gedung C

Gedung	Variasi Kolom	Keterangan	Volume	Satuan
C	K1	Beton	0,25	m3
	(50/50)	Berat Besi Ulir Per m3 Kolom	154,37	kg
LATT!	cm	Berat Besi Polos Per m3 Kolom	42,15	kg
		Luas bekisting per m3 kolom	8	m2
50 41	K2	Beton	0,09	m3
22.01	(30/30)	Berat Besi Ulir Per m3 Kolom	140,44	kg
	cm	Berat Besi Polos Per m3 Kolom	44,79	kg
THE		Luas bekisting per m3 kolom	13,333	m2
253	K3	Beton	0,04	m3
	(20/20)	Berat Besi Ulir Per m3 Kolom	208,00	kg
	cm	Berat Besi Polos Per m3 Kolom	59,64	kg
		Luas bekisting per m3 kolom	20	m2
	KP	Beton	0,02	m3
	(12/15)	Berat Besi Polos per m3 kolom	270,46	kg
ATT A	cm	Luas Bekisting per m3 kolom	30	m2

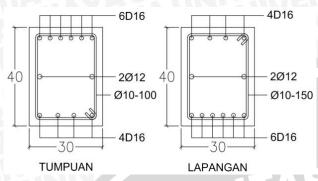
Sumber: Pengolahan As Build Drawing Proyek X

Tabel 4.9. Volume setiap Kolom dalam Gedung D

Gedung	Variasi Kolom	Keterangan	Volume	Satuan
D	K1	Beton	0,25	m3
	(50/50)	Berat Besi Ulir per m3 kolom	154,37	kg
	cm	Berat Besi Polos per m3 kolom	42,15	kg
		Luas Bekisting per m3 kolom	8	m2
	K2	Beton	0,1963	m3
	(50/50)	Berat Besi Ulir per m3 kolom	113,63	kg
	cm	Berat Besi Polos per m3 kolom	39,78	kg
		Luas Bekisting per m3 kolom	8	m2
	KP	Beton	0,02	m3
	(12/15)	Berat Besi Polos per m3 kolom	270,46	kg
Real N	cm	Luas Bekisting per m3 kolom	30	m2

Sumber: Pengolahan As Build Drawing Proyek X

Tabel 4.10. Volume setiap Kolom dalam Gedung E


Gedung	Variasi Kolom	Keterangan	Volume Satuan
E	K1	Beton	0,12 m3
	(35/35)	Berat Besi Ulir Per m3 Kolom	67,92 kg
	cm	Berat Besi Polos Per m3 Kolom	39,62 kg
1 4		Luas bekisting per m3 kolom	11,4286 m2

Tabel 4.11. Volume setiap Kolom dalam Gedung F

Gedung	Variasi Kolom	Keterangan	Volume	Satuan
F	K1	Beton	0,25	m3
	(50/50)	Berat Besi Ulir per m3 kolom	214,08	kg
LITT	cm	Berat Besi Polos Per m3 Kolom	58,57	kg
		Luas bekisting per m3 kolom	8	m2
or A	K1'	Beton	0,25	m3
	(50/50)	Berat Besi Ulir per m3 kolom	142,72	kg
	cm	Berat Besi Polos Per m3 Kolom	58,57	kg
GIL.	Z KS BI	Luas bekisting per m3 kolom	8	m2
1408	K2	Beton	0,16	m3
Litt	(40/40)	Berat Besi Ulir per m3 kolom	223,00	kg
	cm	Berat Besi Polos Per m3 Kolom	70,96	kg
		Luas bekisting per m3 kolom	10	m2
	K2'	Beton	0,16	m3
	(40/40)	Berat Besi Ulir per m3 kolom	167,25	kg
	cm	Berat Besi Polos Per m3 Kolom	70,96	kg
		Luas bekisting per m3 kolom	10	m2
7	K3	Beton	0,09	m3
	(30/30)	Berat Besi Ulir per m3 kolom	198,22	kg
	cm	Berat Besi Polos Per m3 Kolom	89,58	kg
		Luas bekisting per m3 kolom	13,3333	m2
	K4	Beton	0,12	m3
	(30/40)	Berat Besi Ulir per m3 kolom	298,00	kg
	cm	Berat Besi Polos Per m3 Kolom	116,43	kg
		Luas bekisting per m3 kolom	11,6667	m2
31	KP	Beton	0,09	m3
	(15/15)	Berat Besi Ulir per m3 kolom	329,07	kg
	cm	Berat Besi Polos Per m3 Kolom	88,95	_
		Luas bekisting per m3 kolom	26,6667	m2

2. Balok

Untuk perhitungan volume Balok dipilih Balok dengan ukuran 40x30, detail ukuran dan penampang pada gambar 4.2.

Gambar 4.2. Detail penampang Balok 30×40

Panjang balok 30×40 sesuai gambar rencana balok = 6 m

BRAWIUAL Volume balok 30×40 sepanjang 6 m = $0.3\times0.4\times6 = 0.72$ m³

Volume beton per m^3 balok = $0.72/0.72 = 1 m^3$

Besi D16 (ulir diameter 16 mm)

Berat besi D16 berdasarkan SNI 07-2052-2002 :1,58 kg/m²

Tulangan menerus:

Panjang :6 m

Jumlah :8 batang

Berat besi ulir = $1,58 \times 6 \times 8 = 75,84 \text{ kg}$

Tulangan atas:

Panjang $= \frac{1}{4} \times 6 = 1.5 \text{ m}$

Jumlah :4 batang

Berat besi ulir = $1,58 \times 1,5 \times 4 = 9,48 \text{ kg}$

Tulangan bawah:

Panjang $=3/5\times6=3,6$ m

Jumlah :2 batang

Berat besi ulir = $1,58 \times 3,6 \times 2 = 11,38 \text{ kg}$

Berat total besi D16 = 75,84+9,48+11,38 = 96,70 kg

Berat besi ulir per m^3 balok = 96,70/0,72 = 134,3 kg

Besi Ø12:

Berat besi Ø12 berdasarkan SNI 07-2052-2002 : 0,888 kg/m'

Panjang :6 m

Jumlah :2 batang

Berat besi Ø12 = $0.888 \times 6 \times 2 = 10.656 \text{ kg}$

Besi Ø10:

Berat besi Ø10 berdasarkan SNI 07-2052-2002 : 0,617 kg/m'

Panjang 1 sengkang = $2 \times [(0,4-2\times0,04)+(0,3-2\times0,04)] + 0,05\times2$

= 1.18 m

Jumlah sengkang di tumpuan = $2 \times (6/4)/0,1 = 30$ buah

Jumlah sengkang di lapangan = (6/2)/0,15 = 20 buah

Berat besi $\emptyset 10 = 0.617 \times 1.18 \times (30+20) = 36,403 \text{ kg}$

Berat total besi polos = 10,656+36,403 = 47,059 kg

Berat besi polos per m^3 balok = 47,059/0,72 = 65,36 kg

Bekisting

Tinggi :0,4-0,12=0,28 m

Lebar :0,3 m Panjang :6 m

Luas bekisting untuk 1 m balok = $(2\times0,28+0,3)\times6 = 5,16 \text{ m}^2$

Luas bekisting per m^3 balok = $5,16/0,72 = 7,17 m^2$

Analisis seterusnya dilakukan untuk setiap Balok dengan variasi ukuran disetiap gedung yang ada. Dengan penggunaan rumus dan cara yang sama maka didapatkan volume setiap Balok pada Proyek X dapat dilihat pada Tabel 4.12 sampai Tabel 4.16.

Tabel 4.12. Volume setiap Balok dalam Gedung B

Gedung	Variasi Balok	Keterangan	Volume	Satuan
В	B1.A	Dimensi	0,3654	m3
	(30/70)	Berat Besi Ulir Per m3 Balok	42,29762	kg
LATIV	cm	Berat Besi Polos per m3 balok	60,21486	kg
N. Alt		Luas Bekisting per m3 Balok	6,952381	m2
	ВО	Dimensi	2,21	m3
	(40/70)	Berat Besi Ulir Per m3 Balok	143,58	kg
	cm	Berat Besi Polos per m3 balok	46,05	kg
THE	ACC BINE	Luas Bekisting per m3 Balok	5,57	m2
4531	B1	Dimensi	1,01	m3
	(30/60)	Berat Besi Ulir Per m3 Balok	147,33	kg
	cm	Berat Besi Polos per m3 balok	57,16	kg
		Luas Bekisting per m3 Balok	7	m2
	B2	Dimensi	0,4680	m3
	(30/60)	Berat Besi Ulir Per m3 Balok	164,98	kg
fiv /	cm	Berat Besi Polos per m3 balok	57,16	kg
N//		Luas Bekisting per m3 Balok	7	m2
	В3	Dimensi	0,67	m3
	(30/40)	Berat Besi Ulir Per m3 Balok	111,92	kg
	cm	Berat Besi Polos per m3 balok	72,77	kg
		Luas Bekisting per m3 Balok	7,166667	m2
	B4	Dimensi	0,17	m3
	(15/20)	Berat Besi Ulir Per m3 Balok	176,80	kg
	cm	Berat Besi Polos per m3 balok	57,59	kg
		Luas Bekisting per m3 Balok	10,33333	m2

Sumber: Pengolahan As Build Drawing Proyek X

Tabel 4.13. Volume setiap Balok dalam Gedung C

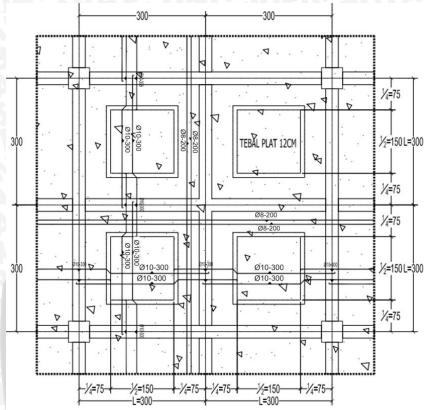
Gedung	Variasi Balok	Keterangan	Volume	Satuan
C	B1	Dimensi	1,008	m3
	(30/60)	Berat Besi Ulir Per m3 Balok	125,6583333	kg
	cm	Berat Besi Polos per m3 balok	57,16088889	kg
LLe		Luas Bekisting per m3 Balok	700 7	m2
10.51	B2	Dimensi	0,67	m3
777	(30/40)	Berat Besi Ulir Per m3 Balok	111,92	kg
	cm	Berat Besi Polos per m3 balok	72,77	kg
	A THE	Luas Bekisting per m3 Balok	7,17	m2
	В3	Dimensi	0,34	m3
14	(20/30)	Berat Besi Ulir Per m3 Balok	134,30	kg
	cm	Berat Besi Polos per m3 balok	57,59	kg
ATT		Luas Bekisting per m3 Balok	10,33	m2
	B4	Dimensi	0,17	m3
	(15/20)	Berat Besi Ulir Per m3 Balok	176,80	kg
200	cm	Berat Besi Polos per m3 balok	57,59	kg
	AS BIS	Luas Bekisting per m3 Balok	10,33	m2

Tabel 4.14. Volume setiap Balok dalam Gedung D

Gedung	Variasi Balok	Keterangan	Volume	Satuan
D	ВО	Dimensi	2,1	m3
	(40/70)	Berat Besi Ulir Per m3 Balok	123,9578	kg
\Let	cm	Berat Besi Polos per m3 balok	46,04914	kg
4111		Luas Bekisting per m3 Balok	5,571429	m2
	B1	Dimensi	1,01	m3
3184	(30/60)	Berat Besi Ulir Per m3 Balok	125,66	kg
361	cm	Berat Besi Polos per m3 balok	57,16	kg
	C B K	Luas Bekisting per m3 Balok	7,00	m2
CHI	B2	Dimensi	0,31	m3
34.7	(30/40)	Berat Besi Ulir Per m3 Balok	111,92	kg
134	cm	Berat Besi Polos per m3 balok	72,77	kg
4777	-14-47	Luas Bekisting per m3 Balok	7,17	m2
	В3	Dimensi	0,08	m3
	(15/20)	Berat Besi Ulir Per m3 Balok	176,80	kg
401	cm	Berat Besi Polos per m3 balok	57,59	kg
		Luas Bekisting per m3 Balok	10,33	m2

Sumber: Pengolahan As Build Drawing Proyek X

Tabel 4.15. Volume setiap Balok dalam Gedung E


Gedung	ariasi Balo	Keterangan	Volume	Satuan
Е	B1	Dimensi	0,36	m3
	(20/50)	Berat Besi Ulir Per m3 Balok	44,2	kg
	cm	Berat Besi Polos per m3 balok	57,5662	kg
		Luas Bekisting per m3 Balok	9,6	m2
711	B2	Dimensi	0,13	m3
	(20/40)	Berat Besi Ulir Per m3 Balok	65,00	kg
	cm	Berat Besi Polos per m3 balok	7,56	kg
		Luas Bekisting per m3 Balok	9,50	m2

Tabel 4.16.Volume setiap Balok dalam Gedung F

Gedung	Variasi Balok	Keterangan	Volume	Satuan
F	B1	Dimensi	1,344	m3
	(40/60)	Berat Besi Ulir Per m3 Balok	100,43333	kg
4-60	cm	Berat Besi Polos per m3 balok	53,387639	kg
7334		Luas Bekisting per m3 Balok	5,6666667	m2
	B2	Dimensi	0,84	m3
	(30/50)	Berat Besi Ulir Per m3 Balok	175,43	kg
	cm	Berat Besi Polos per m3 balok	66,22	kg
		Luas Bekisting per m3 Balok	7,07	m2
	B3	Dimensi	0,33	m3
	(20/40)	Berat Besi Ulir Per m3 Balok	165,86	kg
MANIA	cm	Berat Besi Polos per m3 balok	88,18	kg
		Luas Bekisting per m3 Balok	9,5	m2
	B4	Dimensi	0,6720	m3
	(30/40)	Berat Besi Ulir Per m3 Balok	126,37	kg
	cm	Berat Besi Polos per m3 balok	70,78	kg
		Luas Bekisting per m3 Balok	7,1666667	m2
LAT	B5	Dimensi	1,01	m3
	(30/60)	Berat Besi Ulir Per m3 Balok	105,31	kg
	cm	Berat Besi Polos per m3 balok	63,19	kg
I VA =	44-10-51	Luas Bekisting per m3 Balok	7	m2

3. Pelat

Untuk contoh perhitungan dipilih Pelat Lantai dengan gambar detail penulangan pelat seperti ditunjukkan pada gambar 3.4.

Gambar 4.3. Detail Penampang Pelat 300x300x12 cm

Ukuran pelat : $3 \text{ m} \times 3 \text{ m}$

Tebal pelat : 0,12 m

Volume pelat = $3 \times 3 \times 0,12 = 1,08 \text{ m}^3$

Volume beton per m^3 pelat = 1,08/1,08 = 1 m^3

> Besi polos

Besi Ø10:

Berat besi Ø10 berdasarkan SNI 07-2052-2002 : 0,617 kg/m'

Tulangan lapangan:

Arah X:

Panjang = $3/2 + 2 \times 0,1 = 1,7 \text{ m}$

Jumlah = (3/2)/0,15 = 10 batang

Berat besi Ø $10 = 0.617 \times 1.7 \times 10 = 10.489 \text{ kg}$

Arah Y:

Panjang $= 3/2 + 2 \times 0,1 = 1,7 \text{ m}$

Jumlah = (3/2)/0,15 = 10 batang

Berat besi Ø $10 = 0.617 \times 1.7 \times 10 = 10.489 \text{ kg}$

Tulangan tumpuan:

Arah X:

=3/4=0.75 m Panjang

Jumlah tulangan atas = $2 \times (3/2)/0,15 = 20$ batang

Jumlah tulangan bawah = $2 \times (3/2)/0.3 = 10$ batang

Berat besi $\emptyset 10 = 0.617 \times 0.75 \times (20+10) = 13.883 \text{ kg}$

Arah Y:

Panjang = 3/4 = 0.75 m

RAWIUAL Jumlah tulangan atas = $2 \times (3/2)/0,15 = 20$ batang

Jumlah tulangan bawah = $2\times(3/2)/0.3 = 10$ batang

Berat besi Ø10 = $0.617 \times 0.75 \times (20+10) = 13.883 \text{ kg}$

Besi Ø8:

Berat besi Ø8 berdasarkan SNI 07-2052-2002 : 0,395 kg/m²

Arah X:

Panjang =3 m

Jumlah $= 2 \times (3/4)/0,2 = 7,5$ batang

Berat besi Ø8 = $0.395 \times 3 \times 7.5 = 8.888 \text{ kg}$

Arah Y:

Panjang =3 m

Jumlah $= 2 \times (3/4)/0.2 = 7.5$ batang

Berat besi Ø8 = $0.395 \times 3 \times 7.5 = 8.888 \text{ kg}$

Berat total besi polos = 10,489+10,489+13,883+13,883+8,888+8,888=66,518 kg

Berat besi polos per m^3 pelat = 66,518/1,08 = 61,591 kg

Bekisting

Luas bekisting untuk 3×3 m pelat = 3×3 = 9 m²

Luas bekisting per m^3 pelat = $9/1,08 = 8,33 m^2$

Analisis seterusnya dilakukan untuk setiap Pelat dengan variasi ukuran disetiap gedung yang ada. Dengan penggunaan rumus dan cara yang sama maka didapatkan volume setiap Pelat pada Proyek X dapat dilihat pada Tabel 4.17 sampai Tabel 4.21. 56

Tabel 4.17. Volume setiap Pelat dalam Gedung B

Gedung	Variasi pelat	Keterangan	Volume	Satuan
В	A	Dimensi Pelat Lantai	1,08	m3
	(300x300x12)	Berat besi polos per m3 pelat	61,59074	kg
1) AT	cm	Luas Bekisting per m3 pelat	8,333333	m2
	В	Dimensi Pelat Lantai	0,9	m3
SOA	(300x300x10)	Berat besi polos per m3 pelat	73,90889	kg
	cm	Luas Bekisting per m3 pelat	10	m2
AS L	C	Dimensi Pelat Lantai	0,9	m3
35	(600x150x10)	Berat besi polos per m3 pelat	39,5	kg
	cm	Luas Bekisting per m3 pelat	10	m2

Sumber: Pengolahan As Build Drawing Proyek X

Tabel 4.18. Volume setiap Pelat dalam Gedung C

Gedung	Variasi pelat	Keterangan	Volume	Satuan
C	A	Dimensi Pelat Lantai	1,08	m3
417	(300x300x12)	Berat besi polos per m3 pelat	61,5907	kg
	cm	Luas Bekisting per m3 pelat	8,33333	m2
	В	Dimensi Pelat Lantai	1,05	m3
	(350x300x10)	Berat besi polos per m3 pelat	72,8463	kg
	cm	Luas Bekisting per m3 pelat	10	m2
	C	Dimensi Pelat Lantai	0,75	m3
	(250x300x10)	Berat besi polos per m3 pelat	75,3692	kg
	cm	Luas Bekisting per m3 pelat	10	m2
	D	Dimensi Pelat Lantai	0,81	m3
N	(300x270x10)	Berat besi polos per m3 pelat	73,6695	kg /
	cm	Luas Bekisting per m3 pelat	10	m2
311	Е	Dimensi Pelat Lantai	0,9	m3
	(600x150x10)	Berat besi polos per m3 pelat	39,5	kg
	cm	Luas Bekisting per m3 pelat	10	m2

Tabel 4.19. Volume setiap Pelat dalam Gedung D

Gedung	Variasi pelat	Keterangan	Volume Satuan
D	A	Dimensi Pelat Lantai	0,9 m3
1007	(300x300x10)	Berat besi polos per m3 pelat	73,9089 kg
ATT 1 =	cm	Luas Bekisting per m3 pelat	10 m2
LACT	В	Dimensi Pelat Lantai	0,75 m3
	(300x250x10)	Berat besi polos per m3 pelat	77,3573 kg
UA	cm Luas Bekisting per m3 pelat		10 m2
1	C	Dimensi Pelat Lantai	0,972 m3
	(270x300x10)	Berat besi polos per m3 pelat	63,0311 kg
	cm	Luas Bekisting per m3 pelat	8,33333 m2
	D	Dimensi Pelat Lantai	0,81 m3
	(270x300x10)	Berat besi polos per m3 pelat	75,6373 kg
FAS	cm	Luas Bekisting per m3 pelat	10 m2
LAT	E	Dimensi Pelat Lantai	0,9 m3
	(600x150x10)	Berat besi polos per m3 pelat	39,5 kg
	cm	Luas Bekisting per m3 pelat	10 m2

Tabel 4.20. Volume setiap Pelat dalam Gedung E

Gedung	Variasi pelat	Keterangan	Volume	Satuan
E	A	Dimensi Pelat Lantai	0,64	m3
	(400x160x10)	Berat besi polos per m3 pelat	52,6667	kg
1-47	cm	Luas Bekisting per m3 pelat	10	m2

Sumber: Pengolahan As Build Drawing Proyek X

Tabel 4.21. Volume setiap Pelat dalam Gedung F

Gedung	Variasi pelat	Keterangan	Volume	Satuan
F	A	Dimensi Pelat Lantai	1,08	m3
1312	(300x300x12)	Berat besi polos per m3 pelat	61,5907	kg
477	cm	Luas Bekisting per m3 pelat	8,33333	m2
	В	Dimensi Pelat Lantai	1,44	m3
	(300x400x12)	Berat besi polos per m3 pelat	60,634	kg
	cm	Luas Bekisting per m3 pelat	8,33333	m2
447	C	Dimensi Pelat Lantai	1,68	m3
	(350x400x12)	Berat besi polos per m3 pelat	57,7845	kg
	cm	Luas Bekisting per m3 pelat	8,33333	m2
	D	Dimensi Pelat Lantai	1,152	m3
	A 1,152	Berat besi polos per m3 pelat	75,7925	kg
7	m3	Luas Bekisting per m3 pelat	10,4167	m2
	E	Dimensi Pelat Lantai	0,9	m3
	(300x300x10)	Berat besi polos per m3 pelat	73,9089	kg
	cm	Luas Bekisting per m3 pelat	10	m2 🔷
9	F	Dimensi Pelat Lantai	1,2	m3
	(300x400x10)	Berat besi polos per m3 pelat	72,7608	kg
	cm	Luas Bekisting per m3 pelat	10	m2
	G	Dimensi Pelat Lantai	1,4	m3
M - M	(350x400x10)	Berat besi polos per m3 pelat	69,3414	kg
5 A	cm	Luas Bekisting per m3 pelat	10	m2
	Н	Dimensi Pelat Lantai	0,96	m3
	A 0,96	Berat besi polos per m3 pelat	90,951	kg
	m3	Luas Bekisting per m3 pelat	12,5	m2
	I	Dimensi Pelat Lantai	0,9	m3
1,21	(600x150x10)	Berat besi polos per m3 pelat	39,5	kg
	cm	Luas Bekisting per m3 pelat	10	m2

Sumber: Pengolahan As Build Drawing Proyek X

4.3.3 Menghitung AHSP Beton Bertulang.

Tahap terakhir dalam penyusunan Analisa Harga Satuan Pekerjaan berdasarkan dari gambar detail atau Detail Enginerring Desigh (DED) adalah dengan mengalikan volume material baik Beton, Besi, dan bekisting dengan harga per m³/per m² pekerjaan. Volume bahan didaptkan dari analisa kebutuhan disetiap elemen variasi kolom, balok dan pelat pada setiap masing-masing gedung dalam proyek X. Analisa Harga Satuan Pekerjaan (AHSP) ini sebagai patokan harga yang digunakan untuk proses penawaran kontraktor

atau ownwer dalam proses lelang. Maka dari itu penyusunan volume sangat mempengaruhi harga akhir dari setiap pekerjaan Rp/m³, Rp/m² atau Rp/m³.

Berikut ini adalah hasil pengolahan analisa harga satuan pekerjaan berdasarkan DED:

Harga AHSP = Volume Bahan x Unit Cost Bahan. (4.1)

Harga satuan Untuk 1 m³ Kolom 30x30 adalah :

- = (VBx HS Beton K-300)+(VB x HS Pembesian Ulir) +(VB x HS pembesian Polos) + (VB + HS Bekisting kolom)
- = (1,0xRp.1.067.878)+(92,44xRp.13.509)+(44,79xRp.11.897)+(13,3xRp.412.778)
- = Rp. $8.353.243,00 / m^3$

Dengan:

VB = volume bahan

HS = Harga satuan

Selanjutnya harga satuan untuk setiap pekerjaan dapat ditabelkan sesuai pada tabel 4.22 sampai tabel 4.26 berdasarkan gedung pada proyek X:

SITAS BRAW

Tabel 4.22. Harga Satuan Pekerjaan per m³ beton Bertulang Gedung B

URAIAN	SAT	HARGA SATUAN
Membuat 1 m3 kolom (50/65) Mutu K 300	m3	Rp 6.196.778,50
Membuat 1 m3 kolom (40/55) Mutu K 300	m3	Rp 7.000.532,80
Membuat 1 m3 kolom (50/50) Mutu K 300	m3	Rp 6.956.867,90
Membuat 1 m3 kolom (ø 50) Mutu K 300	m3	Rp 6.378.387,32
Membuat 1 m3 kolom (40/40) Mutu K 300	m3	Rp 8.062.439,25
Membuat 1 m3 kolom (30/30) Mutu K 300	m3	Rp 8.353.243,46
Membuat 1 m3 kolom KP(12/15) Mutu K 175	m3	Rp 3.294.271,85
Membuat 1 m3 Balok (40/70) Mutu K 300	m3	Rp 5.937.318,87
Membuat 1 m3 Balok (30/60) Mutu K 300	m3	Rp 6.969.270,93
Membuat 1 m3 Balok (30/60) Mutu K 300	m3	Rp 6.969.270,93
Membuat 1 m3 Balok (30/40) Mutu K 300	m3	Rp 6.509.413,54
Membuat 1 m3 Balok (15/20) Mutu K 175	m3	Rp 8.441.289,56
Membuat 1 m3 Balok (30/70) Mutu K 175	m3	Rp 5.328.010,18
Membuat 1 m3 pelat (3x3x0,12)mMutu K 300	M3	Rp 5.363.397,66
Membuat 1 m3 pelat (3x3x0,1)m Mutu K-225	M3	Rp 6.166.433,52
Membuat 1 m3 pelat(6x1,5x0,1) Mutu K 300	M3	Rp 6.845.640,35

Sumber: Analisa Harga satuan dengan DED

Tabel 4.23. Harga Satuan Pekerjaan per m3 beton Bertulang Gedung C

URAIAN	SAT	HARGA SATUAN
Membuat 1 m3 kolom (50/50) Mutu K 300	m3	Rp 6.956.867,90
Membuat 1 m3 kolom (30/30) Mutu K 300	m3	Rp 9.001.659,86
Membuat 1 m3 kolom (20/20)Mutu K 300	m3	Rp 8.715.033,03
Membuat 1 m3 kolom(12/15)Mutu K 225	m3	Rp 3.294.271,85
Membuat 1 m3 pelat (3x3x0,12) Mutu K 300	m3	Rp 6.398.233,20
Membuat 1 m3 Balok (30/40)Mutu K 300	m3	Rp 6.509.413,54
Membuat 1 m3 Balok (20/30)Mutu K 300	m3	Rp 7.429.053,06
Membuat 1 m3 Balok (15/20)Mutu K 175	m3	Rp 8.441.289,56
Membuat 1 m3 pelat (3x3x0,12) Mutu K 300	m3	Rp 6.398.233,20
Membuat 1 m3 pelat(3,5x3x0,1) Mutu K 300	m3	Rp 7.402.541,00
Membuat 1 m3 pelat (2,5x3x0,1)Mutu K 300	m3	Rp 7.112.192,16
Membuat 1 m3 pelat (3x2,5x0,1)K 300	m3	Rp 7.112.192,16
Membuat 1 m3 pelat (3x2,7x0,1) Mutu K 300	m3	Rp 7.156.043,18
Membuat 1 m3 pelat(6x1,5x0,1) Mutu K 300	M3	Rp 6.845.640,35

Sumber: Analisa Harga satuan dengan DED

Tabel 4.24. Harga Satuan Pekerjaan per m3 beton Bertulang Gedung D

URAIAN	SAT	HARGA	SATUAN
Membuat 1 m3 Kolom (50/50) Mutu K 300	m3	Rp	6.956.867,90
Membuat 1 m3 kolom (Ø50) Mutu K 300	m3	Rp	6.378.387,32
Membuat 1 m3 kolom (12/15)Mutu K-175	m3	Rp	3.294.271,85
Membuat 1 m3 balok (40/70)Mutu K 300	m3	Rp	5.589.989,39
Membuat 1 m3 Balok (30/60)Mutu K 300	m3	Rp	6.334.839,12
Membuat 1 m3 Balok (30/40) Mutu K 125	m3	Rp	5.751.995,03
Membuat 1 m3 Balok (15/12)Mutu K 175	m3	Rp	8.288.814,20
Membuat 1 m3 pelat(3x3x0,1)Mutu K 300	m3	Rp	6.074.944,88
Membuat 1 m3 pelat (3x2,5x0,1)Mutu K 300	m3	Rp	6.115.970,76
Membuat 1 m2 pelat (2,7x3x0,1) Mutu K 300	m3	Rp	5.257.569,15
Membuat 1 m3 pelat (2,7x3x0,1)Mutu K 300	m3	Rp	6.095.507,46
Membuat 1 m3 pelat(6x1,5x0,1)Mutu K 300	m3	Rp	5.665.584,91

Sumber: Analisa Harga satuan dengan DED

Tabel 4.25. Harga Satuan Pekerjaan per m3 beton Bertulang Gedung E

URAIAN	SAT	HARGA SATUAN
Membuat 1 m3 Kolom (35/35) Mutu K 300	m3	Rp 7.174.209,89
Membuat 1 m3 balok (20/50) Mutu K 300	m3	Rp 6.312.489,02
Membuat 1 m3 balok (20/40) Mutu K 300	m3	Rp 5.957.251,24
Membuat 1 m3 pelat (4x1,6x1,0) Mutu K 175	m3	Rp 5.704.354,96

Sumber: Analisa Harga satuan dengan DED

Tabel 4.26. Harga Satuan Pekerjaan per m3 beton Bertulang Gedung F

URAIAN	SAT	HARGA SATUAN
Membuat 1 m3 Kolom (50/50) Mutu K-250	m3	Rp 7.902.818,49
Membuat 1 m3 Kolom (50/50) Mutu K-250	m3	Rp 6.938.839,45
Membuat 1 m3 Kolom (40/40)Mutu K-250	m3	Rp 8.996.169,05
Membuat 1 m3 Kolom (40/40) Mutu K-250	m3	Rp 8.243.060,42
Membuat 1 m3 Kolom (30/30) Mutu K-250	m3	Rp 10.258.951,79
Membuat 1 m3 kolom (30/40)Mutu K-250	m3	Rp 11.238.255,82
Membuat 1 m3 kolom (15/15) Mutu K 175	m3	Rp 3.294.271,85
Membuat 1 m3 balok (40/60) Mutu K 300	m3	Rp 5.342.754,06
Membuat 1 m3 balok (30/50) Mutu K 300	m3	Rp 7.086.424,82
Membuat 1 m3 Balok (20/40) Mutu K 300	m3	Rp 8.222.763,34
Membuat 1 m3 balok (30/40) Mutu K 300	m3	Rp 6.519.204,43
Membuat 1 m3 balok (30/60) Mutu K 300	m3	Rp 6.075.504,71
Membuat 1 m3 pelat (3x3x0,12) Mutu K 300	m3	Rp 5.184.365,50
Membuat 1 m3 pelat (3x4x0,12) Mutu K 300	m3	Rp 5.172.983,56
Membuat 1 m3 pelat (3,5x4x0,12) Mutu K 300	m3	Rp 5.139.083,22
Membuat 1 m3 pelat As1,152 Mutu K 300	m3	Rp 6.213.277,10
Membuat 1 m3 pelat (3x3x0,10) Mutu K 300	m3	Rp 6.018.876,72
Membuat 1 m3 pelat (3x4x0,1) Mutu K 300	m3	Rp 6.005.218,39
Membuat 1 m3 pelat (3,5x4x0,1) Mutu K 300	m3	Rp 5.964.537,99
Membuat 1 m3 pelat As 0,96 Mutu K 300	m3	Rp 7.253.570,63

Sumber: Analisa Harga satuan dengan DED

Analisa Harga satuan Pekerjaan pada proyek X

Proyek X termasuk jenis proyek yang kategori cukup besar dan komplek, sehingga butuh suatu pemilihan analisa dan perencanaan yang tepat sesuai dengan kebutuhan yang ada. Analisa Harga Satuan yang dipilih juga harus berdasarkan usul dari team ahli dan kebutuhan owner. Proyek X sudah memiliki gambar pekerjaan yang detail dan spesifikasi yang jelas, tentu ini memberikan kemudahan dalam kontraktor melakukan penawaran harga. Proyek X mengunakan sistem kontrak *Unit Price* sehingga penawaran terhadap harga satuan sangat menentukan besar keuntungan/kerugian yang akan di terima oleh kontraktor.

Sesuai dengan SNI-7394:2008 sudah menjelaskan dalam persyaratan teknis pengunaan indek bahan dan upah pekerja. Dalam SNI-7394:2008 menjelaskan ada 2 kategori penyusunan analisa harga satuan pekerjaan yaitu untuk bangunan yang sudah memiliki gambar rencana yang sudah detail dan gambar rencana yang belum detail. Berdasarkan ketentuan didalam SNI 7394:2008 angka 5.2 tentang Persyaratan Teknis huruf e) disebutkan bahwa untuk gambar rencana yang belum mempunyai gambar detail maka bisa digunakan analisa nomor 6.28 s/d 6.36 Analisa nomor 6.30, 6.31 dan 6.32 dari SNI 7394:2008 tersebut *tidak tepat secara teorit dipergunakan* untuk menghitung harga satuan elemen struktur bangunan pada Pembangunan proyek X karena beberapa pertimbangan sebagai berikut :

- Analisa nomor 6.30, 6.31 dan 6.32 tersebut tidak diketahui mutu beton yang digunakan sementara pada Spesifikasi Teknis sudah jelas disebutkan mutu beton yang digunakan adalah K-300 yang kandungan materialnya berbeda dengan yang terdapat di analisa tersebut.
- Berat besi tulangan yang digunakan didalam analisa nomor 6.30, 6.31 dan 6.32 tersebut sangat berbeda dengan berat besi tulangan dari setiap elemen struktur bangunan yang dihitung berdasarkan gambar DED ataupun As Built Drawing.
- Dimensi Kolom, Balok dan Pelat dari analisa nomor 6.30, 6.31 dan 6.32 tersebut tidak diketahui secara pasti sementara dari gambar DED maupun As Built Drawing telah jelas dimensi untuk Kolom, Balok dan Pelat yang dilaksanakan.

Maka dari analisa tersebut apakah proyek X ini akan menimbulkan resiko-resiko jika dibandingkan dengan anlisa sesuai dengan gambar kerja, jika ada risiko seberapa risiko terhadap proyek dari segi Mutu, Waktu, dan Biaya.

Analisa harga satuan pekerjaan beton bertulang untuk Kolom, Balok dan Pelat seperti yang tercantum didalam Dokumen Kontrak mirip dengan analisa nomor 6.30, 6.31 dan 6.32 dari SNI 7394:2008. Namun yang membedakan adalah koefisien tidak semuaya sesuai dengan SNI melainkan dengan analisa dari kontraktor selaku penawar dalam lelang.

Seperti yang telah dijelaskan di bagian sebelumnya, seharusnya analisa yang seperti ini tidak digunakan untuk proyek yang sudah jelas spesifikasi teknisnya dan sudah ada gambar rencana detail untuk setiap elemen struktur bangunan. Adapun analisa harga satuan pekerjaan dari kontrak proyek X pada gambar 4.4 sampai gambar 4.7.

1 m3 Membi	uat k	olom beton bertulang (300 Kg besi + b	ekisting)			
4.000	kg	Paku Biasa 2" - 5"	23,565.00		94,260.00	
2.000	ltr	Minyak Bekisting	7,685.00		15,370.00	
288.000	kg	Besi Beton Ulir	11,780.00		3,392,640.00	
62.300	kg	Besi Beton Polos	10,245.00		638,263.50	
4.204	kg	Kawat beton	14,345.00		60,300.64	
323.000	kg	Semen Portland	1,535.00		495,805.00	
0.520	m3	Pasir Cor Beton	245,925.00		127,881.00	
0.780	m3	Koral Beton (Batu Pecah tangan 1/2)	271,545.00		211,805.10	
0.150	m3	Kayu 5/7 (Meranti)	4,098,800.00		614,820.00	
3.220	lbr	Plywood tebal 9 mm; 122x244	122,960.00		395,931.20	
20.000	btg	Dolken Kayu f 8-10/400 cm	35,860.00		717,200.00	
7.050	OH	Pekerja tak terampil	50,000.00	352,500.00		
0.350	OH	Tukang Batu	65,000.00	22,750.00		
3.300	OH	Tukang Kayu	70,000.00	231,000.00		
2.100	OH	Tukang Besi / Las	70,000.00	147,000.00		
0.570	OH	Kepala tukang Kayu	75,000.00	42,750.00		
0.250	OH	Mandor	80,000.00	20,000.00		
			TOTAL	816,000.00	6,764,276.44 DIBULATKAN	7,580,276.44 7,580,270.00

Gambar 4.4. Analisa Harga Satuan Kolom Beton Bertulang Proyek X

			TOTAL	489,825.00	5,130,059.56 DIBULATKAN	5,619,884.5 5,619,880.0
0.265	Oh	Mandor	80,000.00	21,200.00		
0.265		Kepala tukang	75,000.00	19,875.00		
1.050	Oh	Tukang besi	70,000.00	73,500.00		
1.300	Oh	Tukang kayu	70,000.00	91,000.00		
0.275	Oh	Tukang batu	70,000.00	19,250.00		
5.300	Oh	Pekerja	50,000.00	265,000.00		
20.000	Btg	Dolken kayu galam Ø 8 / 4 m	35,860.00		717,200.00	
2.800	Lbr	Plywood tebal 9 mm	122,960.00		344,288.00	
0.120	m3	Balok kayu 5/7 meranti	4,098,800.00		491,856.00	
0.810	m3	Koral beton	271,545.00		219,951.45	
0.540	m3	Pasir beton	245,925.00		132,799.50	
323.000	Kg	Semen portland	1,535.00		495,805.00	
2.309	Κġ	Kawat beton	14,345.00		33,122.61	
73.400	Kg	Besi Beton Polos	10,245.00		751,983.00	
157.500	Kg	Besi beton ulir	11,780.00		1,855,350.00	
1.600	Ltr	Minyak bekisting	7,685.00		12,296.00	
3.200	Kg	Paku biasa 2" - 5"	23,565.00		75,408.00	

Gambar 4.5. Analisa Harga Satuan Balok beton Bertulang pada Proyek X

1 m3 Me	mbuat	plat beton bertulang tebal 12 cm	n			
2.2	100 K	Pala kiasa 20 EU	22 555 00		75 400 00	
3.2			23,565.00		75,408.00	
1.6	600 Lt	,	7,685.00		12,296.00	
110.0)00 Kg	Besi beton ulir	11,780.00		1,295,800.00	
1.9	925 Kg	Kawat beton	14,345.00		27,614.13	
323.0	000 Kg	Semen portland	1,535.00		495,805.00	
0.5	540 m	3 Pasir beton	245,925.00		132,799.50	
0.8	310 m	3 Koral beton	271,545.00		219,951.45	
0.0	060 m	3 Balok kayu 5/7 meranti	4,098,800.00		245,928.00	
1.4	147 Lb	r Plywood tebal 9 mm	122,960.00		177,893.52	
20.0	000 Bt	g Dolken kayu galam Ø 8 / 4 m	35,860.00		717,200.00	
5.3	300 OI	n Pekerja	50,000.00	265,000.00		
0.2	275 OI	n Tukang batu	70,000.00	19,250.00		
1.3	300 OI	n Tukang kayu	70,000.00	91,000.00		
1.0)50 Ol	Tukang besi	70,000.00	73,500.00		
0.2	265 Ol	n Kepala tukang	75,000.00	19,875.00		
0.2	265 Ol	n Mandor	80,000.00	21,200.00		
			TOTAL	489,825.00	3,400,695.59 DIBULATKAN	3,890,520.59 3,890,520.00

Gambar 4.6. Analisa Harga Satuan Pelat t 12 cm beton Bertulang pada Proyek X

m3 Membi	uat p	lat canopy beton bertulang tebal 1	LO cm			
3.200	Kg	Paku biasa 2" - 5"	23,565.00		75,408.00	
1.600	Ltr	Minyak bekisting	7,685.00		12,296.00	
90.000	Kg	Besi beton ulir	11,780.00		1,060,200.00	
1.575	Kg	Kawat beton	14,345.00		22,593.38	
225.000	Kg	Semen portland	1,535.00		345,375.00	
0.540	m3	Pasir beton	245,925.00		132,799.50	
0.810	m3	Koral beton	271,545.00		219,951.45	
0.060	m3	Balok kayu 5/7 meranti	4,098,800.00		245,928.00	
1.447	Lbr	Plywood tebal 9 mm	122,960.00		177,893.52	
20.000	Btg	Dolken kayu galam Ø 8 / 4 m	35,860.00		717,200.00	
5.300	Oh	Pekerja	50,000.00	265,000.00		
0.275	Oh	Tukang batu	70,000.00	19,250.00		
1.300	Oh	Tukang kayu	70,000.00	91,000.00		
1.050	Oh	Tukang besi	70,000.00	73,500.00		
0.265	Oh	Kepala tukang	75,000.00	19,875.00		
0.265	Oh	Mandor	80,000.00	21,200.00		
			TOTAL	489,825.00	3,009,644.84 DIBULATKAN	3,499,469.84 3,499,460.00

Gambar 4.7. Analisa Harga Satuan Pelat t Canopy beton Bertulang pada Proyek X

Analisa pada kontrak ini tidak menghitung secara pasti kebutuhan volume setiap elemen dari kolom, balok, dan pelat. Elemen-elemen itu adalah dari kebutuhan Beton, Besi dan Bekisting, diketahui bahwa proyek X sangat komplek sekali variasi-variasi dimensi dan mutu dalam setiap gedung, namun analisa yang diberikan untuk beton bertulang sendiri hanya seperti pada gambar diatas. Sehingga memungkinkan analisa ini akan memberikan kekuatiran dalam penerapanya, yaitu akan memberikan efek rugi/untung untuk kontraktor yang akan bekerja.

4.5 Perbedaan analisa Harga satuan pada Gedung X dan Analisa dengan DED

Analisa kontrak tersebut digunakan untuk setiap elemen dari beton bertulang sesuai dengan jenis variabelnya yaitu kolom, balok dan Pelat. Karena analisa pada proyek tidak melakukan break down harga , maka setiap elemen kolom dengan berbagai variasi dimensi, mutu, dan kebutuhan bahan akan disama ratakan, dan sebaliknya untuk Balok dan Pelat. Sehingga ini akan memberikan selisih antara kedua elemen tersebut. Namun dalam kontrak digunakan faktor pengali untuk setiap lantai, faktor pengali yang digunakan adalah sesuai dengan kontrak yang ada yaitu **1,09** untuk lantai 2 dan **1,12** untuk lantai 3. Faktor pengali ini sesuai dengan peraturan yang ada.

Perbedaan-perbedaan Analisa Harga satuan dapat dilihat pada tabel 4.27 sampai tabel 4.29, namun secara lengkap dapat dilihat pada lampiran yang ada.

Tabel 4.27. Perbedaan AHSP Kolom dengan DED dan Proyek X gedung B

No.	Nama Pekerjaan (Sumber Analisa)		ga Satuan Po	Keterangan		
			Kontrak		Analisa	
1	1 m3 Membuat Kolom Beton Bertulang (Dokumen Kontrak)	Rp	7.580.282	tidak ada		
2	1 m3 Kolom K1.A 50/65 (SNI 7394:2008 dan Gambar DED)	Rp	7.580.282	Rp 6.196.778.50		Nilai kontrak > nilai yang seharusnya.
3	1 m3 Kolom K3.A 40/55 (SNI 7394:2008 dan Gambar DED)	Rp	7.580.282	Rp	7.000.532.80	Nilai kontrak > nilai yang seharusnya.
4	1 m3 Kolom K1 50/50 (SNI 7394:2008 dan Gambar DED)	Rp	7.580.282	Rp	6.956.867,90	Nilai kontrak > nilai yang seharusnya.
5	1 m3 Kolom K2 Ø50 (SNI 7394:2008 dan Gambar DED)	Rp	7.580.282	Rp	6.378.387,32	Nilai kontrak > nilai yang seharusnya.
6	1 m3 Kolom K3 40/40 (SNI 7394:2008 dan Gambar DED)	Rp	5.892.311	Rp	8.062.439,25	Nilai kontrak < nilai yang seharusnya.
7	1 m3 Kolom K4 30/30 (SNI 7394:2008 dan Gambar DED)	Rp	5.538.248	Rp	8.353.243,46	Nilai kontrak < nilai yang seharusnya.
8	1 m3 Kolom KP 12/15 (SNI 7394:2008 dan Gambar DED)	Rp	2.973.036	Rp	3.294.271,85	Nilai kontrak < nilai yang seharusnya.

Sumber: Pengolahan Perbedaan Analisa Harga Satuan Beton Bertulang

Tabel 4.28. Perbedaan AHSP Balok dengan DED dan Proyek X gedung B

No.	Nama Pekerjaan (Sumber Analisa)		ga Satuan Pe	Keterangan		
		Kontrak		Analisa		
1	1 m3 Membuat Balok Beton Bertulang (Dokumen Kontrak)	Rp	5.618.510	tidak ada		
2	1 m3 Balok BO 40/70 (SNI 7394:2008 dan Gambar DED)	Rp	5.276.998	Rp	5.937.318,87	Nilai kontrak < nilai yang seharusnya.
3	1 m3 Balok B1 30/60 (SNI 7394:2008 dan Gambar DED)	Rp	5.618.510	Rp	6.730.816,84	Nilai kontrak < nilai yang seharusnya.
4	1 m3 Balok B2 30/60 (SNI 7394:2008 dan Gambar DED)	Rp	5.618.510	Rp	6.969.270,93	Nilai kontrak < nilai yang seharusnya.
5	1 m3 Balok B3 30/40 (SNI 7394:2008 dan Gambar DED)	Rp	5.618.510	Rp	6.509.413,54	Nilai kontrak < nilai yang seharusnya.
6	1 m3 Balok B4 15/20 (SNI 7394:2008 dan Gambar DED)	Rp	5.618.510	Rp	8.441.289,56	Nilai kontrak < nilai yang seharusnya.
7	1 m3 Balok B1.A 30/70 (SNI 7394:2008 dan Gambar DED)	Rp	5.618.510	Rp	5.328.010,18	Nilai kontrak > nilai yang seharusnya.

Sumber: Pengolahan Perbedaan Analisa Harga Satuan Beton Bertulang

Tabel 4.29. Perbedaan AHSP Pelat dengan DED dan Proyek X gedung B

No.	Nama Pekerjaan (Sumber Analisa)		ga Satuan Pe	Keterangan		
		ŀ	Kontrak		Analisa	
1	1 m3 Membuat Pelat t 12 cm Beton Bertulang (Dokumen Kontrak)	Rp	3.889.175		Tidak Ada	ALAS B
2	1 m3 Membuat Pelat canopy t 10 cm Beton Bertulang (Dokumen Kontrak)	Rp	3.499.460		Tidak Ada	45114
41	1 m3 Membuat Pelat A UK(3x3m)t 12 cm					
	Beton Bertulang (SNI 7394:2008 dan Gambar	Rp	3.889.175	Rp	5.363.397,66	Nilai kontrak < nilai
3	DED)					yang seharusnya.
	1 m3 Membuat Pelat B UK(3x3m)t 10 cm					
	Beton Bertulang (SNI 7394:2008 dan Gambar	Rp	3.499.460	Rp	6.166.433,52	Nilai kontrak < nilai
4	DED)					yang seharusnya.

Sumber: Pengolahan Perbedaan Analisa Harga Satuan Beton Bertulang

Dari tabel 4.27 sampai 4.29 telah terlihat bahwa untuk nilai Analisa Harga satuan menggunakan Gmbar kerja sesuai SNI dan dengan SNI point 6.27-6.32 memiliki perbedaan yang cukup jauh, sehingga pasti akan memiliki selisi total biaya konstruksi yang dapat merugikan proyek jika pemilihan AHSP Beton Bertulang tidak tepat.

4.6 Selisih Biaya konstruksi

Perbedaan nilai AHSP dalam kedua cara tersebut sangat besar, hampir keseluruhan analisa menunjukan lebih besar analisa menggunakan DED, namun analisa yang dibandingkan didalam tabel tesebut merupakan analisa untuk lantai 1 yaitu tanpa dikalikan dengan faktor pengali. Sehingga memberikan kemungkinan akan lebih tinggi analisa Kontrak jika semakin tinggi bangunan tersebut. Sedangkan pada analisa DED tidak diberikan faktor pengali dalam analisanya dikarenakan asumsi-asumsi sebagai berikut:

- 1. Biaya Beton, besi dan bekisting tidak akan bertambah banyak karena pengaruh dari ketinggian. Biaya-biaya tersebut akan naik akibat dari inflasi atau dari harga pasar yang naik, sehingga tidak logis jika setiap lantai harga langsung itu naik.
- 2. Faktor pengali cocok diberikan untuk Alat seperti contohnya *Crane, Concret Pump* dan lainya, karena semakin tinggi ketinggihan gedung akan semakin menambah kebutuhan banyaknya konstruksi, demikian dengan pekerja. Dimana pekerja pada dasarnya tidak akan naik turun jika sudah di lantai selanjutnya, melainkan fokus kerja disana. Bahkan seharusnya malah frekuensi pekerjaan semakin sedikit karena dilantai atas pekerja hanya melakukan finishing akhir perakitan untuk dilakukan pengecoran nantinya.

Gambar 4.8. Total Biaya Kontruksi

Sumber: Pengolahan RAB Proyek X

Selisih total biaya konstruksi untuk Proyek X dalam segi struktural saja yaitu Kolom, Balok dan Pelat adalah Rp. 3.767.486.562,80. Maka kontraktor perlu melakukan pengendalian penghematan biaya, antara lain proses penghematan adalah:

- 1. Mengurangi tenaga kerja dalam pekerjaan lantai 2 dan 3, dalam kontrak lantai 2 dan 3 memiliki faktor pengali untuk koefisien Upah, sehingga jika memaksimalkan produktifitas pekerja maka akan memberikan laba yang lebih untuk lantai 2 dan 3.
- 2. Penggunaan pemakaian bekisting dalam proyek, dimana dalam perencanaan Bekisting digunakan 1 kali pakai namun dilapangan melakukan pemakaian 2-3 kali pemakaian, sehingga memiliki selisih harga yang cukup banyak, harga 1 m2 bekisting ± 412.000 sehinga jika dikalikan perluasan akan memiliki safe dana yang tinggi.
- 3. Melakukan in situ mixer artinya kontraktor melakukan pembuatan adukan beton dalam proyek, agar memaksimalkan takaran keperluan pengecoran dalam setiap hari pekerjaan.

Analisis Risiko Penggunaan AHSP Beton Bertulang Proyek X 4.7

4.7.1 Kuesioner

Pada bagian ini akan dibahas tentang risiko-risiko yang muncul akibat dari analisa yang dilakukan sebelumnya. Metode penjaringan risiko dengan membuat kuesioner penelitian yang diberikan kepada responden. Faktor-faktor risiko yang muncul adalah dari perbedaan analisa dan selisih biaya yang terjadi ditinjau dari segi Mutu, Waktu, dan Biaya kontruksi. Kuesioner diberikan kepada responden yang dilapangan dari Owner, Kontraktor dan Pengawas. Penyebaran kuesioner ini langsung kepada tim ahli dari setiap bidang tersebut, dikarenakan asumsi bahwa hal teknis seperti ini harus memiliki pengalaman dan seseorang yang memiliki kebijakan dalam kelompoknya. Jumlah koesioner yang disebarkan ada 3, sistem pengambilan adalah diskusi dan pengisian kuesioner. Dimana sebelum responden melakukan pengisian, akan dijelaskan terlebih dahulu analisa yang dibuat agar apa yang dipertanyakan sesuai dengan asumsi berama.

Tabel 4.30. Distribusi Penyebaran Kuesioner

Pelaku Proyek	Kuesioner yang	Kuesioner yang
	disebarkan	dikembalikan
Owner	T, E	
Kontraktor	1,3	
Pengawas	1	

Dalam kuesioner terdapat 3 kategori penilaian antara lain:

- 1. Probability (keseringan risiko)
- 2. *Impact* (dampak yang terjadi pada proyek)
- 3. Validitas Faktor risiko.

Analisa untuk Probability dan Impact menggunakan skala Linkert yaitu 1-5 sedangkan untuk validitas faktor risiko menggunakan skala Guttman.

4.7.2 Identifikasi Variabel Risiko

Identifikasi secara umum adalah menjawab pertanyaan-pertanyaan dari ketidak tepatan dan selisih biaya antara kontrak dan DED. Variabel risiko yang muncul berdasarkan dari faktor-faktor utama yaitu Data, waktu, ketentuan pengadaan, evaluasi pengadaan, mutu, biaya dan audit. Dari faktor-faktor tersebut akan dijabarkan sesuai dengan kondisi dari data dan didukung dengan literatur yang ada. Adapun variabel risiko antara lain:

Tabel 4.31. Identifikasi Risiko AHSP pada Proyek X

No	Faktor	Identifikasi Risiko
Peny	yusunan Anali	isa Harga Satuan Pekerjaan dalam Kontrak
1.1	Data	Ketidak Tepatan perencanaan gambar rencana
	BRA	Data desain tidak lengkap
	ASR	Banyaknya Perubahan Perencanaan pekerjaan
估		Uraian pekerjaan tidak dijelaskan secara jelas dan lengkap
57		didalam spesifikasi
1.2	Waktu	singkatnya waktu yang disediakan Owner untuk penyusunan AHSP
		kurangnya tenaga terampil dalam perencanaan AHSP
1.3	Ketentuan	Ketentuan Pengadaan tidak fleksibel sesuai dengan
	Pengadaan	perubahan/tetap mengikat
Ш		AHSP merupakan dublikasi proyek lain yang diterapkan di
		proyek baru
		Penyusunan AHSP tidak sesuai standart yang diberikan
7		(SNI) atau tinjauan lainya
1.4	Evaluasi	AHSP dibuat lebih rendah berguna untuk pemenangan
4	Pengadaan	tender
1.5	Mutu	AHSP tidak menjelaskan spesifikasi mutu dalam setiap
	Ġ\	breakdown AHSP beton bertulang
		AHSP tidak bisa digunakan sebagai pengendalian mutu
		terhadap biaya
4	TUA	AHSP memungkinkan penurunan mutu akibat mengalami
		kekurangan kebutuhan beton, bekisting, dan besi per m3
	MAG	pekerjaan
	WAIT	AYAJA UN'NIVEDERSILATA
	RANK	NUSTIAYAJA UNIKTVEKER
A	SPER	RAYAWIIAHAYAJAUNIKIV
	TAKA	S PRERAY WILLIAYA JA'U

No	Faktor	Identifikasi Risiko						
1.6	Biaya	AHSP memberikan nilai biaya yang sama rata untuk pekerjaan beton bertulang yang sama (Kolom, Balok, Pelat)						
3R AS	BRAN	AHSP lebih murah akibat tidak bisa memberikan informasi kebutuhan volume material per satuan volume dengan akurat						
		AHSP memiliki faktor pengali untuk setiap lantai, yang memberikan nilai semakin besar lantai di atasnya						
X.		Ketidak cocokan kebutuhan biaya memberikan pengaruh terhadap nilai pembayaran terhadap pekerjaan						
1.7	Audit	Faktor pengali akan memberikan temuan dalam audit						

Tabel 4.32. Identifikasi Risiko AHSP dengan menggunakan DED

No	Faktor	Identifikasi Risiko					
Pen	Penyusunan Analisa Harga Satuan Pekerjaan dengan Mengunakan DED						
2.1	Data	menghitung AHSP dengan DED sangat menghadalkan keakuratan desain gambar					
		menghitung AHSP dengan DED sangat menghadalkan keakuratan spesifikasi teknis					
2.2	Waktu	AHSP dengan DED meberikan waktu penyusunan lebih lama					
	强	Memungkinkan banyak estimator dalam penyusunan karena indek harga dari hasil perhitungan volume/m3 pekerjaan					
2.3	Evaluasi Pengadaan	AHSP dengan DED akan memungkinkan nilai yang lebih tinggi dari OE					
2.5	Mutu	AHSP dengan DED memungkinkan kelebihan banyak material					
2.6	Biaya	AHSP dengan DED memberikan nilai biaya yang tinggi dalam satu m3 pekerjaan					
TA RS	TASB	tidak adanya Faktor pengali mengakibatkan selisih biaya antar lantai sedikit					

Risiko-risiko tersebut akan dinilai dari Keseringan (*probability*) dan Dampak (*impact*) yang nantinya skala tersebut akan di olah menggunakan skala *Severity Index* untuk mengetahui kategori risiko yang ada dalam setiap Faktor risiko yang ada dalam kuesioner.

4.7.3 Uji validitas.

Tahap uji validitas ini merupakan awal untuk melakukan analisa risiko, uji validitas dalam penelitian ini menggunakan **Skala Guttman**. Skala Guttman ini digunakan untuk mencari tanggapan responden secara tegas terhadap faktor-faktor risiko yang diberikan pada kuesioner. Skala Guttman menjelaskan jawaban yang "*Relevan dan Tidak Relevan*", faktor-faktor risiko dikatakan Relevan jika ada 1 dari semua responden memilih Relevan, namun Jika Tidak Relevan dimana semua responden memilih tidak relevan walaupun ada 1 responden yang memilih relevan maka tetap faktor risiko tersebut relevan dan dapat diolah ke tahap selanjutnya.

Dari hasil pengisihan kuesioner oleh responden terdapat beberapa risiko yang diangap tidak relevan terhadap proyek.

Tabel 4.33. Hasil Uji Validitas Kuesioner pada AHSP Proyek X

No	Faktor	Identifikasi Risiko	R	TR	Uji Skala Guttman			
M	Penyusunan	n Analisa Harga Satuan Pekerjaan dalam Kont	rak					
1.1	Data	Ketidak Tepatan perencanaan gambar rencana	3	0	Relevan			
		Data desain tidak lengkap	3	0	Relevan			
	21	Banyaknya Perubahan Perencanaan pekerjaan	2	1	Relevan			
	45	Uraian pekerjaan tidak dijelaskan secara jelas						
	計1.	dan lengkap didalam spesifikasi	3	0	Relevan			
1.2	Waktu	singkatnya waktu yang disediakan Owner						
	WAU	untuk penyusunan AHSP	2	1	Relevan			
		kurangnya tenaga terampil dalam perencanaan			PUBR			
		AHSP	3	0	Relevan			
1.3	Ketentuan	Ketentuan Pengadaan tidak fleksibel sesuai		13	1100			
	Pengadaan	dengan perubahan/tetap mengikat	1	2	Relevan			

No	Faktor	Identifikasi Risiko	R	TR	Uji Skala Guttman
		AHSP merupakan dublikasi proyek lain yang			Tidak
		diterapkan di proyek baru	0	3	Relevan
	TVU	Penyusunan AHSP tidak sesuai standart yang		4	
	BRAY	diberikan (SNI) atau tinjauan lainya	3	0	Relevan
1.4	Evaluasi	AHSP dibuat lebih rendah berguna untuk			Tidak
	Pengadaan	pemenangan tender	0	3	relevan
1.5	Mutu	AHSP tidak menjelaskan spesifikasi mutu		7	
		dalam setiap breakdown AHSP beton			
		bertulang	2	1	Relevan
		AHSP tidak bisa digunakan sebagai			
W		pengendalian mutu terhadap biaya	2	1	Relevan
3		AHSP memungkinkan penurunan mutu akibat			
	7	mengalami kekurangan kebutuhan beton,			
		bekisting, dan besi per m3 pekerjaan	1	2	Relevan
1.6	Biaya	AHSP memberikan nilai biaya yang sama rata			
N. I.		untuk pekerjaan beton bertulang yang sama			
A V		(Kolom, Balok, Pelat)	2	1	Relevan
		AHSP lebih murah akibat tidak bisa			
14		memberikan informasi kebutuhan volume			
RA		material per satuan volume dengan akurat	2	1	Relevan
		AHSP memiliki faktor pengali untuk setiap			
	41	lantai, yang memberikan nilai semakin besar			
	451	lantai di atasnya	2	1	Relevan
	HT.	Ketidak cocokan kebutuhan biaya memberikan			
		pengaruh terhadap nilai pembayaran terhadap			ATT A
	VAU	pekerjaan	2	1	Relevan
1.7	Audit	Faktor pengali akan memberikan temuan			RIBR
	HIV.	dalam audit	3	0	Relevan

Tabel 4.34. Hasil Uji Validitas Kuesioner pada AHSP dengan DED

No	Faktor	Identifikasi Risiko	R	TR	Uji Skala Guttman
P	enyusunan A	nalisa Harga Satuan Pekerjaan dengan Mengu DED	ınak	an	
2.1	Data	menghitung AHSP dengan DED sangat menghadalkan keakuratan desain gambar menghitung AHSP dengan DED sangat	3	0	Relevan
2.2	Waktu	menghadalkan keakuratan spesifikasi teknis AHSP dengan DED meberikan waktu penyusunan lebih lama Memungkinkan banyak estimator dalam	2	1	Relevan Relevan
2.3	Evaluasi	penyusunan karena indek harga dari hasil perhitungan volume/m3 pekerjaan AHSP dengan DED akan memungkinkan nilai	3	0	Relevan
	Pengadaan	yang lebih tinggi dari OE	1	2	Relevan
2.5	Mutu	AHSP dengan DED memungkinkan kelebihan banyak material	0	3	Tidak Relevan
2.6	Biaya	AHSP dengan DED memberikan nilai biaya yang tinggi dalam satu m3 pekerjaan tidak adanya Faktor pengali mengakibatkan	2	1	Relevan
		selisih biaya antar lantai sedikit	2	1	Relevan

4.8 Analisis Variabel Risiko

Analisa Variabel Risiko akan dilakukan setelah uji Validitas faktor-faktor resiko yang ada, dimana faktor resiko yang Relevan akan dilakukan pengujian *Severity index* dan *Risk Matrix*. Cooper, et al (2005) dalam skripsi Erwin B (2013) menambahkan bahwa *Probability Impact Matrix* dapat menyatakan tingkat pentingya suatu risiko dengan melihat kombinasi antara probabilitas terjadinya risiko dan dampak terjadinya risiko dan memasukan keduanya dalam suatu skala probabilitas dan dampak. Dimana *Severity Index* mempunyai keunggulan untuk mempermudah pengklasifikasian. Berikut ini akan diberikan contoh perhitungan dalam mencari level risiko berdasarkan *severity Index* (SI) dan Mencari Signifikan risiko dengan *Risk Matrix*.

4.8.1 Severity Index.

Severity Index dalam analisa levelnya menggunakan faktor skala Linker pada Probabilitas dan Dampak fungsinya adalah untuk faktor pengali dari sikap di severity index, adapaun Skala Linker untuk *Probability* dan *Impact* dapat dilihat pada tabel 4.35.

Tabel 4 35 Skala Linker Untuk Pernyataan Probability dan Impact

Skala Nilai	Skala Pernyataan	Skala pernyataan
	Probability	Impact
1	Sangat Jarang	Sangat Rendah
2	Jarang	Rendah
3	Cukup	Sedang
4	Sering	Tinggi
5	Sangat Sering	Sangat Tinggi

Dari skala Linker diatas jika dilakukan Analisi menggunakan severity index akan di dapatkan level risiko. Dengan memasukan pada rumus SI sebagai berikut:

$$SI = \frac{\sum_{i=1}^{5} a_i x_i}{5 \sum_{i=1}^{n} x_i} (100\%) \tag{4.2}$$

Analisa Severity Index ini memiliki beberapa kategori level risiko berdasarkan dari persen SI setiap risiko yang dinilai oleh responden untuk Probability dan Impact. Level risiko SI pada tabel 4.36.

Tabel 4 36 Persen Level Risiko Severity Index

Kategori	SI(%)	Skala Risk Matrix
Sangat Tinggi (ST)	$80 \le SI \le 100$	5
Tinggi(T)	$60 \le SI \le 80$	/\(\) (\) (\) (\)
Cukup/Sedang (S)	$40 \le SI \le 60$	3
Rendah(R)	20 ≤ SI ≤40	// // \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Sangat Rendah (SR)	≤20	1

a. Penilaian Severity Index untuk Probability

Perhitungan dampak risiko menggunakan metode severity index adalah sebagai berikut, misalkan variabel risiko "Data Desain Tidak Lengkap" 3 responden untuk probabilitas memilih 1 Jarang, 1 Cukup dan 1 Sering. Dari penilaian diatas maka dikalikan dengan skala Linker untuk setiap elemen penilaian Level Risiko yaitu untuk Jarang memiliki Skala 2, Cukup memiliki skala 3, dan sering memiliki skala 4. Sehingga dapat di masukan dalam rumus SI sebagai pada rumus 4.3.

$$SI = \frac{\sum_{i=1}^{5} a_i x_i}{5 \sum_{i=1}^{n} x_i} (100\%)$$

$$SI = \frac{((1x0) + (2x1) + (3x1) + (4x1) + (5x0))}{5x3} (100\%)$$

$$SI = 60\%$$

Hasil SI dari Probability memiliki nilai 60 %, artinya jika di konversikan ke level risiko Severity Index, maka risiko **Data Desain Tidak Lengkap** memiliki level risiko yang Sedang. Selanjutnya level risiko Sedang ini memiliki skala risk matrix adalah 3.

Tabel 4 37. Hasil Severity Index untuk Probability

.	E 14	Identifikasi Risiko		R	S	T	ST	TOTAL	CT	IZATEGODI.
No	Faktor			2	3	4	5	TOTAL	SI	KATEGORI
Peny	usunan Analis	a Harga Satuan Pekerjaan dalam Kontrak					Á			
1.1	Data	Ketidak Tepatan perencanaan gambar rencana	0	2	0	1	0	3	53,333	Sedang
		Data desain tidak lengkap	0	1	1	1	0	3	60	Sedang
		Banyaknya Perubahan Perencanaan pekerjaan	_0	2		1	0	3	53,333	Sedang
		Uraian pekerjaan tidak dijelaskan secara jelas dan lengkap didalam spesifikasi				0	0	3	40	Rendah
1.2	Waktu	singkatnya waktu yang disediakan Owner untuk penyusunan AHSP				0	\sim 1	3	60	Sedang
		kurangnya tenaga terampil dalam perencanaan AHSP		0		λ_2	0	3	60	Sedang
1.3	Ketentuan Pengadaan	Ketentuan Pengadaan tidak fleksibel sesuai dengan perubahan/tetap mengikat	M	0		1		3	53,333	Sedang
		AHSP merupakan dublikasi proyek lain yang diterapkan di proyek baru		1	1	0	1	3	66,667	Tinggi
1		Penyusunan AHSP tidak sesuai standart yang diberikan (SNI) atau tinjauan lainya	0	2	0	0	1	3	60	Sedang
1.4	Evaluasi Pengadaan	AHSP dibuat lebih rendah berguna untuk pemenangan tender	0	1	$\frac{1}{2}$		0	3	53,333	Sedang
1.5	Mutu	AHSP tidak menjelaskan spesifikasi mutu dalam setiap breakdown AHSP beton bertulang	0	1	0	2	0	3	66,667	Tinggi
	311	AHSP tidak bisa digunakan sebagai pengendalian mutu terhadap biaya	0	1	0	2	0	3	66,667	Tinggi
		AHSP memungkinkan penurunan mutu akibat mengalami kekurangan kebutuhan beton, bekisting, dan besi per m3 pekerjaan			Į		0	3	53,333	Sedang
1.6	Biaya	AHSP memberikan nilai biaya yang sama rata untuk pekerjaan beton bertulang yang sama (Kolom, Balok, Pelat)	0	1	1	0	1	3	66,667	Tinggi
		AHSP lebih murah akibat tidak bisa memberikan informasi kebutuhan volume material per satuan	0	1	0	0	2		14	HI
		volume dengan akurat AHSP memiliki faktor pengali untuk setiap lantai, yang memberikan nilai semakin besar lantai di	U	1	U	U	2	3	80	Tinggi
	HTT	atasnya Ketidak cocokan kebutuhan biaya memberikan	0	1	0	1	1	3	73,333	Tinggi
		pengaruh terhadap nilai pembayaran terhadap pekerjaan	0	1	1	0	1	3	66,667	Tinggi
1.7	Audit	faktor pengali akan Memberikan temuan saat audit	0	2	1	0	0	3	46,667	Sedang

NI.	E-1-4	Idensial Dieler	SR	R	S	T	ST	тотат	SI	IZ ATECODI
No	Faktor	Identifikasi Risiko		2	3	4	5	TOTAL	51	KATEGORI
Peny	usunan Analis	a Harga Satuan Pekerjaan dengan Mengunakan DED		K(107			AL FI	
2.1	Data	menghitung AHSP dengan DED sangat	3/4				311			
		menghadalkan keakuratan desain gambar	0	2	0	1	0	3	53,333	Sedang
1		menghitung AHSP dengan DED sangat					7 6		245	
		menghadalkan keakuratan spesifikasi teknis	0	1	0	2	0	3	66,667	Tinggi
2.2	Waktu	AHSP dengan DED meberikan waktu penyusunan		9 A =	124	20		LAT		
		lebih lama	0	1	0	2	0	3	66,667	Tinggi
		Memungkinkan banyak estimator dalam penyusunan				TIL	$\Lambda = 1$			
		karena indek harga dari hasil perhitungan					45	112	3.47	
	41.10	volume/m3 pekerjaan	0	1	1	1	0	3	60	Sedang
2.3	Evaluasi	AHSP dengan DED akan memungkinkan nilai yang								
	Pengadaan	lebih tinggi dari OE	1	1	0	1	0	3	46,667	Sedang
2.5	Mutu	AHSP dengan DED memungkinkan kelebihan								
		banyak material	1	0	1	1	0	3	53,333	Sedang
2.6	Biaya	AHSP dengan DED memberikan nilai biaya yang								
		tinggi dalam satu m3 pekerjaan	1	0	1	1	0	3	53,333	Sedang
		tidak adanya Faktor pengali mengakibatkan selisih								
		biaya antar lantai sedikit	0	1	0	2	0	3	66,667	Tinggi

Sumber : Pengolahan severity indek dari Kuesioner

b. Penilaian Severity Index untuk Impact

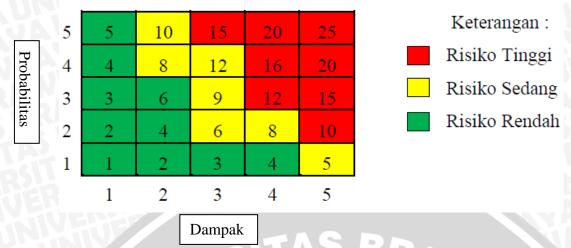
Sedangkan untuk penilaian skala dampak untuk Data Desain Tidak Lengkap dari 3 responden 2 memilih sedang, dan 1 memilih tinggi dampaknya, jika dilihat dari Skala Linker didapatkan 2 kategori yaitu skala sedang skala 3, dan Tinggi memiliki skala 4. Adapun hasil penilaian ini dimasukan kedalam rumus SI seperti pada rumus 4.4.

$$SI = \frac{\sum_{i=1}^{5} a_i x_i}{5 \sum_{i=1}^{n} x_i} (100\%)$$

$$SI = \frac{((1x0) + (2x0) + (3x2) + (4x1) + (5x0))}{5x3} (100\%)$$

$$SI = 66,667\%$$

Hasil SI dari Impact memiliki nilai 66,6 %, artinya jika di konversikan ke level risiko Severity Index, maka risiko **Data Desain Tidak Lengkap** memiliki level risiko yang Tinggi. Selanjutnya level risiko Sedang ini memiliki skala risk matrix adalah 4. Hasil SI dari Probability dan Impact akan di matrikan kedalam Risk Matrix agar mendapatkan risiko yang signifikan.


Tabel 4 38 Hasil Severity Index untuk Impact

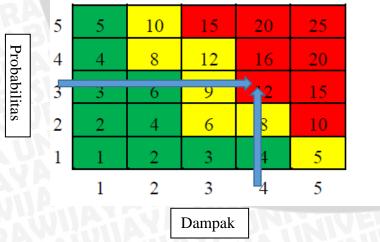
No	Faktor	Identifikasi Risiko	SR 1	R 2	S 3	T 4	ST 5	TOTAL	SI	KATEGORI
Penyusun	an Analisa Harg	a Satuan Pekerjaan dalam Kontrak	1127	X L						WV
1.1	Data	Ketidak Tepatan perencanaan gambar rencana	0	2	1	. 0	0	3	46,6667	Sedang
	A FE	Data desain tidak lengkap	0	0	2	1	0	3	66,6667	Tinggi
		Banyaknya Perubahan Perencanaan pekerjaan	0	0	1	1	1	3	80	Tinggi
		Uraian pekerjaan tidak dijelaskan secara jelas dan lengkap didalam spesifikasi	0	1		1		3	60	Sedang
1.2	Waktu	singkatnya waktu yang disediakan Owner untuk penyusunan AHSP	0	2		0	1	3	60	Sedang
		kurangnya tenaga terampil dalam perencanaan AHSP	0	0	2	1	C	3	66,6667	Tinggi
1.3	Ketentuan Pengadaan	Ketentuan Pengadaan tidak fleksibel sesuai dengan perubahan/tetap mengikat	0	1	1	1	C	3	60	Sedang
		AHSP merupakan dublikasi proyek lain yang diterapkan di proyek baru	0	1	1	. 0	1	3	66,6667	Tinggi
	113	Penyusunan AHSP tidak sesuai standart yang diberikan (SNI) atau tinjauan lainya	0	0	1	. 2	C	3	73,3333	Tinggi
.4	Evaluasi Pengadaan	AHSP dibuat lebih rendah berguna untuk pemenangan tender	0	0	1	2	C	3	73,3333	Tinggi
1.5	Mutu	AHSP tidak menjelaskan spesifikasi mutu dalam setiap breakdown AHSP beton bertulang	1	1		1	C	3	46,6667	Sedang
		AHSP tidak bisa digunakan sebagai pengendalian mutu terhadap biaya	1	1	1	. 0	C	3	40	Rendah
		AHSP memungkinkan penurunan mutu akibat mengalami kekurangan kebutuhan beton, bekisting, dan besi per m3 pekerjaan	1	1	1	. 0	C	3	40	Rendah
1.6	Biaya	AHSP memberikan nilai biaya yang sama rata untuk pekerjaan beton bertulang yang sama (Kolom, Balok, Pelat)			£2),	1	0	3	66,6667	Tinggi
		AHSP lebih murah akibat tidak bisa memberikan informasi kebutuhan volume material per satuan volume dengan akurat		0			C		7	Tinggi
		AHSP memiliki faktor pengali untuk setiap lantai, yang memberikan nilai semakin besar lantai di atasnya	O					3	60	Sedang
		Ketidak cocokan kebutuhan biaya memberikan pengaruh terhadap nilai pembayaran terhadap pekerjaan	Mo					3	66,6667	Tinggi
.7	Audit	faktor pengali akan Memberikan temuan saat audit			2	2 1	C	3	66,6667	Tinggi
No	Faktor	Identifikasi Risiko	SR 1	R 2	S 3	T 4	ST 5	TOTAL	SI	KATEGORI
enyusun		ga Satuan Pekerjaan dengan Mengunakan DED	\P +\P	74 2	91 E					
2.1	Data	menghitung AHSP dengan DED sangat menghadalkan keakuratan desain gambar	0	1	-0	2	0	3	66,6667	Tinggi
		menghitung AHSP dengan DED sangat menghadalkan keakuratan spesifikasi teknis	0	5		5) 1	1	3	73,3333	Tinggi
2.2	Waktu	AHSP dengan DED meberikan waktu penyusunan lebih lama			0	2	0	3	66,6667	Tinggi
	άN	Memungkinkan banyak estimator dalam penyusunan karena indek harga dari hasil perhitungan volume/m3 pekerjaan			0	2	0	3	66,6667	Tinggi
2.3	Evaluasi Pengadaan	AHSP dengan DED akan memungkinkan nilai yang lebih tinggi dari OE			0	ŭ	0		40	Rendah
2.5	Mutu	AHSP dengan DED memungkinkan kelebihan banyak material	1	0	0	2	0		60	Sedang
2.6	Biaya	AHSP dengan DED memberikan nilai biaya yang tinggi dalam satu m3 pekerjaan	1	0	0		0		60	Sedang
		tidak adanya Faktor pengali mengakibatkan selisih biaya antar lantai sedikit	0	1	0	2	0	3	66,6667	Tinggi

Sumber: Pengolahan severity indek dari Kuesioner

4.8.2 Matrik Risiko

Setelah didapatkan kategori dari probabilitas dan dampak maka dilakukan analisa nilai risiko untuk menentukan signifikan risiko. Mengetahui signifikan risiko dapat dengan melakukan pengeplotan level risiko dari severity index tergadap probabilitas dan dampak kedalam Matrik Risiko. Setiap level risiko dalam severity indek memiliki nilain konversi untuk *risk matrix*.

Gambar 4.9. Skala RIsk Matrix (probability Impact Matrix)


Hasil pengolahan Severity Index dari risiko Data Desain Tidak Lengkap didaparkan skala Risk Matrix adalah untuk Probability yaitu 3, sedangkan untuk Impact yaitu 4. Maka selanjutnya akan di plotkan untuk mengetahui jumlah nilai Risk Matrix untuk mengetahui Level Risiko berdasarkan Risk Matrix dengan rumus seperti rumus 4.5.

$$R = P(probability) \times I(Impact) \qquad (4.5)$$

$$= 3 \times 4$$

$$= 12$$

Dari nilai 12 ini akan dimasukan ke risk matrik untuk mengetahui berada di zona warna apa risiko tersebut, seperti pada gambar 4.10.

Gambar 4.10. Hasil Risk Matrix Analisa Data Desain Tidak Lengkap

Konversi masuk zona merah sehingga faktor risiko untuk "Data Desain Tidak Lengkap" termasuk risiko tinggi (Red Zone) dalam proyek dan menjadi signifikan risiko, dan harus diberikan responya.

4.8.3 Signifikan risiko

Signifikan risiko merupakan faktor-faktor risiko yang memiliki Level Risiko di antara "**Tinggi-Sangat Tinggi**". Sehingga risiko yang sangat rendah sampai sedang tidak dilakukan respon risiko dikarenakan risiko tersebut tidak memberikan bahaya yang signifikan pada pelaksanaan proyek berlangsung. Sesuai dengan tahapan diatas faktor-faktor yang ada dalam kuesioner diolah sesuai *probability* dan *Impact* yang terjadi sehingga sampai menemukan level risiko berdasarkan *Severity Index* dan *Risk Matrix*.

Tabel 4.39. Level Risiko pada Faktor Risiko Kuesioner

No	Folton	Identifikasi Risiko	I	P	Skala
110	Faktor	Tuenunkasi Kisiko			Risiko
N	Penyusunar	n Analisa Harga Satuan Pekerjaan dalam Kont	rak		
1.1	Data	Ketidak Tepatan perencanaan gambar rencana	3	3	Sedang
		Data desain tidak lengkap	3	4	Sedang
11	5	Banyaknya Perubahan Perencanaan pekerjaan	3	4	Sedang
		Uraian pekerjaan tidak dijelaskan secara jelas			
		dan lengkap didalam spesifikasi	2	3	Rendah
1.2	Waktu	singkatnya waktu yang disediakan Owner			
		untuk penyusunan AHSP	3	3	Sedang
		kurangnya tenaga terampil dalam perencanaan			
77		AHSP	3	4	Sedang
1.3	Ketentuan	Ketentuan Pengadaan tidak fleksibel sesuai			
	Pengadaan	dengan perubahan/tetap mengikat	3	3	Sedang
	S_{1}	Penyusunan AHSP tidak sesuai standart yang			
	111	diberikan (SNI) atau tinjauan lainya	3	4	Sedang
1.5	Mutu	AHSP tidak menjelaskan spesifikasi mutu			15
		dalam setiap breakdown AHSP beton			
		bertulang	4	3	Sedang
		AHSP tidak bisa digunakan sebagai			BKG
		pengendalian mutu terhadap biaya	4	2	Sedang
131	RASA	AHSP memungkinkan penurunan mutu akibat	井		
FA	5 PCB	mengalami kekurangan kebutuhan beton,			VAR
	TAKA	bekisting, dan besi per m3 pekerjaan	3	2	Sedang

1.6	Biaya	AHSP memberikan nilai biaya yang sama rata untuk pekerjaan beton bertulang yang sama (Kolom, Balok, Pelat) AHSP lebih murah akibat tidak bisa	4	4	Tinggi
	BRAY BRAY AS BE	memberikan informasi kebutuhan volume material per satuan volume dengan akurat AHSP memiliki faktor pengali untuk setiap	4	4	Tinggi
		lantai, yang memberikan nilai semakin besar lantai di atasnya Ketidak cocokan kebutuhan biaya memberikan	4	3	Sedang
1.7	A Pr	pengaruh terhadap nilai pembayaran terhadap pekerjaan/permintaan	4	4	Tinggi
1.7	Audit	faktor pengali akan memberikan kerugian pengembalian keuangan dalam audit BPK	3	4	Sedang
No	Faktor	Identifikasi Risiko	Ι	P	Skala Risiko
		Identifikasi Risiko nalisa Harga Satuan Pekerjaan dengan Mengu DED			
		nalisa Harga Satuan Pekerjaan dengan Mengu DED menghitung AHSP dengan DED sangat menghadalkan keakuratan desain gambar			
Pe	Data	menghitung AHSP dengan DED sangat menghitung AHSP dengan DED sangat menghadalkan keakuratan desain gambar menghitung AHSP dengan DED sangat menghadalkan keakuratan spesifikasi teknis	ınaka	n	Risiko
Pe	nyusunan A	malisa Harga Satuan Pekerjaan dengan Mengu DED menghitung AHSP dengan DED sangat menghadalkan keakuratan desain gambar menghitung AHSP dengan DED sangat menghadalkan keakuratan spesifikasi teknis AHSP dengan DED meberikan waktu penyusunan lebih lama Memungkinkan banyak estimator dalam	inaka 3	n	Risiko
Pe	Data	malisa Harga Satuan Pekerjaan dengan Mengu DED menghitung AHSP dengan DED sangat menghadalkan keakuratan desain gambar menghitung AHSP dengan DED sangat menghadalkan keakuratan spesifikasi teknis AHSP dengan DED meberikan waktu penyusunan lebih lama	inaka 3 4	n 4	Risiko Sedang Tinggi
Per 2.1	Data	malisa Harga Satuan Pekerjaan dengan Mengu DED menghitung AHSP dengan DED sangat menghadalkan keakuratan desain gambar menghitung AHSP dengan DED sangat menghadalkan keakuratan spesifikasi teknis AHSP dengan DED meberikan waktu penyusunan lebih lama Memungkinkan banyak estimator dalam penyusunan karena indek harga dari hasil	3 4 4	n 4 4	Risiko Sedang Tinggi Tinggi
Pe	Data Waktu Evaluasi	malisa Harga Satuan Pekerjaan dengan Mengu DED menghitung AHSP dengan DED sangat menghadalkan keakuratan desain gambar menghitung AHSP dengan DED sangat menghadalkan keakuratan spesifikasi teknis AHSP dengan DED meberikan waktu penyusunan lebih lama Memungkinkan banyak estimator dalam penyusunan karena indek harga dari hasil perhitungan volume/m3 pekerjaan AHSP dengan DED akan memungkinkan	3 4 4	4 4 4	Sedang Tinggi Tinggi Sedang

Dari keseluruhan faktor-faktor risiko dalam proyek yang diberikan kepada responden untuk dilakukan pengisian sesuai dengan panduan yang ada level risiko yang muncul dari segi sedang-tinggi. Sehingga hanya risiko tinggi saja yang akan dilakukan respon risiko saja. Respon risiko diberikan tidak pada setiap identifikasi risiko melainkan hanya faktor yang mendukung, indentifikasi resiko hanya digunakan acuan untuk mengembangkan masalah yang jerjadi pada faktor risiko. Adapun signifikan risiko dari proyek x dapat dilihat pada tabel 4.36.

Tabel 4.40. Signifikan Risiko Penerapan AHSP dengan DED dan Sesuai Proyek X

No	Faktor	Identifikasi Risiko	Skala Risiko
1	Biaya AHSP proyek memberikan nilai biaya yang sama rata untuk pekerjaan beton bertulang yang sama (Kolom, Balok, Pelat)		Tinggi
	7	AHSP proyek lebih murah akibat tidak bisa memberikan informasi kebutuhan volume material per satuan volume dengan akurat	Tinggi
		Ketidak cocokan kebutuhan biaya memberikan pengaruh terhadap nilai pembayaran terhadap pekerjaan/permintaan	Tinggi
WA SA		tidak adanya Faktor pengali mengakibatkan selisih biaya antar lantai sedikit	Tinggi
2	Data	menghitung AHSP dengan DED sangat menghadalkan keakuratan spesifikasi teknis	Tinggi
3	Waktu	AHSP dengan DED meberikan waktu penyusunan lebih lama	Tinggi

Dari analisis tersebut dapat diketahui bahwa ada 3 faktor utama yang nanti harus diperhitungkan dalam pengunaan analisa harga satuan yaitu Biaya, Data, dan Waktu. Sehinnga dalam proses pemilihan analisa harga satuan beton bertulang harus disesuaikan kebutuhan yang ada dari proyek ditinjau dari *Biaya*, *Data dan waktu* yang bisa dilakukan dalam proyek nantinya. Dari hasil analisis ini menunjukan kebenaran dari sistem manajemen proyek dimana ada 3 aspek utama manajemen proyek yaitu, Mutu, Waktu,

dan Biaya. Data disini bisa dijadikan sebagai acuan mutu, maka dari itu hasil seignifikan risiko ini bisa menjawab hipotesa pada aspek penting dalam manajemen proyek yaitu Mutu, Waktu, Biaya.

4.9 Respon risiko

Dari hasil pengolahan kuesioner didapatkan ada 3 faktor utama dalam penyusunan Analisa Harga Satuan Pekerjaan yang memberikan efek terbesal dari faktor lainya jika tidak melakukan pertimbangan lebih jauh. Faktor tersebut adalah **Biaya**, **Data** dan **Waktu**. Ketiga faktor ini merupakan signifikan risiko dengan mengidentifikasi risikorisiko yang ada. Respon yang berikan adalah sesuai dengan Respon yang diusulkan oleh responden dari setiap faktor risiko dalam kuesioner. Dari ke-3 responden maka disimpulkan dengan deskriptif sesuai signifikan risiko yang di analisis.

4.9.1 Respon risiko terhadap Faktor Biaya

Ada 4 risiko yang signifikan dalam faktor biaya sesuai penilaian responden, dari ke empat signifikan risiko ada 2 topik utama yang digabungkan.

A. AHSP proyek memberikan nilai biaya yang sama rata untuk pekerjaan beton bertulang yang sama (Kolom, Balok, Pelat) dan AHSP proyek lebih murah akibat tidak bisa memberikan informasi kebutuhan volume material per satuan volume dengan akurat.

Identifikasi Masalah:

Karena analisa AHSP Kontrak tidak mengidentifikasi Jenis, Variasi, Macam Mutu, dan menyama ratakan setiap elemen yang sama, padahal kebutuhan dan volume berbeda. Contoh Analisis Harga Satuan Balok UK 30x60 cm K-300.

Tabel 4.41. Kebutuhan balok 30/60 kontrak dan seharusnya.

Item	Kontrak	Seharusnya
Mutu	Kontrak hayan	Mutu Beton K-300
	menjelaskan balok (300	Besi Polos dan Ulir
	kg besi + bekisitng)	Bekising Kayu Kelas II
Kebutuhan	Besi ulir 157,5kg	Beton K-300 kebutan Besi Ulir
Volume	Semen portal 323 kg	165,0 kg/m ³ , besi Polos 57,1
	Besi polos 73,4 kg, 2,8	kg/m ³ bekisitng 7 m ²
	lebar polywod t9mm	PRINCES EDSILS
BRAZAU	122x244	UNIMIVERERS
Harga per m ³	Rp. 5.619.884	Rp. 6.969.270

Respon Risiko dari Responden

- Kontraktor harus melakukan adendum kontrak dalam Analisa Harga Satuan yang kurang tepat, dan Harus menjelaskan kebutuhan seharunya yang dikeluarkan untuk pekerjaan beton bertulang.
- Owner harus memilih perencanaan AHSP yang tepat dengan pertimbangan apakah perencanaan sudah matang atau masih banyak kekurangan perencanana.
- B. Ketidak cocokan kebutuhan biaya memberikan pengaruh terhadap nilai pembayaran terhadap pekerjaan/permintaan dan tidak adanya Faktor pengali mengakibatkan selisih biaya antar lantai sedikit.

Identifikasi Masalah:

Asumsi faktor pengali adalah hanya untuk alat berat saja, pekerja dan bahan setiap lantai tidak mengalami kenaikan harga bahan dan upah. Karena setiap naik laintai semua pekerja akan stanby dilantai itu hingga istirahat. Dengan tidak tepatnya harga yang seharusnya dikeluarkan maka akan memiliki ketidak tepatan pengeluaran finansial. Karena pembayaran pekerjaan sesuai dengan volume yang sudah dikerjakan x dengan harga yang ditawar /m³. Contoh Analisis Harga Satuan Balok UK 30x60 cm K-300.

Tabel 4.42. Harga per Lantai balok UK 30/60 cm

Item	Kontrak	Seharusnya permintaan	Selisih Biaya
Harga lantai 1	Rp. 5.619.884	Rp. 6.969.270	Rp. 1.349.386
Harga lantai 2	Rp. 6.334.839	Rp. 6.969.270	Rp. 843.596
Harga lantai 3	Rp. 6.334.839	Rp. 6.969.270	Rp. 675.000

Respon Risiko dari Responden

Menghitung kembali ketika kontrak sudah di tandatangani, sesuia dengn DED, sehinga saat pemesanan bisa memperkirakan kebuthan volume/biaya yang harus dibeli dan biaya yang dikeluarkan sesuai dengan tarjed yang akan di kerjakan, agar tidak mengakibatkan kelebihan dan kekurangan material.

4.9.2 Respon risiko terhadap Faktor Data

A. menghitung AHSP dengan DED sangat menghadalkan keakuratan spesifikasi teknis

Identifikasi Masalah:

- 1. setiap perhitungan volume harus memahami mutu, dimensi dan jenis yang digunakn dari besi dan kayu, yang seharunya sudah jelas dalam RKS.
- 2. jika salah memasukan sepesifikasi teknis, harga per m3 akan berbeda jauh.

Respon Risiko dari Responden

- 1. jika proyek sudah matang perencanaanya, maka seharunya mengunakan AHSP Beton Bertulang sesuai SNI 7394:2008 point (6.1 s/d 6.27) sehingga lebih akurat sesuai dengan spesifikasi dan variasi ukuran dan bentuk. jika belum matang maka menggunakan analisa point (6.28 s/d 6.36) namun kontraktor harus melakukan ADD nantinya.
- Material yang akan digunakan untuk konstruksi harus dimintakan persetujuan Direksi, Jika disetujui selanjutnya dibawa kelaboratorium yang telah diremondasikan oleh pengguna jasa ,untuk dilakukan test karakteristik sesuai spesifikasi teknis yang telah disetujui Direksi

4.9.3 Respon risiko terhadap Faktor Waktu

A. AHSP dengan DED meberikan waktu penyusunan lebih lama.

Identifikasi Masalah:

- 1. Karena harus teliti dalam menghitung Volume material per m³ sesuai dengan jenis dan mutu setiap elemen beton bertulang.
- 2. Memiliki tahapan yang panjang, tidak bisa mengunkan instan idenk dari SNI saja, karena indek SNI hanya perjaan per m³ beton bertulang, per 10 kg besi ulir dan polos, per 1 m² bekisting, padahal dalam kontrak per m³ Balok UK 30x60 k-300.

Respon risiko dari Responden

1. Harus melibatkan Estimator yang sudah berpengalaman dan memiliki sertifikasi keahlian dalam menajemen proyek khususnya estimator AHSP, serta melibatkan Team ahli dalam pemilihan AHSP proyek yang akan dilakukan.

Dari analisis identifikasi masalah setiap Faktor risiko Biaya, Data dan Waktu maka dapat diberikan respon terhadap signifikan risiko, Respon tersebut dapat dilihat pada tabel

Tabel 4.43. respon risiko terhadap signifikan risiko

Faktor	Risiko	Respon risiko Responden	Tindakan
Biaya	AHSP proyek memberikan nilai biaya yang sama rata untuk pekerjaan beton bertulang yang sama (Kolom, Balok, Pelat) dan AHSP proyek lebih murah akibat tidak bisa memberikan informasi kebutuhan volume material per satuan volume dengan akurat.	- Kontraktor harus melakukan adendum kontrak dalam Analisa Harga Satuan yang kurang tepat, dan Harus menjelaskan kebutuhan seharunya yang dikeluarkan untuk pekerjaan beton bertulang.	Dihindari
	Ketidak cocokan kebutuhan biaya memberikan pengaruh terhadap nilai pembayaran terhadap pekerjaan/permintaan dan tidak adanya Faktor pengali mengakibatkan selisih biaya antar lantai sedikit.	- Menghitung kembali ketika kontrak sudah di tandatangani, sesuia dengn DED, sehinga saat pemesanan bisa memperkirakan kebuthan volume/biaya yang harus dibeli dan biaya yang dikeluarkan sesuai dengan tarjed yang akan di kerjakan, agar tidak mengakibatkan kelebihan dan kekurangan material.	Dihindari (Risk Avoidance)
Data	menghitung AHSP dengan DED sangat menghadalkan keakuratan spesifikasi teknis	- jika proyek sudah matang perencanaanya, maka seharunya mengunakan AHSP Beton Bertulang sesuai SNI 7394:2008 point (6.1 s/d 6.27) sehingga lebih akurat sesuai dengan spesifikasi dan variasi ukuran dan bentuk. jika belum matang maka menggunakan analisa point (6.28 s/d 6.36) namun kontraktor harus melakukan ADD nantinya. - Material yang akan digunakan untuk konstruksi harus dimintakan persetujuan Direksi, Jika disetujui selanjutnya dibawa kelaboratorium yang telah diremondasikan oleh pengguna jasa ,untuk dilakukan	Dipindahkan (Risk Transfer)

NIV AUI	IVERSITA LA	test karakteristik sesuai spesifikasi teknis yang telah disetujui Direksi	NA YA
Waktu	AHSP dengan DED meberikan waktu penyusunan lebih lama.	- Harus melibatkan Estimator yang sudah berpengalaman dan memiliki sertifikasi keahlian dalam menajemen proyek khususnya estimator AHSP, serta melibatkan Team ahli dalam pemilihan AHSP proyek yang akan dilakukan.	(Risk

