BAB IV

HASIL ANALISIS DAN PEMBAHASAN

4.1. Kondisi Daerah Studi

Kondisi daerah studi yang dibahas adalah kondisi hidrogeologi regional. Kondisi ini berdasarkan terdapatnya airtanah dan produktivitas akuifer yang dibagi menjadi 4 kelompok, yaitu akuifer dengan aliran melalui ruang antar butir, akuifer dengan aliran melalui celahan dan ruang antar butir, akuifer dengan aliran melalui celahan, rekahan dan saluran dan akuifer (bercelah atau sarang) produktif kecil dan daerah airtanah langka.

Berdasarkan peta hidrogeologi, Kecamatan Tongas di Kabupaten Probolinggo termasuk dalam 3 kelompok akuifer, yaitu:

- 1. Akuifer dengan aliran melalui ruang antar butir, yaitu:
 - a. Akuifer produktif dengan penyebaran luas, yaitu akuifer dengan keterusan sedang; muka airtanah atau tinggi pisometri airtanah dekat atau di atas muka tanah; debit sumur umumnya 5 sampai 10 liter/detik, dan beberapa tempat lebih dari 20 liter/detik.
- 2. Akuifer dengan aliran melalui celahan dan ruang antar butir, yaitu:
 - a. Akuifer produktif sedang dengan penyebaran luas, yaitu akuifer dengan keterusan sangat beragam; kedalaman muka airtanah bebas umumnya dalam, debit sumur umumnya kurang dari 5 liter/detik.
 - b. Setempat, akuifer produktif, yaitu akuifer dengan keterusan sangat beragam, umumnya airtanah tidak dimanfaatkan karena dalamnya muka airtanah, mata air setempat berdebit kecil dapat diturap.
- 3. Akuifer (bercelah atau sarang) produktif kecil dan daerah airtanah langka.
 - a. Akuifer produktif kecil, setempat berarti, yaitu umumnya keterusan sangat rendah; setempat airtanah dalam jumlah terbatas dapat diperoleh pada daerah lembah atau zona pelapukan dari batuan padu.

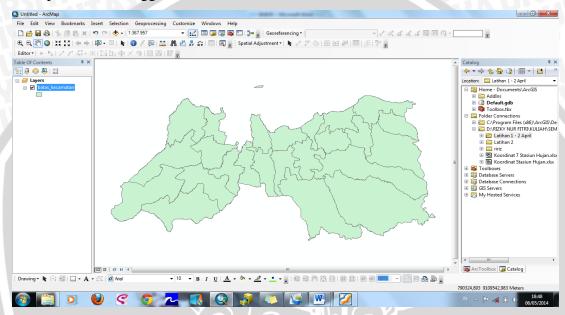
Untuk data sumur yang digunakan adalah sumur bor dan sumur penduduk sebagai acuan kedalaman muka airtanah dangkal dengan deskripsi sumur adalah sebagai berikut:

Gambar 4.1. Peta Hidrogeologi Kecamatan Tongas

Tabel 4.1. Deskripsi Sumur Bor

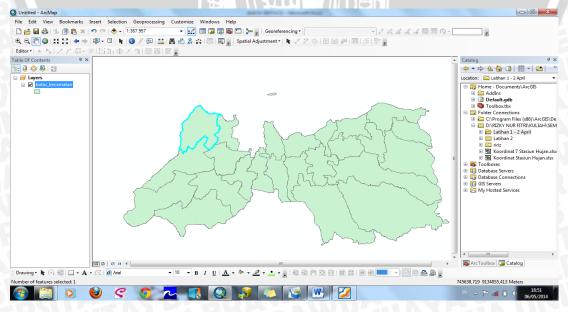
No.	Sumur	Deskripsi Deskripsi	
1.	Sumur Dalam	Lokasi: Ds. Klampok, Kec. Tongas, Kab. Probolinggo	
	Probolinggo 128	Koordinat : 07°45′15,4′′ LS; 113°03′50,0′′ BT	
	(SDPB 128)	Elevasi Tanah : + 80 m	
2.	Sumur Dalam	Lokasi: Ds. Curah Tulis, Kec. Tongas, Kab. Probolinggo	
	Probolinggo 089	Koordinat : 07°44′28,9′′ LS; 113°05′12,3′′ BT	
	(SDPB 089)	Elevasi Tanah: + 47 m	
3.	Sumur Dalam	Lokasi: Ds. Curah Tulis, Kec. Tongas, Kab. Probolinggo	
	Probolinggo 070	Koordinat : 07°44′06,9′′ LS; 113°05′07,0′′ BT	
	(SDPB 070)	Elevasi Tanah : + 44 m	
4.	Sumur Dalam	Lokasi: Ds. Tongas Kulon, Kec. Tongas, Kab. Probolinggo	
	Probolinggo 069	Koordinat : 07°44′56,4′′ LS ; 113°05′19,1′′ BT	
	(SDPB 069)	Elevasi Tanah: + 53 m	
5.	Sumur Dalam	Lokasi: Ds. Tongas Kulon, Kec. Tongas, Kab. Probolinggo	
	Probolinggo 068	Koordinat : 07°44′38,2′′ LS ; 113°05′28,0′′ BT	
	(SDPB 068)	Elevasi Tanah: + 50 m	
6.	Sumur Dalam	Lokasi: Ds. Wringinanom, Kec. Tongas, Kab. Probolinggo	
	Probolinggo 067	Koordinat : 07°45′08,2′′ LS; 113°06′43,6′′ BT	
	(SDPB 067)	Elevasi Tanah : + 42 m	
7.	Sumur Dalam	Lokasi: Ds. Tanjungrejo, Kec. Tongas, Kab. Probolinggo	
	Probolinggo 063	Koordinat : 07°44′03,4′′ LS; 113°04′49,9′′ BT	
	(SDPB 063)	Elevasi Tanah : + 42 m	
8.	Sumur Dalam	Lokasi: Ds. Sumendi, Kec. Tongas, Kab. Probolinggo	
	Probolinggo 062	Koordinat : 07°45′18,7′′ LS; 113°07′11,5′′ BT	
	(SDPB 062)	Elevasi Tanah: + 36 m	

Sumber: Saves, Farah (2013)

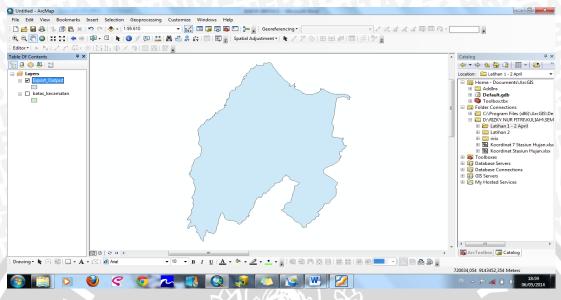

4.2. Pengolahan Data

4.2.1. Penentuan Batas Daerah Studi

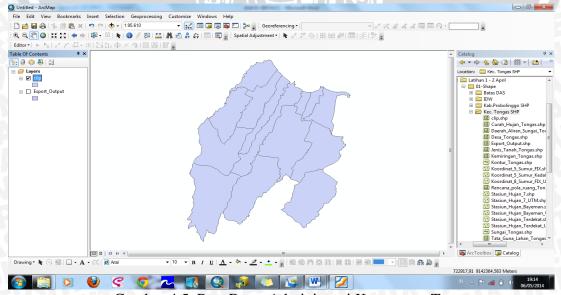
Batas yang digunakan untuk daerah studi adalah batas administrasi Kecamatan Tongas. Luas Kecamatan Tongas adalah 7.456 Ha atau 74,56 km² yang meliputi 14 (empat belas) desa, antara lain Desa Sumberejo, Bayeman, Wringinanom, Klampok, Tambakrejo, Tanjungrejo, Sumendi, Sumber Kramat, Pamatan, Tongas Kulon, Tongas


Wetan, Dungun, Curah Dringu dan Curah Tulis. (Sumber: http://id.wikipedia.org/wiki/Tongas, Probolinggo). Langkah – langkah yang dilakukan untuk menentukan batas daerah studi adalah sebagai berikut:

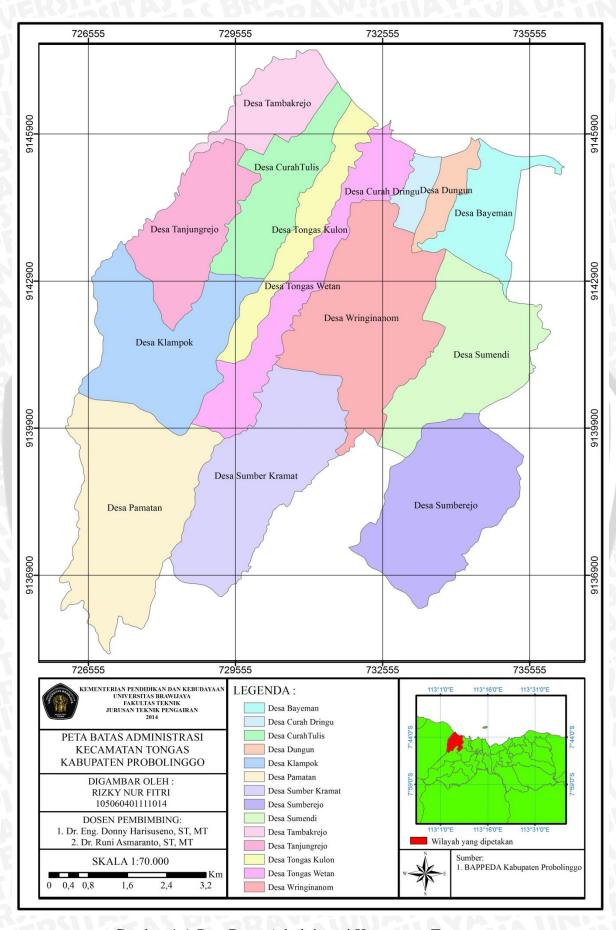
- 1. Dalam penentuan batas daerah studi ini menggunakan peta dasar Kabupaten Probolinggo yang berupa *shapefile* (.shp) yang diperoleh dari BAPPEDA Kabupaten Probolinggo.
- 2. Buka Arc. GIS 10.1 dan klik "Add Data" dan pilih file shapefile Batas Kecamatan Kabupaten Probolinggo.


Gambar 4.2. Peta Batas Kecamatan di Kabupaten Probolinggo

3. Klik kanan pada wilayah Kecamatan Tongas, pilih "Select Features". Maka wilayah Kecamatan Tongas akan terpilih.


Gambar 4.3. Peta Daerah Studi Kecamatan Tongas Terpilih

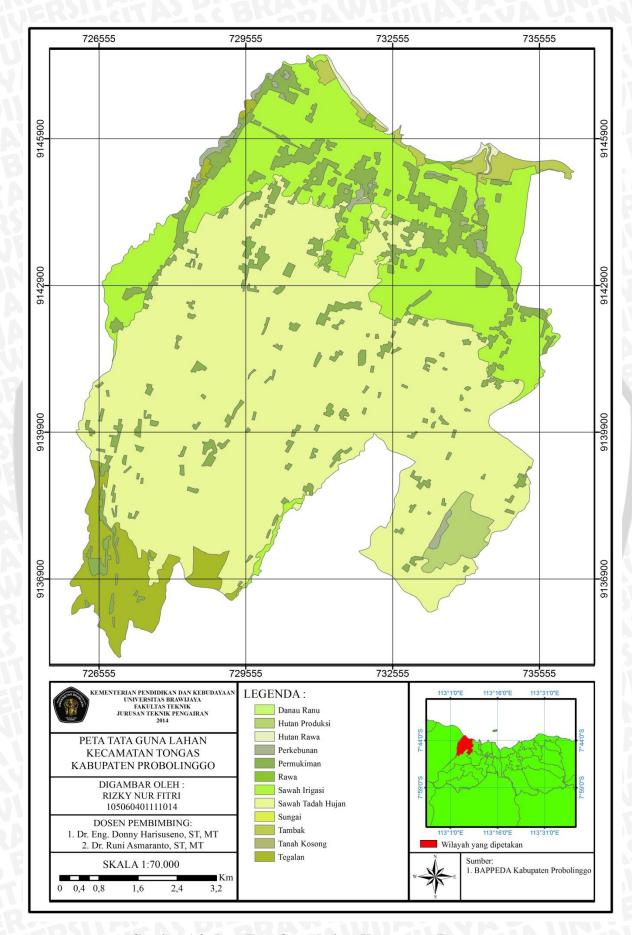
4. Kemudian klik kanan pada layer Batas Kecamatan, pilih "Data" kemudian "Export Data". Pilih lokasi peyimpanan data hasil Export. Dan kemudian pilih OK. Maka akan diperoleh Peta Batas Lokasi Studi Kecamatan Tongas.



Gambar 4.4. Batas Daerah Studi Kecamatan Tongas

- 5. Setelah diperoleh Batas Daerah Studi Kecamatan Tongas, maka langkah selanjutnya adalah membuat peta batas daerah studi untuk Peta Batas Administrasi, Jenis Tanah dan Tata Guna Lahan di Kecamatan Tongas.
- 6. Langkah pertama adalah pilih menu "Geoprosesing", pilih "Clip". Kemudian isi "Input Features" dengan Peta Batas Adminstrasi Kabupaten Probolinggo, isi "Clip Feature" dengan Batas Lokasi Studi Kecamatan Tongas yang diperoleh pada langkah sebelumnya sebagai acuan, dan "Output Feature Class" dengan nama file baru untuk meyimpan dan pilih OK.

Gambar 4.5. Peta Batas Administrasi Kecamatan Tongas


Gambar 4.6. Peta Batas Administrasi Kecamatan Tongas

726555

729555

732555

735555

Gambar 4.8. Peta Tata Guna Lahan Kecamatan Tongas

4.2.2. Analisa Lapisan Bawah Tanah

4.2.2.1. Soggiacenza (Kedalaman Muka Airtanah)

Untuk data kedalaman muka airtanah diperoleh dari sumur gali warga setempat yang dekat dengan lokasi sumur bor. Dari hasil survei di lokasi studi, maka dapat diperoleh data kedalaman muka airtanah adalah sebagai berikut:

Tabel 4.2. Kedalaman Muka Airtanah

No	Nama Sumur	Kedalaman Muka Airtanah (m)
1.	SDPB 128	24,50
2.	SDPB 089	17,20
3.	SDPB 070	12,58
4.	SDPB 069	28,00
5.	SDPB 068	16,27
6.	SDPB 067	12,80
7.	SDPB 063	7,50
8.	SDPB 062	9,40

Sumber: Hasil Survei

4.2.2.2. Conducibilità Idraulica Dell'Acquifero (Konduktifitas Hidraulik)

Perhitungan nilai K ini diambil dari perpaduan antara litologi log sumur bor dengan perpaduan kedalaman muka airtanah dangkal sumur penduduk yang berdekatan dengan sumur bor ini sendiri. Sedangkan nilai K untuk setiap lapisan diambil dari Tabel 2.8. Berikut adalah hasil litologi log tiap-tiap sumur.

4.2.2.2.1. Sumur Dalam Probolinggo 128 (SDPB 128)

Sumur ini terletak di Desa Klampok, Kecamatan Tongas. Sumur ini mempunyai kedalaman muka airtanah 24,50 meter. Dari hasil analisa data litologi log didapatkan nilai K sebagai berikut:

K =
$$\frac{((0,0002\times3)+(12\times2)+(450\times8)+(1,4\times10)+(1,4\times3))}{(3+2+8+10+3)}$$

=140,085 m/hari

 $=1,621\times10^{-3}$ m/detik

Tabel 4.3. Struktur Lapisan Tanah Sumur Dalam Probolinggo 128 (SDPB 128)

Kedalaman (m)	Jenis Batuan	K (m/hari)
0 sampai 3	Lempung	0,0002
3 sampai 5	Pasir menengah	12
5 sampai 13	Kerikil kasar, tufaan	450
13 sampai 23	Breksi	1,4
23 sampai 26	Breksi, tufaan	1,4
26 sampai 33	Breksi	1,4
33 sampai 46	Breksi, tufaan	1,4
46 sampai 60	Breksi bongkah	1,4
60 sampai 63	Pasir vulkanis	2,5
63 sampai 70	Breksi kompak	1,4
70 sampai 73	Pasir vulkanis	2,5
73 sampai 82	Breksi	1,4
82 sampai 96	Breksi, tufaan	1,4
96 sampai 98	Tufa	0,2
98 sampai 103	Breksi bongkah	(1,4
103 sampai 110	Tufa	0,2

Sumber: Hasil Analisa

4.2.2.2. Sumur Dalam Probolinggo 089 (SDPB 089)

Sumur ini terletak di Desa Curah Tulis, Kecamatan Tongas. Sumur ini mempunyai kedalaman muka airtanah 17,2 meter. Dari hasil analisa data litologi log didapatkan nilai K sebagai berikut:

$$K = \frac{((0,0002\times3)+(0,2\times3)+(2,5\times6)+(450\times6))}{(3+3+8+6+6)}$$
=150,867 m/hari
=1,746×10⁻³ m/detik

Tabel 4.4. Struktur Lapisan Tanah Sumur Dalam Probolinggo 089 (SDPB 089)

Kedalaman (m)	Jenis Batuan	K (m/hari)
0 sampai 3	Lempung	0,0002
3 sampai 6	Tufa	0,2
6 sampai 12	Pasir vulkanis	2,5

Lanjutan Tabel 4.4.

Kedalaman (m)	Jenis Batuan	K (m/hari)
12 sampai 18	Kerikil kasar	450
18 sampai 22	Breksi	1,4
22 sampai 35	Tufa	0,2
35 sampai 44	Breksi	1,4
44 sampai 47	Breksi	1,4
47 sampai 51	Breksi	1,4
51 sampai 57	Breksi	1,4
57 sampai 65	Kerikil kasar	450
65 sampai 71	Kerikil halus	150
71 sampai 79	Lempung	0,0002
79 sampai 81	Breksi	1,4
81 sampai 83	Kerikil kasar	450
83 sampai 88	Breksi	1,4
88 sampai 90	Lempung	0,0002
90 sampai 96	Tufa //	0,2
96 sampai 100	Kerikil kasar	450
100 sampai 120	Breksi	1,4

Sumber: Hasil Analisa

4.2.2.2.3. Sumur Dalam Probolinggo 070 (SDPB 070)

Sumur ini terletak di Desa Curah Tulis, Kecamatan Tongas. Sumur ini mempunyai kedalaman muka airtanah 12,58 meter. Dari hasil analisa data litologi log didapatkan nilai K sebagai berikut:

$$K = \frac{((0,0002 \times 2) + (2,5 \times 4) + (12 \times 6) + (450 \times 4))}{(2+4+6+4)}$$
=117,625 m/hari
=1,361 × 10⁻³ m/detik

Tabel 4.5. Struktur Lapisan Tanah Sumur Dalam Probolinggo 070 (SDPB 070)

Kedalaman (m)	Jenis Batuan	K (m/hari)
0 sampai 2	Lempung	0,0002
2 sampai 6	Pasir halus	2,5

Sumber: Hasil Analisa

4.2.2.2.4. Sumur Dalam Probolinggo 069 (SDPB 069)

Sumur ini terletak di Desa Tongas Kulon, Kecamatan Tongas. Sumur ini mempunyai kedalaman muka airtanah 28 meter. Dari hasil analisa data litologi log didapatkan nilai K sebagai berikut:

$$K = \frac{((0,0002 \times 2) + (0,2 \times 1) + (12 \times 3) + (450 \times 3) \times (1,4 \times 5) + (1,4 \times 3) + (12 \times 3) + (1,4 \times 1) + (450 \times 7))}{(2 + 1 + 3 + 3 + 5 + 3 + 3 + 1 + 7)}$$

=1545,950 m/hari

 $=1,789 \times 10^{-2} \,\text{m/detik}$

BRAWIJAYA

Tabel 4.6. Struktur Lapisan Tanah Sumur Dalam Probolinggo 069 (SDPB 069)

Kedalaman (m)	Jenis Batuan	K (m/hari)
0 sampai 2	Lempung	0,0002
2 sampai 3	Tuffa	0,2
3 sampai 6	Pasir menengah	12
6 sampai 9	Kerikil kasar, tufaan	450
9 sampai 14	Breksi	1,4
14 sampai 17	Breksi	1,4
17 sampai 20	Pasir menengah	12
20 sampai 21	Breksi	1,4
21 sampai 28	Kerikil kasar, tufaan	450
28 sampai 30	Basalt	0,01
30 sampai 33	Tufffa, breksi	0,2
33 sampai 35	Breksi	1,4
35 sampai 43	Tuffa	0,2
43 sampai 48	Breksi, tuffa	1,4
48 sampai 51	Tuffa pasiran	0,2
51 sampai 55	Tuffa, breksi	0,2
55 sampai 57	Breksi	1,4
57 sampai 58	Tuffa	0,2
58 sampai 68	Breksi, tuffa	1,4
68 sampai 70	Lempung	0,0002
70 sampai 83	Breksi	1,4
83 sampai 84	Breksi	1,4
84 sampai 86	Breksi	1,4
86 sampai 90	Breksi, basalt	1,4
90 sampai 97	Breksi, lempung	1,4
97 sampai 100	Breksi	1,4
100 sampai 104	Breksi	1,4
104 sampai 112	Breksi	1,4
112 sampai 115	Lempung, kerkil kasar	0,0002
115 sampai 120	Pasir menengah	12

Sumber: Hasil Analisa

4.2.2.2.5. Sumur Dalam Probolinggo 068 (SDPB 068)

Sumur ini terletak di Desa Tongas Kulon, Kecamatan Tongas. Sumur ini mempunyai kedalaman muka airtanah 16,27 meter. Dari hasil analisa data litologi log didapatkan nilai K sebagai berikut:

$$K = \frac{((0,0002 \times 2) + (2,5 \times 1) + (150 \times 5) + (12 \times 5) + (1,4 \times 3) + (45 \times 6))}{(2+1+5+5+3+6)}$$

$$= 49,395 \text{ m/hari}$$

$$= 5,717 \times 10^{-4} \text{ m/detik}$$

Tabel 4.7. Struktur Lapisan Tanah Sumur Dalam Probolinggo 068 (SDPB 068)

Kedalaman (m)	Jenis Batuan	K (m/hari)
0 sampai 2	Lempung	0,0002
2 sampai 3	Pasir halus	2,5
3 sampai 8	Kerikil halus	150
8 sampai 13	Pasir menengah	12
13 sampai 16	Breksi	1,4
16 sampai 22	Pasir kasar	45
22 sampai 26	Breksi	1,4
26 sampai 30	Breksi, tufaan	1,4
30 sampai 35	Pasir menengah	12
35 sampai 42	Breksi, tufaan	1,4
42 sampai 49	Breksi, tufaan	1,4
49 sampai 51	Kerikil kasar, tufaan	450
51 sampai 52	Lempung	0,0002
52 sampai 61	Kerikil kasar, tufaan	450
61 sampai 63	Lempung	0,0002
63 sampai 66	Pasir, kerikilan	45
66 sampai 79	Lempung	0,0002
79 sampai 81	Kerikil kasar, tufaan	450
81 sampai 84	Lempung	0,0002
84 sampai 86	Basalt	0,01
86 sampai 89	Kerikil kasar, tufaan	450
89 sampai 93	Breksi	1,4

Lanjutan Tabel 4.7.

Kedalaman (m)	Jenis Batuan	K (m/hari)
93 sampai 96	Breksi	1,4
96 sampai 100	Lempung	0,0002
100 sampai 112	Breksi	1,4
112 sampai 113	Lempung	0,0002
113 sampai 118	Breksi	1,4
118 sampai 120	Tuffa	0,2

Sumber: Hasil Analisa

4.2.2.2.6. Sumur Dalam Probolinggo 067 (SDPB 067)

Sumur ini terletak di Desa Wringinanom, Kecamatan Tongas. Sumur ini mempunyai kedalaman muka airtanah 12,80 meter. Dari hasil analisa data litologi log didapatkan nilai K sebagai berikut:

$$K = \frac{((0,0002 \times 4) + (2,5 \times 4) + (450 \times 4) + (25 \times 2))}{(4+4+4+2)}$$
=132,857 m/hari
=1,538×10⁻³ m/detik

Tabel 4.8. Struktur Lapisan Tanah Sumur Dalam Probolinggo 067 (SDPB 067)

Kedalaman (m)	Jenis Batuan	K (m/hari)		
0 sampai 4	Lempung	0,0002		
4 sampai 8	Pasir halus	2,5		
8 sampai 12	Kerikil kasar, tufaan	450		
12 sampai 14	Pasir halus	25		
14 sampai 22	Kerikil kasar, tufaan	450		
22 sampai 24	Breksi	1,4		
24 sampai 29	Kerikil kasar, tufaan	450		
29 sampai 32	Breksi, tufaan	1,4		
32 sampai 39	Tuffa, berpasir	0,2		
39 sampai 42	Breksi, tufaan	1,4		
42 sampai 47	Breksi, tufaan	1,4		
47 sampai 51	Kerikil kasar, tufaan	450		
51 sampai 56	Breksi, tufaan	1,4		

Lanjutan Tabel 4.8.

Kedalaman (m)	Jenis Batuan	K (m/hari)
56 sampai 57	Breksi, tufaan	1,4
57 sampai 60	Pasir halus	2,5
60 sampai 69	Kerikil kasar, tufaan	450
69 sampai 73	Lempung, tufaan	0,0002
73 sampai 75	Tuffa, lempungan	0,2
75 sampai 80	Kerikil kasar, tufaan	450
80 sampai 89	Breksi, tufaan	1,4
89 sampai 91	Kerikil kasar, tufaan	450
91 sampai 100	Kerikil kasar, tufaan	450
100 sampai 104	Kerikil kasar, tufaan	450
104 sampai 109	Basalt	0,001

Sumber: Hasil Analisa

4.2.2.2.7. Sumur Dalam Probolinggo 063 (SDPB 063)

Sumur ini terletak di Desa Tanjung Rejo, Kecamatan Tongas. Sumur ini mempunyai kedalaman muka airtanah 7,5 meter. Dari hasil analisa data litologi log didapatkan nilai K sebagai berikut:

$$K = \frac{((0,0002 \times 1) + (0,08 \times 2) + (12 \times 2) + (0,08 \times 1) + (45 \times 4))}{(1 + 2 + 2 + 1 + 4)}$$

$$= 42,240 \text{ m/hari}$$

$$= 4,889 \times 10^{-4} \text{ m/detik}$$

Tabel 4.9. Struktur Lapisan Tanah Sumur Dalam Probolinggo 063 (SDPB 063)

Kedalaman (m)	Jenis Batuan	K (m/hari)
0 sampai 1	Lempung	0,0002
1 sampai 3	Lanau	0,08
3 sampai 5	Pasir menengah	12
5 sampai 6	Lanau	0,08
6 sampai 10	Pasir kasar	45
10 sampai 14	Breksi tufaan	1,4
14 sampai 23	Breksi berpasir	1,4
23 sampai 28	Basalt	0,01

Lanjutan Tabel 4.9.

Kedalaman (m)	Jenis Batuan	K (m/hari)
28 sampai 29	Lempung	0,0002
29 sampai 34	Breksi tufaan	1,4
34 sampai 39	Kerikil kasar, tufaan	450
39 sampai 41	Breksi tufaan	1,4
41 sampai 67	Basalt	0,01
67 sampai 75	Breksi tufaan	1,4
75 sampai 80	Breksi tufaan	1,4
80 sampai 83	Lempung tufaan	0,0002
83 sampai 85	Kerikil kasar, tufaan	450
85 sampai 86	Lempung	0,0002
86 sampai 90	Kerikil kasar, tufaan	450
90 sampai 94	Breksi tufaan	1,4
94 sampai 99	Breksi	1,4
99 sampai 118	Breksi, basalt	1,4
118 sampai 120	Breksi tufaan	1,4

Sumber: Hasil Analisa

4.2.2.2.8. Sumur Dalam Probolinggo 062 (SDPB 062)

Sumur ini terletak di Desa Sumendi, Kecamatan Tongas. Sumur ini mempunyai kedalaman muka airtanah 9,40 meter. Dari hasil analisa data litologi log didapatkan nilai K sebagai berikut:

$$K = \frac{((0,0002 \times 5) + (450 \times 5))}{(5+5)}$$
= 225,000 m/hari
= 2,604 × 10⁻³ m/detik

Tabel 4.10. Struktur Lapisan Tanah Sumur Dalam Probolinggo 062 (SDPB 062)

Kedalaman (m)	Jenis Batuan	K (m/hari)
0 sampai 5	Lempung	0,0002
5 sampai 10	Kerikil kasar, tufaan	450
10 sampai 17	Breksi	1,4
17 sampai 19	Tuffa	0,2

Lanjutan Tabel 4.10.

Kedalaman (m)	Jenis Batuan	K (m/hari)	
19 sampai 20	Breksi	1,4	
20 sampai 22	Kerikil kasar, tufaan	450	
22 sampai 26	Breksi	1,4	
26 sampai 29	Kerikil kasar, tufaan	450	
29 sampai 31	Basalt	0,01	
31 sampai 37	Tuffa, breksi	0,2	
37 sampai 39	Breksi, pasir	1,4	
39 sampai 42	Basalt	0,01	
42 sampai 43	Kerikil kasar, tufaan	450	
43 sampai 47	Breksi, basalt	1,4	
47 sampai 49	Tuffa	0,2	
49 sampai 55	Tuffa, breksi	0,2	
55 sampai 63	Tuffa, berpasir halus	0,2	
63 sampai 67	Pasir menengah, kelanauan	5 12	
67 sampai 74	Pasir kasar	45	
74 sampai 81	Pasir halus	alus 2,5	
81 sampai 85	Pasir menengah	12	
85 sampai 90	Kerikil kasar, tufaan	450	

Sumber: Hasil Analisa

4.2.2.3. Acquifero (Media Akuifer)

Untuk data media akuifer diperoleh dari data litologi log yang kemudian dilihat dari jenis batuan yang menyusun lapisan tanah. Dari jenis batuan yang menyusun maka dapat diketahui jenis batuan yang termasuk akuifer. Dari hasil analisa data litologi log, maka dapat diperoleh data media akuifer adalah sebagai berikut:

Tabel 4.11. Media Akuifer

No	Nama Sumur	Akuifer Media
1.	SDPB 128	Pasir menengah
2.	SDPB 089	Tufa
3.	SDPB 070	Pasir halus
4.	SDPB 069	Tufa

Lanjutan Tabel 4.11.

No	Nama Sumur	Akuifer Media
5.	SDPB 068	Pasir halus
6.	SDPB 067	Pasir halus
7.	SDPB 063	Pasir menengah
8.	SDPB 062	Kerikil kasar, tufaan

Sumber: Hasil Analisa

4.2.2.4. Non - Saturo (Kondisi Zona Tak Jenuh)

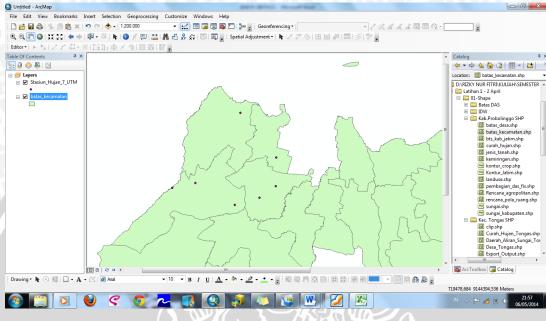
Untuk data kondisi zona tak jenuh diperoleh dari data litologi log yang kemudian dilihat dari jenis batuan yang terdapat di atas media akuifernya. Dari jenis batuan yang terdapat terdapat di atas media akuifernya maka dapat diketahui jenis batuan yang merupakan zona tak jenuh. Dari hasil analisa data litologi log, maka dapat diperoleh data kondisi zona tak jenuh adalah sebagai berikut:

Tabel 4.12. Kondisi Zona Tak Jenuh

No	Nama Sumur	Kondisi Zona Tak Jenuh
1.	SDPB 128	Lempung
2.	SDPB 089	Lempung
3.	SDPB 070	Lempung
4.	SDPB 069	Lempung
5.	SDPB 068	Lempung
6.	SDPB 067	Lempung
7.	SDPB 063	Lanau
8.	SDPB 062	Lempung

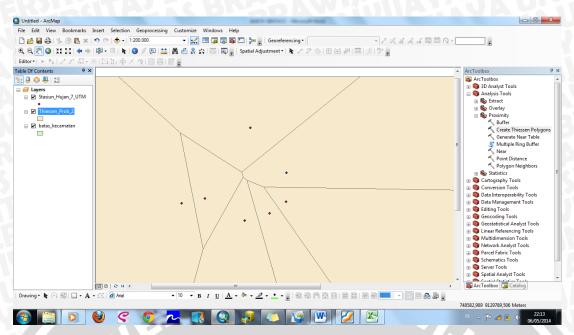
Sumber: Hasil Analisa

4.2.3. Analisa Hidrologi

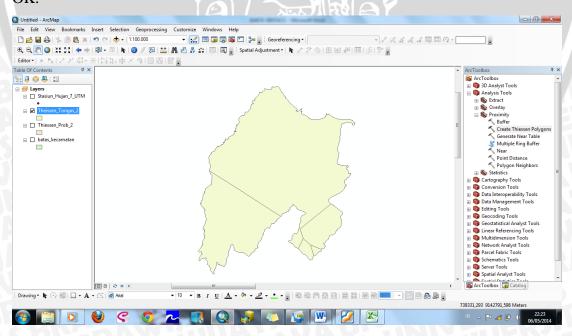

4.2.3.1. Pembuatan Poligon *Thiessen*

Curah hujan yang diperlukan untuk penyusunan suatu rancangan pemanfaatan air adalah curah hujan rata - rata di seluruh daerah yang bersangkutan, bukan curah hujan di suatu titik tertentu. Untuk menentukan tinggi curah hujan rerata daerah penulis menggunakan Metode Poligon Thiessen. Metode ini dipilih karena beberapa faktor pertimbangan yaitu jumlah stasiun hujan di lokasi studi maupun di sekitar lokasi studi jumlahnya cukup namun letaknya tidak merata dan lokasi studi merupakan daerah dataran sehingga sesuai dalam penggunaan Metode Poligon Thiessen. Dalam

pembuatan Poligon Thiessen penulis menggunakan bantuan "Arc Toolbox" pada program ArcGIS 10.1.


Langkah-langkah dalam membuat Poligon Thiessen adalah sebagai berikut:

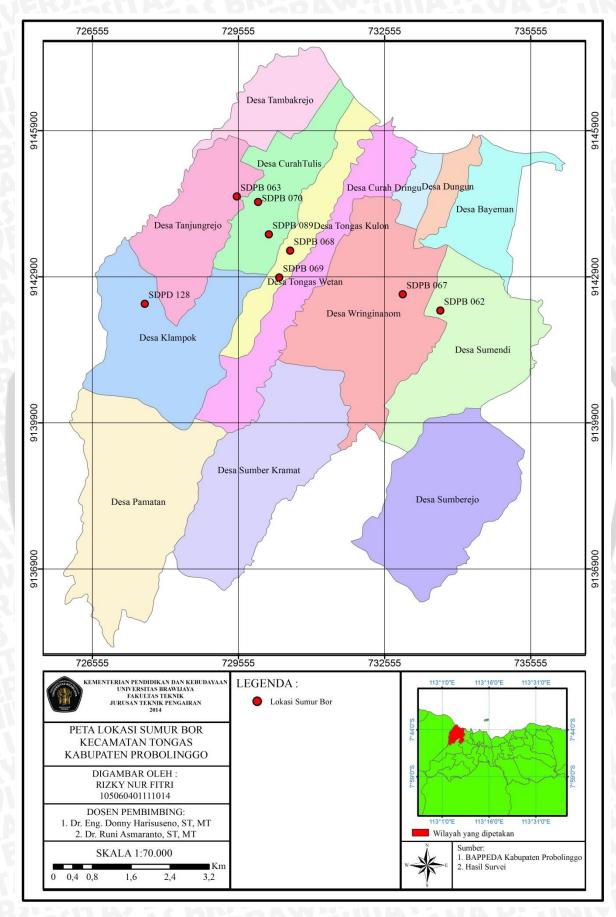
1. Buka Arc. GIS 10.1 dan klik "Add Data" dan pilih file shapefile Koordinat Stasiun Hujan dan Batas Wilayah Kabupaten Probolinggo.


Gambar 4.9. Peta Sebaran Stasiun Hujan dan Batas Wilayah Kabupaten Probolinggo

- Selanjutnya pilih menu "Create Thiessen Polygons" pada "Arc Toolbox". Kemudian isi kolom "Input Features" dengan peta Koordinat Stasiun Hujan, "Output Feature Class" dengan nama file baru untuk meyimpan dan "Output Field (Optional).
- 3. Kemudian klik "Environment", pilih "Processing Extent" kemudian pada "Extent" pilih "same as layer batas_kecamatan". Kemudian klik "Raster Analysis", pada "Mask" pilih batas kecamatan. Kemudian klik OK.

Gambar 4.10. Peta Poligon Thiessen Kabupaten Probolinggo

4. Selanjutnya harus disesuaikan hasil Poligon *Thiessen* Kabupaten Probolinggo dengan batas lokasi studi yaitu Kecamatan Tongas. Langkah pertama adalah pilih menu "Geoprosesing", pilih "Clip". Kemudian isi kolom "Input Features" dengan Peta Poligon Thiessen Kabupaten Probolinggo, isi kolom "Clip Feature" dengan Batas Lokasi Studi Kecamatan Tongas yang diperoleh pada langkah sebelumnya sebagai acuan, dan "Output Feature Class" dengan nama file baru untuk meyimpan dan pilih OK.


Gambar 4.11. Peta Poligon *Thiessen* Kecamatan Tongas

726555

729555

735555

732555

Gambar 4.13. Peta Lokasi Sumur Bor Kecamatan Tongas

4.2.3.2. Uji Konsistensi

Uji konsistensi berarti menguji kebenaran data lapangan yang tidak dipengaruhi oleh kesalahan pada saat pengiriman atau saat pengukuran, data tersebut harus betulbetul menggambarkan fenomena hidrologi seperti keadaan sebenarnya di lapangan. Dengan kata lain data hidrologi disebut tidak konsisten apabila terdapat perbedaan antara nilai pengukuran dengan nilai sebenarnya (Soewarno, 1995:23).

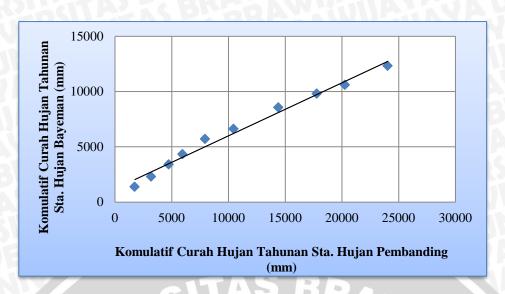
4.2.3.2.1. Analisis Kurva Massa Ganda

Kurva massa ganda adalah salah satu metode grafis untuk alat identifikasi atau untuk menguji konsistensi dan kesamaan jenis data hidrologi dari suatu pos hidrologi. Langkah-langkah untuk melakukan uji konsistensi menggunakan analisa kurva massa ganda sebagai berikut :

- 1. Menghitung hujan tahunan untuk masing-masing stasiun.
- 2. Menghitung rata-rata hujan tahunan untuk stasiun pembanding.
- 3. Menghitung komulatif hujan tahunan untuk stasiun yang akan diuji.
- 4. Menghitung komulatif hujan tahunan untuk stasiun pembanding.
- 5. Melakukan penggambaran dalam bentuk diagram pencar (scatter diagram) antara stasiun yang akan diuji dan stasiun pembanding. Stasiun yang akan diuji pada sumbu Y dan stasiun pembanding pada sumbu X.
- 6. Melakukan analisa terhadap konsistensi data hujan dengan cara membuat garis lurus pada diagram pencar dan melakukan analisa menentukan apakah ada perubaan slope atau tidak pada garis lurus yang dibuat pada diagram pencar, jika terjadi perubaan slope, maka pada titik setelah mengalami perubaan perlu adanya koreksi terhadap pencatatan data hujan dengan cara mengalikan dengan koefisien (K) yang dihitung berdasarkan perbandingan slope setelah mengalami perubahan (S₂) dan Slope sebelum mengalami perubahan (S_1) atau $K = S_2/S_1$.

Data yang digunakan dalam studi ini adalah curah hujan tahunan dari 5 stasiun hujan berpengaruh terhadap wilayah Kecamatan Tongas sesuai Peta Poligon Thiessen Kecamatan Tongas, yaitu Stasiun Hujan Bayeman, Stasiun Hujan Lumbang, Stasiun Hujan Muneng, Stasiun Hujan Boto Gardu dan Stasiun Hujan Patalan. Berikut ini merupakan data curah hujan tahunan dari 5 stasiun hujan tersebut diatas:

Tabel 4.13. Data Curah Hujan Tahunan


			Curah H	Iujan Tahun	an (mm)	
No	Tahun	Sta. Hujan Bayeman	Sta. Hujan Lumbang	Sta. Hujan Muneng	Sta. Hujan Boto Gardu	Sta. Hujan Patalan
1	2004	1375	1590	1460	2443	1475
2	2005	934	2459	1185	1029	1150
3	2006	1095	2057	1237	1557	1347
4	2007	927	1480	868	1617	877
5	2008	1378	1779	1014	2286	2892
6	2009	917	2001	880	2027	5125
7	2010	1936	2973	1901	4813	6106
8	2011	1236	2483	1427	4171	5485
9	2012	805	2011	1146	2884	3869
10	2013	1716	2918	2043	5451	4615
Jı	umlah	12319	21751	13161	28278	32941
	erata	1231,9	2175,1	1316,1	2827,8	3294,1

Sumber: Hasil Perhitungan

Tabel 4.14. Perhitungan Uji Konsistensi dengan Kurva Massa Ganda

	Curah Hujan Tahunan (mm)							
No	0		Rerata Curah Hujan Sta. Hujan Pembanding	Komulatif Curah Hujan Sta. Hujan Pembanding				
1.	1375	1375	1742,00	1742,00				
2.	934	2309	1455,75	3197,75				
3.	1095	3404	1549,50	4747,25				
4.	927	4331	1210,50	5957,75				
5.	1378	5709	1992,75	7950,50				
6.	917	6626	2508,25	10458,75				
7.	1936	8562	3948,25	14407,00				
8.	1236	9798	3391,50	17798,50				
9.	805	10603	2477,50	20276,00				
10.	1716	12319	3756,75	24032,75				

Sumber: Hasil Perhitungan

Gambar 4.14. Uji Konsistensi Data Stasiun Hujan Bayeman

Berdasarkan grafik uji konsistensi Stasiun Bayeman terhadap Pembanding, maka dapat disimpulkan bahwa data hujan konsisten, hal ini dikarenakan grafik berupa garis lurus dan tidak terjadi patahan arah garis. Untuk perhitungan uji konsistensi stasiun hujan yang lainnya terlampir pada Lampiran 2 Halaman 123.

4.2.3.3.Uji Homogenitas

Sekumpulan data dari suatu variabel hidrologi sebagai hasil pengamatan dapat disebut sama jenis (homogen) apabila data tersebut diukur dari resim (regime) yang tidak berubah.

4.2.3.3.1. Uji-T (*Tee-test*)

Uji-T termasuk dalam analisis statistik untuk menguji kesamaaan jenis suatu populasi data. Uji-T umumnya digunakan untuk meguji sampel ukuran kecil (N<30): menguji nilai rata-rata 2 (dua) kelompok sampel, menguji nilai rata - rata terhadap rata rata populasi, menguji data yang berpasangan, menguji koefisien korelasi (Soewarno: 1995:7).

Contoh Perhitungan Uji-T dengan rata-rata dari dua set sampel:

- Data curah hujan tahunan Stasiun Hujan Bayeman dan Stasiun Hujan Lumbang dari tahun 2004 sampai 2013.
- Jumlah data curah hujan tahunan masing-masing stasiun hujan (n) = 10
- Pembuatan hipotesis sebagai berikut:

H0 : $\mu_1 = \mu_2 \, (tidak \ terdapat \ perbedaan \ nyata nilai rata-rata hitung dua set$ sampel)

H0: $\mu_1 \neq \mu_2$ (terdapat perbedaan nyata)

- Rata-rata hitung sampel: $X_1 = 1231,9$ mm/tahun dan $X_2 = 2175,1$ mm/tahun
- Jumlah sampel: $N_1 = N_2 = 10$
- Simpangan baku: $S_1 = 373,245 \text{ mm/tahun dan } S_2 = 518,281 \text{ mm/tahun}$
- Derajat kebebasan $(d_k) = N_1 + N_2 2 = 10 + 10 2 = 18$
- Variabel-t terhitung

$$\sigma = \left| \frac{N_1 S_1^2 + N_2 S_2^2}{N_1 + N_2 - 2} \right|^{\frac{1}{2}}$$

$$\sigma = \left| \frac{N_1 S_1^2 + N_2 S_2^2}{N_1 + N_2 - 2} \right|^{\frac{1}{2}}$$

$$\sigma = \left| \frac{10.373,245^2 + 10.518,281^2}{10 + 10 - 2} \right|^{\frac{1}{2}}$$

$$\sigma = 476,052 \text{ mm/tahun}$$

$$t = \frac{\left| \overline{X}_1 - \overline{X}_2 \right|}{\sigma \left| \frac{1}{N} + \frac{1}{N} \right|^{\frac{1}{2}}}$$

= 476,052 mm/tahun

t =
$$\frac{\left|\overline{X}_{1} - \overline{X}_{2}\right|}{\sigma \left|\frac{1}{N_{1}} + \frac{1}{N_{2}}\right|^{\frac{1}{2}}}$$

t =
$$\frac{|1231,9-2175,1|}{476,052 \left| \frac{1}{10} + \frac{1}{10} \right|^{\frac{1}{2}}}$$

$$t = 4,430$$

- Karena nilai t terhitung = 4,430 > t kritis (t_c) 5% = 1,734 maka hipotesis nol yang menyatakan $\mu_1 = \mu_2$ ditolak. Dengan demikian dapat dikatakan 95 % data hujan tersebut berasal dari populasi yang berbeda atau dapat dikatakan 95 % adalah benar bahwa data hujan kedua stasiun hujan Bayeman dan Lumbang mempunyai perbedaan nyata. Dengan demikian keberadaan kedua pos tersebut masingmasing diperlukan untuk kedua lokasi tersebut.
- Oleh karena adanya perbedaan yang nyata ini, maka penulis menggunakan Metode Poligon *Thiessen* dalam penghitungan curah hujan rerata tahunan.
- Perhitungan uji homogenitas dengan metode Uji-T ditampilkan pada Tabel 4.15.
- Untuk perhitungan uji homogenitas stasiun hujan yang lainnya terlampir pada Lampiran 2 Halaman 123.

Tabel 4.15. Uji-T Stasiun Hujan Bayeman dan Stasiun Hujan Lumbang

			Bayeman			Lumbang		
No.	Tahun	\mathbf{X}_{1}	(X ₁ -X)	$(\mathbf{X}_1\mathbf{-}\mathbf{X})^2$	Tahun	X ₁	(X ₁ -X)	$(\mathbf{X}_1\mathbf{-}\mathbf{X})^2$
1	2004	1375	143	20478	2004	1590	-585	342342
2	2005	934	-298	88744	2005	2459	284	80599
3	2006	1095	-137	18742	2006	2057	-118	13948
4	2007	927	-305	92964	2007	1480	-695	483164
5	2008	1378	146	21345	2008	1779	-396	156895
6	2009	917	-315	99162	2009	2001	-174	30311
7	2010	1936	704	495757	2010	2973	798	636644
8	2011	1236	4	17	2011	2483	308	94802
9	2012	805	-427	182244	2012	2011	-164	26929
10	2013	1716	484	234353	2013	2918	743	551900
Jumlah	ΣX_i	12319,000	0,000	1253804,900	ΣX_i	21751,000	0,000	2417534,900
Rerata	X	1231,900	0,000	125380,490	X	2175,100	0,000	241753,490
Standart Deviasi	S	373,245		RM (A)	$\sqrt{s} \ll$	518,281		4

Sumber: Hasil Perhitungan

4.2.3.4. Perhitungan Curah Hujan Rerata

Data curah hujan merupakan data yang digunakan untuk menganalisa pada parameter Infiltrazione Efficace (Laju Pengisian Kembali). Data curah hujan dalam studi ini menggunakan 5 pos stasiun hujan yaitu: Stasiun Hujan Bayeman, Stasiun Hujan Lumbang, Stasiun Hujan Muneng, Stasiun Hujan Boto Gardu dan Stasiun Hujan Patalan. Nilai curah hujan rerata daerah tahunan ini dipakai dengan mempertimbangkan kemungkinan terjadinya potensi polusi yang semakin tinggi dengan bertambah tingginya curah hujan. Data curah hujan yang akan digunakan adalah data selama 10 tahun dari tahun 2004-2013. Perhitungan curah hujan rerata daerah dengan menggunakan Metode Poligon Thiessen. Berdasarkan luas daerah pengaruh masingmasing stasiun hujan maka diketahui koefisien thiessen masing-masing stasiun adalah Sta. Hujan Bayeman 0,668; Sta. Hujan Lumbang 0,257; Sta. Hujan Muneng 0,061; Sta. Hujan Botogardu 0,010 dan Sta. Hujan Patalan 0,003. Untuk mendapatkan curah hujan rerata daerah maka dapat diperoleh dengan cara menjumlahkan hasil perkalian antara curah hujan tahunan dengan koefisien thiessen masing-masing stasiun hujan kemudian dihitung nilai rerata tahunannya. Berikut hasil perhitungan curah hujan rerata daerah dengan Metode Poligon Thiessen.

Tabel 4.16. Curah Hujan Tahunan

				Curah Huja	n Tahunan (mm)		
No	Tahun	Sta. Hujan Bayeman	Sta. Hujan Lumbang	Sta. Hujan Muneng	Sta. Hujan Boto Gardu	Sta. Hujan Patalan	Curah Hujan
		0,668	0,257	0,061	0,010	0,003	Tahunan
1	2004	918,569	375,381	97,674	24,577	4,941	1421,141
2	2005	623,959	304,675	151,056	10,352	3,853	1093,895
3	2006	731,515	318,045	126,362	15,663	4,512	1196,097
4	2007	619,282	223,171	90,916	16,267	2,938	952,575
5	2008	920,573	260,710	109,284	22,997	9,688	1323,252
6	2009	612,602	226,257	122,921	20,392	17,169	999,340
7	2010	1293,345	488,766	182,631	48,419	20,455	2033,616
8	2011	825,710	366,896	152,531	41,960	18,375	1405,471
9	2012	537,780	294,648	123,536	29,013	12,961	997,938
10	2013	1146,374	525,276	179,253	54,837	15,460	1921,200
Jı	umlah	8229,708	1336,164	3383,825	284,477	110,352	13344,526
R	lerata -	822,971	133,616	338,382	28,448	11,035	1334,453

Sumber: Hasil Perhitungan

4.2.4. Analisa Jenis Tanah

Berdasarkan peta jenis tanah yang diperoleh dari Badan Perencanaan Pembangunan Daerah (BAPPEDA) Kabupaten Probolinggo diketahui bahwa jenis tanah di Kecamatan Tongas adalah termasuk jenis Aluvial, Mediteran dan Grumosol yang dapat dijelaskan sebagai berikut:

- a. Aluvial, memiliki ciri-ciri sebagai berikut (Sarief, 1986:148):
 - Berwarna keabu-abuan sampai kecoklat-coklatan.
 - Tekstur tanah adalah liat atau liat berpasir dengan kandungan pasir kurang dari 50%.
 - Bahan induknya berasal dari bahan aluvial dan koluvial dari berbagai macam asalnya.
 - Permeabilitas umumnya lambat atau drainasenya rata-rata sedang dan cukup peka terhadap gejala erosi.
- b. Mediteran, memiliki ciri-ciri sebagai berikut (Sarief, 1986:139):
 - Tanah ini mempunyai lapisan solum yang cukup tebal, yaitu antara 90-200 cm.
 - Warna tanah adalah coklat sampai merah.
 - Teksturnya agak bervariasi dari lempung sampai liat.

- Daya menahan air adalah sedang, begitu pula permeabilitasnya sedang.
- Kepekaan terhadap bahaya erosi adalah sedang sampai besar.
- c. Grumosol, memiliki ciri-ciri sebagai berikut (Sarief, 1986:146):
 - Memiliki lapisan solum tanah yang agak dalam/tebal, yaitu antara 100-200 cm.
 - Berwarna kelabu sampai hitam.
 - Teksturnya lempung berliat sampai liat.
 - Keadaan tanah pada waktu hujan mengembang dan lekat sekali, sedangkan pada musim kemarau, tanah ini akan retak dan retakan-retakannya mencapai 25 cm dan dalamnya bisa mencapai 60 cm dan keras berbongkah-bongkah.

Dari ciri-ciri yang dijelaskan di atas maka tekstur tanah dan kelompok hidrologi tanah yang ada di Kecamatan Tongas dapat disajikan pada Tabel 4.17.

Tabel 4.17. Tekstur Tanah dan Kelompok Hidrologi Tanah

No.	Jenis Tanah	Tekstur Tanah	Kelompok Hidrologi Tanah
1.	Aluvial	Liat berpasir	D D
2.	Mediteran	Liat	D D
3.	Grumosol	Liat	D
C 1	TT '1 A 1'	7 17 ATT 47 1 3 C	

Sumber: Hasil Analisa

4.2.5. Perhitungan Air Larian

Melalui peta tata guna lahan tahun 2013 dari BAPPEDA Kecamatan Tongas di bagi menjadi 14 desa. Setelah diketahui tataguna lahannya dapat dihitung besar bilangan kurva larian (CN). Nilai CN ini didapat setelah menentukan kelompok tanah yang berdasarkan Tabel 2.7. Setelah kelompok tanahnya diketahui, dengan menggunakan Tabel 2.8. dapat diketahui nilai CN tersebut. Sebelum menentukan nilai CN maka harus ditentukan nilai AMC (Kandungan Air Tanah Sebelumnya) terlebih dahulu.

Dalam Metode SCS mempertimbangkan bahwa kandungan air tanah sebelumnya memberikan pengaruh yang besar terhadap volume dan laju aliran permukaan, yang mana keadaan tersebut dikelompokkan kedalam tiga kondisi sesuai Tabel 2.6. Penentuan kondisi ini dapat diperkirakan melalui data presipitasi 5 harian dalam 10 (sepuluh) tahun (2004-2013) pada daerah studi (Kecamatan Tongas) yang didapat dari analisa perhitungan data hujan.

Untuk menentukan awal musim dan panjang musim menurut BMKG (musim hujan dan musim kemarau pada iklim tropis) diperlukan data presipitasi harian dalam

BRAWIJAYA

10 (sepuluh) tahun (2004-2013). Data ini digunakan untuk mengklasifikasikan musim dorman (*dormant season*) dan musim tumbuh (*growing season*) sesuai Tabel 2.6. Berikut ini adalah uraiannya:

- 1. Kelompokkan data presipitasi sesuai ketentuan curah hujan 5 hari sebelumnya seperti terdapat pada Lampiran 3 Halaman 134.
- 2. Kelompokkan data presipitasi sesuai ketentuan BMKG untuk menentukan musim dorman dan musim tumbuh seperti terdapat pada Lampiran 4 Halaman 145.
- 3. Setelah musim dorman dan musim tumbuh telah ditentukan, lakukan penggolongan kandungan air tanah sebelumnya sesuai ketentuan Tabel 2.26. dengan data total curah hujan 5 hari dari hasil pengambilan data presipitasi dalam sepuluh tahun seperti pada Tabel 4.16.

Diperlukan durasi yang panjang untuk menentukan kandungan air tanah sebelumnya, agar mendapatkan nilai kisaran curah hujan untuk ketiga kondisi air tanah sebelumnya sesuai Tabel 2.26.

Tabel 4.18. Penentuan Kondisi Kandungan Air Tanah Sebelumnya

Bulan-Tahun	Dasarian	Musim Dorman (Musim Kemarau)	Musim Tumbuh (Musim Hujan)	Kandungan Air Tanah Sebelumnya (AMC)
Apr-04	I	1,581	盟の	
Feb-05	I		47,172	
Apr-05	III	0,000		
Nop-05	III		54,882	
Apr-06	II	0,000		
Mar-07	I	1# 4 // 1 11	61,049	
Mei-07	I	0,000	il Mayes	Warna kuning
Des-07	III	89 Y ¥	34,365	menunjukkan kondisi
Mar-08	II	6,356	0	kandungan air tanah sebelumnya pada lokasi
Jan-09	I		38,010	studi, yang mana
Mar-09	II	24,318		merupakan Kondisi I
Jan-10	I		16,104	(kering) dengan musim dorman < 13 mm dan
Jun-10	III	0,000		musim tumbuh < 35
Des-10	I		60,670	mm
Mei-11	II	13,190	TUITAGE	TAKAS DA
Des-11	II		10,535	RSLLTTAN
Apr-12	II	8,999	UITINIY	TUER2501
Des-12	III		71,305	
Jun-13	III	1,095		UPTAIVE
Nop-13	II	Pranaw	63,778	VAMIN

Sumber: Hasil Analisa

Berdasarkan hasil analisa kondisi kandungan airtanah sebelumnya (*AMC*) di Kecamatan Tongas merupakan Kondisi I atau Kondisi Kering. Oleh karena itu, digunakan nilai *CN* I dalam perhitungan air larian. Sehingga dari nilai *CN* II harus dikonversikan ke dalam nilai *CN* I dengan menggunakan persamaan (2-5).

Hasil perhitungan volume air aliran dan infiltrasi di Kecamatan Tongas disajikan pada Tabel 4.19.

Tabel 4.19. Perhitungan Infiltrasi Kecamatan Tongas

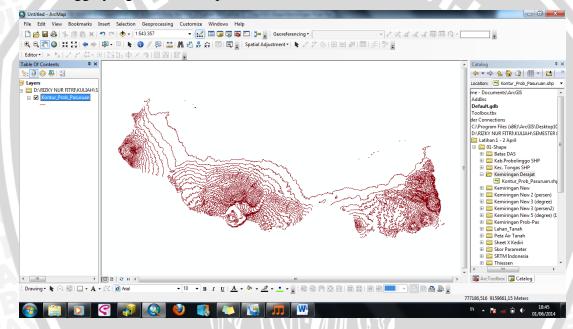
Tata Guna Lahan	Jenis Tanah	Gol. Tanah	CN II	CNI	S (mm)	I (mm)	Q (mm)	Infiltrasi
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Danau Ranu	Aluvial	D	0	-0	0,000	1334,453	1334,453	0
Danau Ranu	Mediteran	D	0	0	0,000	1334,453	1334,453	0
Hutan Produksi	Mediteran	D	89	77,263	74,746	1334,453	1248,765	85,688
Hutan Rawa	Aluvial	D	0	0	0,000	1334,453	1334,453	0
Perkebunan	Aluvial	D	89	77,263	74,746	1334,453	1248,765	85,688
Perkebunan	Mediteran	D_O	89	77,263	74,746	1334,453	1248,765	85,688
Permukiman	Aluvial	D	94	86,807	38,602	1334,453	1289,222	45,231
Permukiman	Grumosol	D	94	86,807	38,602	1334,453	1289,222	45,231
Permukiman	Mediteran	- D	94	86,807	38,602	1334,453	1289,222	45,231
Rawa	Aluvial	D	0	0	0,000	1334,453	1334,453	0
Sawah Irigasi	Aluvial	D	85	70,414	106,723	1334,453	1214,407	120,045
Sawah Irigasi	Grumosol	D	85	70,414	106,723	1334,453	1214,407	120,045
Sawah Irigasi	Mediteran	D	85	70,414	106,723	1334,453	1214,407	120,045
Sawah Tadah Hujan	Aluvial	D	85	70,414	106,723	1334,453	1214,407	120,045
Sawah Tadah Hujan	Grumosol	- D	85	70,414	106,723	1334,453	1214,407	120,045
Sawah Tadah Hujan	Mediteran	D	85	70,414	106,723	1334,453	1214,407	120,045
Sungai	Aluvial	D	0	0	0,000	1334,453	1334,453	0
Tambak	Aluvial	D //	0	0	0,000	1334,453	1334,453	0
Tanah Kosong	Aluvial	D	94	86,807	38,602	1334,453	1289,222	45,231
Tanah Kosong	Mediteran	D	94	86,807	38,602	1334,453	1289,222	45,231
Tegalan	Aluvial	D	86	72,067	98,450	1334,453	1223,171	111,281
Tegalan	Grumosol	D	86	72,067	98,450	1334,453	1223,171	111,281
Tegalan	Mediteran	D	86	72,067	98,450	1334,453	1223,171	111,281
Sawah Irigasi	Aluvial	D	85	70,414	106,723	1334,453	1214,407	120,045
Tambak	Aluvial	D	0	0	0,000	1334,453	1334,453	0

Sumber: Hasil Perhitungan

keterangan:

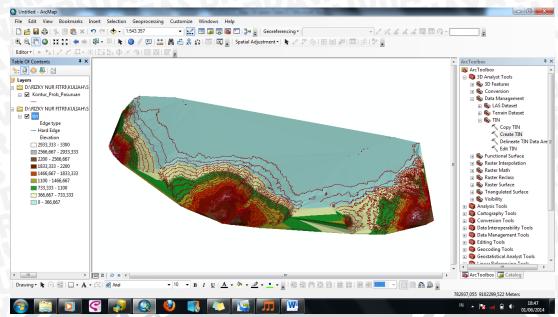
- (1) = dilihat dari peta tata guna lahan
- (2) = dilihat dari peta jenis tanah
- (3) = ditentukan berdasarkan Tabel 2.7.

(4) = ditentukan berdasarkan Tabel 2.8.

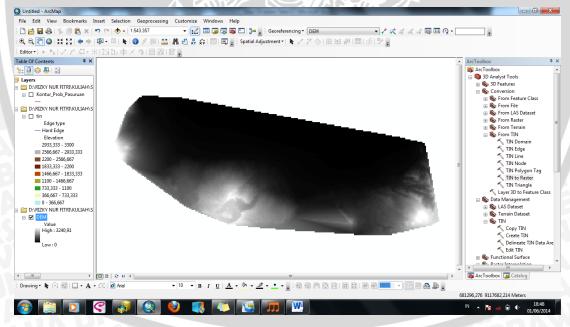

$$(5) = \frac{4,2 \, CN \, (II)}{10 - 0,058 \, CN \, (II)}$$

- (6) = (25400/CN) 254
- (7) = curah hujan rerata tahunan
- $(8) = \{(7) 0.2(6)\}^{2} / \{(7) + 0.8(6)\}$
- (9) = (7) (8)

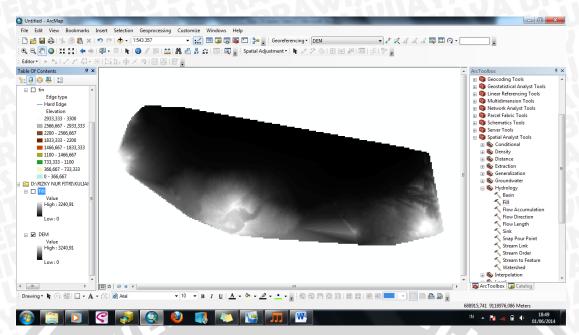
4.2.6. Penentuan Kemiringan Lereng


Pada tahap ini, bertujuan untuk menentukan kemiringan lereng. Langkahlangkah untuk penentuan kemiringan lereng adalah sebagai berikut:

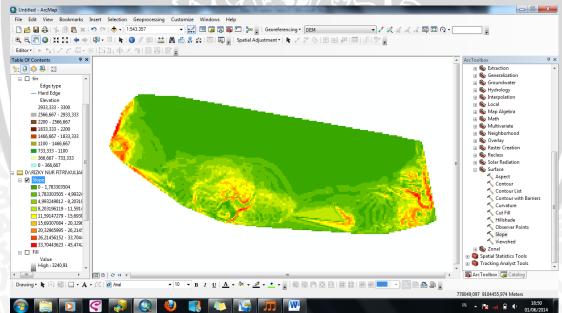
1. Buka Arc. GIS 10.1 dan klik "Add Data" dan pilih file Kontur Wilayah Pasuruan-Probolinggo yang berasal dari peta kontur Jawa Timur.


Gambar 4.15. Peta Kontur Wilayah Pasuruan-Probolinggo

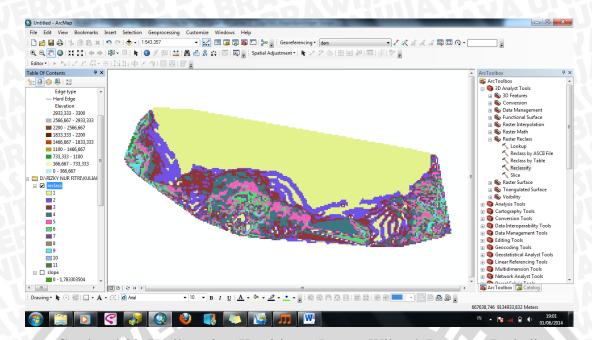
2. Selanjutnya pilih menu "3D Analys Tools" pada "Arc Toolbox". Pilih "Data Management", pilih "TIN". Kemudian isi "Output TIN" dengan nama file baru, isi "Coordinate System(Optional)" dengan sistem koordinat yang diinginkan dan "Input Feature Class" dengan file Peta Kontur Wilayah Pasuruan-Probolinggo. Kemudian klik OK.


Gambar 4.16. Hasil TIN Wilayah Pasuruan-Probolinggo

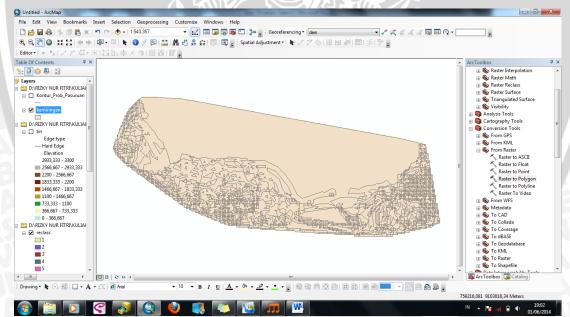
3. Kemudian pilih menu "3D Analyst Tools" pada "Arc Toolbox". Pilih "Convertion", pilih "From TIN" dan pilih "TIN to Raster". Kemudian isi "Input TIN" dengan file TIN yang telah dibuat, isi "Output TIN" dengan nama file baru untuk menyimpan. Kemudian klik OK.


Gambar 4.17. Hasil *Raster* Wilayah Pasuruan-Probolinggo

4. Selanjutnya pilih menu "Spasial Analyst Tools" pada "Arc Toolbox". Pilih "Hydrology" dan pilih "Fill". Kemudian isi "Input Surface Raster" dengan Hasil Raster, "Output Raster" dengan nama file baru untuk meyimpan, dan pilih OK.

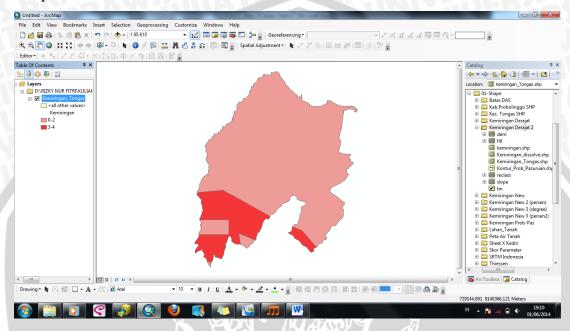

Gambar 4.18. Hasil *Fill* Wilayah Pasuruan-Probolinggo

5. Kemudian pilih menu "Spasial Analyst Tools" pada "Arc Toolbox". Pilih "Surface" dan pilih "Slope". Kemudian isi "Input Surface Raster" dengan Hasil Fill, "Output Raster" dengan nama file baru untuk meyimpan, dan pilih OK.



Gambar 4.19. Hasil Kemiringan Lereng Wilayah Pasuruan-Probolinggo

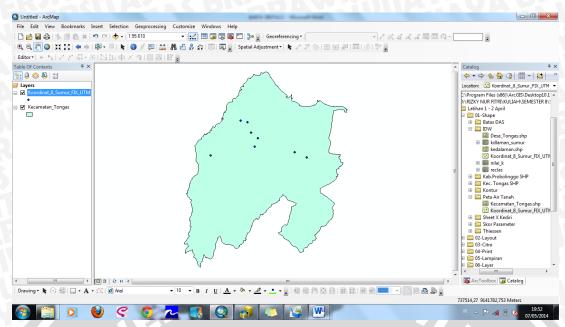
6. Selanjutnya pilih menu "3D Analyst Tools" pada "Arc Toolbox". Pilih "Raster Reclass", pilih "Reclassify". Kemudian isi "Input Raster" dengan Kemiringan Lereng, pilih "Classify" dan pada "Classes" pilih 11, pada "Break Values" masukkan pembagian kelasnya. Pada "Output Raster" masukkan nama file baru untuk meyimpan. Kemudian klik OK.


Gambar 4.20. Hasil *Reclass* Kemiringan Lereng Wilayah Pasuruan-Probolinggo 7. Kemudian pilih menu "Conversion Tools" pada "Arc Toolbox". Pilih "From Raster", pilih "Raster To Polygon". Kemudian isi "Input Raster" dengan Hasil Reclass, pada "Output Polygon Features" masukkan nama file baru untuk meyimpan. Kemudian klik OK.

Gambar 4.21. Hasil Pembagian Kelas Kemiringan Lereng

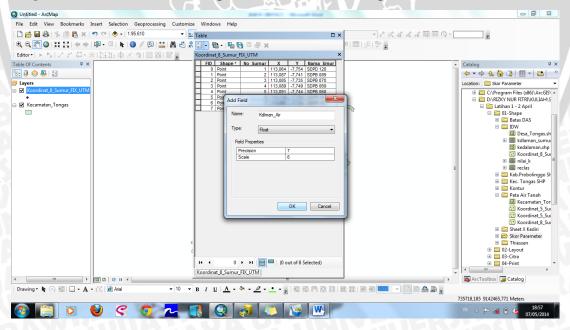
8. Selanjutnya untuk dapat mengelompokkan kelas yang sama, pilih menu "Geoprosesing", pilih "Dissolve". Kemudian isi "Input Features" dengan Peta Kemiringan Lereng, "Output Feature Class" dengan nama file baru untuk meyimpan, pada "Dissolve_Field(s) Optional" pilih "Gridcode". Kemudian pilih OK.

9. Untuk memperoleh kemiringan lereng Kecamatan Tongas, dapat diperoleh dengan langkah berikut. Pilih menu "Geoprosesing", pilih "Clip". Kemudian isi "Input Features" dengan Peta Kemiringan Pasuruan-Probolinggo, isi "Clip Feature" dengan Batas Daerah Studi Kecamatan Tongas yang diperoleh pada langkah sebelumnya sebagai acuan, dan "Output Feature Class" dengan nama file baru untuk meyimpan dan pilih OK.


Gambar 4.22. Hasil Pembagian Kemiringan Lereng Kecamatan Tongas Dari hasil pembagian kelas kemiringan daerah studi Kecamatan Tongas, maka dapat diketahui bahwa kemiringan lereng di Kecamatan Tongas adalah 0° - 2°dan 3° -4° derajat.

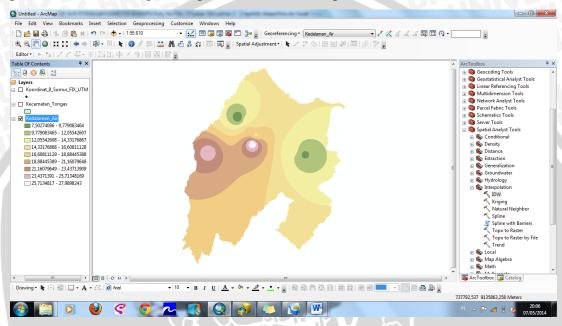
4.2.7. Analisa dengan IDW (Inverse Distance Weighted)

4.2.7.1. Pemetaan Analisa Airtanah

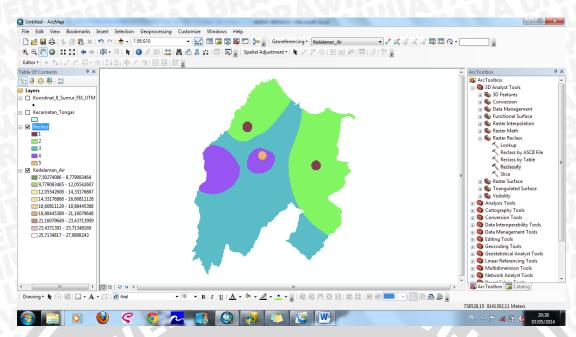

Pada tahap ini, bertujuan untuk memetakan Soggiacenza (Kedalaman Airtanah) Non - Saturo (Dampak Zona Tak Jenuh), Acquifero (Media Akuifer) dan Conducibilità Idraulica Dell'Acquifero (Konduktifitas Hidraulik) dengan data awal dari titik-titik sumur bor menjadi peta kontur. Langkah-langkah untuk memetakan adalah sebagai berikut:

1. Buka Arc. GIS 10.1 dan klik "Add Data" dan pilih file shapefile Batas Lokasi Studi Kecamatan Tongas dan Titik Koordinat Lokasi Sumur Bor.

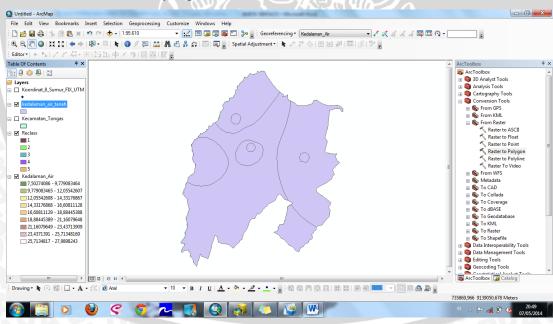
Gambar 4.23. Peta Batas Lokasi Studi Kecamatan Tongas dan Titik Koordinat Lokasi Sumur Bor


2. Klik kanan pada layer Titik Koordinat Lokasi Sumur Bor, pilih "Open Attribute Table", klik "Table Options" dan pilih "Add Field. Pada "Name" isi dengan nama kolom (Kdlman _Air) yang menunjukkan kedalaman muka air tanah dan pada "Type" pilih "Float" untuk mengisi kolom dengan angka desimal. Pada "Field" Properties", isi "Precision" dengan 4 dan isi "Scale" dengan 2 kemudian klik OK.

Gambar 4.24. Penambahan Kolom Muka Airtanah


3. Klik tab "Editor" dan pilih "Start Edit", kemudian isi kolom kedalaman muka air tanah dengan hasil survei. Dan kemudian klik "Stop Edit".

4. Selanjutnya pilih menu "Spasial Analyst Tools" pada "Arc Toolbox". Kemudian pilih "Interpolation", pilih "IDW". Kemudian isi "Input Point Features" dengan Peta Titik Koordinat Lokasi Sumur Bor, isi "Z Value Field" dengan Kdlaman_Air, dan "Output Raster" dengan nama file baru untuk meyimpan. Kemudian pilih "Environments", pilih "Processing Extens" dan pada "Extent" pilih "Same As Layer Kecamatan Tongas". Selanjutnya pilih "Raster Analysis" dan pada "Mask" pilih Kecamatan Tongas dan pilih OK. Kemudian pilih OK.

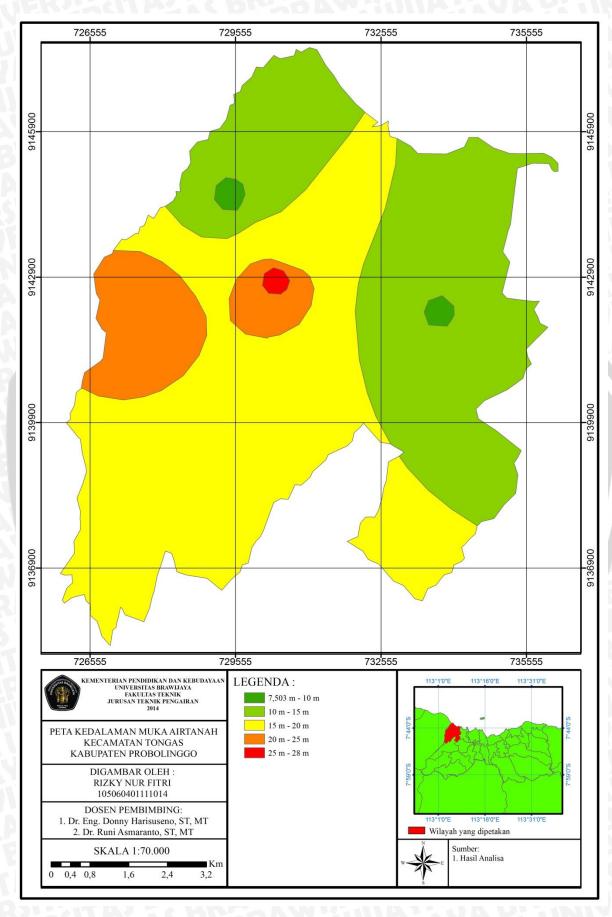

Gambar 4.25. Hasil Raster Kedalaman Muka Airtanah

5. Selanjutnya pilih menu "3D Analyst" pada "Arc Toolbox". Kemudian pilih "Raster Reclass", pilih "Reclassify". Kemudian isi "Input Raster" dengan Kedalaman Air, pilih "Classify" dan pada "Classes" pilih 5, pada "Break Values" masukkan pembagian kelasnya. Pada "Output Raster" masukkan nama file baru untuk meyimpan. Kemudian klik OK.

Gambar 4.26. Hasil "Reclass" Kedalaman Muka Airtanah

6. Selanjutnya pilih menu "Conversion Tools" pada "Arc Toolbox". Kemudian pilih "From Raster", pilih "Raster To Polygon". Kemudian isi "Input Raster" dengan Hasil Reclass. pada "Output Polygon Features" masukkan nama file baru untuk meyimpan. Kemudian klik OK.

Gambar 4.27. Peta Kedalaman Muka Airtanah


7. Untuk mengelompokkan kelas yang sama dapat dilakukan dengan cara pilih menu "Geoprosesing", pilih "Dissolve". Kemudian isi "Input Features" dengan Peta Kedalaman Muka Airtanah, "Output Feature Class" dengan nama file baru untuk meyimpan, pada "Dissolve_Field(s)Optional" pilih "Gridcode" dan kemudian pilih OK.

726555

735555

732555

729555

Gambar 4.29. Peta Kedalaman Muka Airtanah Kecamatan Tongas

Gambar 4.30. Peta Kondisi Zona Tak Jenuh Kecamatan Tongas

Gambar 4.31. Peta Media Akuifer Kecamatan Tongas

Gambar 4.32. Peta Konduktifitas Hidraulik Kecamatan Tongas

4.3. Analisa Parameter SINTACS pada Kecamatan Tongas

4.3.1. Penentuan Skor Masing-masing Parameter SINTACS

Dari pengolahan data dan hasil perhitungan pada subbab sebelumnya didapatkan kondisi dari setiap parameter yang ada. Dari kondisi inilah kemudian ditentukan nilai skor sesuai Gambar 2.13. sampai 2.19. Nilai skor maksimum dari setiap parameter adalah 10. Nilai skor dari tiap-tiap parameter SINTACS yang disajikan pada Tabel 4.20. sampai dengan Tabel 4.26.

1. Soggiacenza (Kedalaman Muka Airtanah)

Kedalaman muka airtanah berdasarkan kedalaman muka airtanah dari sumur gali dari warga setempat yang dekat dengan lokasi sumur bor di Kecamatan Tongas Kabupaten Probolinggo. Berdasarkan Gambar 2.13. maka nilai skor dari kedalaman muka airtanah dapat dilihat pada Tabel 4.20.

Tabel 4.20. Nilai Skor dari Kedalaman Muka Airtanah

Kedalaman Muka Airtanah	Skor (S_r)	Luas (km²)
7,503 m – 10 m	5,5	0,618
10 m – 15 m	4,7	28,957
15 m – 20 m	3,8	37,189
20 m – 25 m	_/3,1	7,549
25 m – 28 m	2,8	0,23

Sumber: Hasil Analisa

2. Infiltrazione Efficace (Laju Pengisian Kembali)

Setelah didapatkan nilai curah hujan rerata tahunan Kecamatan Tongas, dan penghitungan volume air larian dengan Metode SCS maka diperoleh nilai laju pengisian kembali. Berdasarkan Gambar 2.14. maka nilai skor dari laju pengisian kembali dapat dilihat pada Tabel 4.21.

Tabel 4.21. Nilai Skor dari Laju Pengisian Kembali

Tata Guna Lahan	Jenis Tanah	Infiltrasi	Skor (I_r)	Luas (km ²)
Danau Ranu	Aluvial	0	0	0,003
Danau Ranu	Mediteran	0 3	3400	0,006
Hutan Produksi	Mediteran	85,688	3,5	1,128
Hutan Rawa	Aluvial	0	0	0,223
Perkebunan	Aluvial	85,688	3,5	0,26
Perkebunan	Mediteran	85,688	3,5	0,267

Lanjutan Tabel 4.21.

Tata Guna Lahan	Jenis Tanah	Infiltrasi	Skor (I_r)	Luas (km²)
Permukiman	Aluvial	45,231	2,1	2,485
Permukiman	Grumosol	45,231	2,1	0,937
Permukiman	Mediteran	45,231	2,1	4,054
Rawa	Aluvial	0	0	0,11
Sawah Irigasi	Aluvial	120,045	5,1	7,791
Sawah Irigasi	Grumosol	120,045	5,1	0
Sawah Irigasi	Mediteran	120,045	5,1	8,887
Sawah Tadah Hujan	Aluvial	120,045	5,1	0,003
Sawah Tadah Hujan	Grumosol	120,045	5,1	10,144
Sawah Tadah Hujan	Mediteran	120,045	5,1	33,375
Sungai	Aluvial	0	0	0,052
Tambak	Aluvial	0 8	0	0,992
Tanah Kosong	Aluvial	45,231	2,1	0,015
Tanah Kosong	Mediteran	45,231	2,1	0,007
Tegalan	Aluvial	111,281	5 (0,07
Tegalan	Grumosol	111,281	5	3,5
Tegalan	Tegalan Mediteran		5	0,234
Sawah Irigasi	Aluvial	120,045	5,1	0
Tambak Aluvial		0	0	0

Sumber: Hasil Analisa

3. Non - Saturo (Kondisi Zona Tak Jenuh)

Struktur lapisan tanah tiap sumur bor tidak hanya berisi informasi tentang media akuifernya tetapi juga jenis batuan yang terdapat pada zona tak jenuh yang berada tepat di atas media akuifernya. Berdasarkan Gambar 2.15. maka nilai skor dari kondisi zona tak jenuh dapat dilihat pada Tabel 4.22.

Tabel 4.22. Nilai Skor dari Kondisi Zona Tak Jenuh

Kondisi Zona Tak Jenuh	Skor (N_r)	Luas (km ²)	
Lanau	1,5	0,974	
Lempung	1,5	73,574	

Sumber: Hasil Analisa

4. Tipologia Della Copertura (Tekstur Tanah)

Setelah dilakukan interpretasi peta jenis tanah didapatkan tekstur jenis tanah yang ada di Kecamatan Tongas. Berdasarkan Gambar 2.16. maka nilai skor dari tekstur tanah dapat dilihat pada Tabel 4.23.

Tabel 4.23. Nilai Skor dari Tekstur Tanah

Jenis Tanah	Tekstur Tanah	Skor (T _r)	Luas (km ²)
Aluvial	Liat berpasir	6,6	12,003
Mediteran	Liat	3,5	47,958
Grumosol	Liat	3,5	14,582

Sumber: Hasil Analisa

5. Acquifero (Media Akuifer)

Media akuifer diperoleh dari struktur lapisan tanah tiap sumur bor. Berdasarkan Gambar 2.17. maka nilai skor dari media akuifer dapat dilihat pada Tabel 4.24.

Tabel 4.24. Nilai Skor dari Media Akuifer

Media Akuifer	Skor (A _r)	Luas (km²)	
Tufa	9.1	34,922	
Pasir	8	38,701	
Kerikil	8,5	0,926	

Sumber: Hasil Analisa

6. Conducibilità Idraulica Dell'Acquifero (Konduktivitas Hidraulik)

Konduktivitas hidraulik diambil dari perpaduan antara litologi log sumur bor dengan perpaduan kedalaman muka airtanah dangkal sumur penduduk yang berdekatan dengan sumur bor ini sendiri. Sedangkan nilai K untuk setiap lapisan diambil dari Tabel 2.9. Berdasarkan Gambar 2.18. maka nilai skor dari konduktifitas hidraulik dapat dilihat pada Tabel 4.25.

Tabel 4.25. Nilai Skor dari Konduktifitas Hidraulik

Konduktivitas Hidraulik (m/hari)	Skor (C _r)	Luas (km²)
0,0005 m/detik – 0,001 m/detik	8,8	0,256
0,001 m/detik – 0,01 m/detik	9,6	73,465
0,01 m/detik – 0,2 m/detik	10	0,828

Sumber: Hasil Analisa

7. Superficie Topografica (Kemiringan Lereng)

Nilai skor parameter ini ditentukan berdasarkan Gambar 2.19. dengan mengetahui pembagian kelas kemiringan lereng pada peta kemiringan lereng di Kecamatan Tongas. Nilai skor dari kemiringan lereng dapat dilihat pada Tabel 4.26.

Tabel 4.26. Nilai Skor dari Konduktifitas Hidraulik

Kemiringan Lereng (°)	Skor (S_r)	Luas (km²)	
0° - 2°	10	62,993	
3° - 4°	9	11,567	

Sumber: Hasil Analisa

4.3.2. Penentuan Indeks Potensial Pencemaran Masing-masing Parameter **SINTACS**

Indeks potensial pencemaran ini diperoleh dengan cara nilai skor (rating) dikali dengan nilai bobot (weight). Nilai bobotnya (weight) untuk masing-masing parameter tidak akan berubah karena nilai ini sudah ditetapkan merupakan intisari dari sistem tersebut. Setiap parameter memiliki nilai indeks potensial maksimum yang berbeda. Nilai makismal ini dipengaruhi oleh nilai skor masimum dan nilai bobot dari setiap parameter. Semakin tinggi nilai indeks potensial pencemaran, maka semakin tinggi pula potensi parameter tersebut untuk mempengaruhi pencemaran. Perhitungan indeks potensial pencemaran akan disajikan pada Tabel 4.27. sampai dengan Tabel 4.33. berikut.

1. Soggiacenza (Kedalaman Muka Airtanah)

Nilai indeks potensial maksimum untuk parameter kedalaman muka airtanah adalah 50. Hal ini dikarenakan nilai maksimum dari skor parameter ini adalah 10 dan nilai bobotnya 5. Semakin tinggi atau mendekati nilai maksimum indeks potensial pencemaran, maka semakin tinggi pula parameter ini untuk mempengaruhi polusi airtanah dangkal. Semakin dekat jarak kedalaman muka airtanah dari permukaan semakin besar pula potensi polusi yang terjadi.

Tabel 4.27. Nilai Indeks Potensial Pencemaran dari Kedalaman Muka Airtanah

Kedalaman Muka Airtanah	Skor	Bobot	Indeks Potensial Pencemaran
The state of the s	(S_r)	(S_w)	(Sr. Sw)
7,503 m – 10 m	5,5	5	27,5
10 m – 15 m	4,7	5	23,5
15 m – 20 m	3,8	5	19

Lanjutan Tabel 4.27.

Kedalaman Muka Airtanah	Skor	Bobot	Indeks Potensial Pencemaran
Kedalalilali Muka Ali taliali	(S_r)	(S_w)	(Sr. Sw)
20 m – 25 m	3,1	5	15,5
25 m – 28 m	2,8	5	14

Sumber: Hasil Analisa

2. Infiltrazione Efficace (Laju Pengisian Kembali)

Nilai indeks potensial maksimum untuk parameter laju pengisian kembali adalah 40. Hal ini dikarenakan nilai maksimum dari skor parameter ini adalah 10 dan nilai bobotnya 4. Semakin tinggi atau mendekati nilai maksimum indeks potensial pencemaran, maka semakin tinggi pula parameter ini untuk mempengaruhi polusi airtanah dangkal. Semakin tinggi nilai laju pengisian kembali semakin besar pula polusi aitanahnya. Pernyataan ini benar hanya terbatas jika jumlah laju pengisian kembali yang ada sangat besar sehingga mampu mencairkan polutannya (bahan pencemar). Laju pengisian kembali yang digunakan ini mewakili jumlah air yang masuk ke dalam tanah dan mencapai muka airtanah.

Tabel 4.28. Nilai Indeks Potensial Pencemaran dari Laju Pengisian Kembali

Tata Guna Lahan	Jenis Tanah	Infiltrasi	Skor (I _r)	Bobot (I _w)	Indeks Potensial Pencemaran (Ir . Iw)
Danau Ranu	Aluvial		0	P 4 1	0
Danau Ranu	Mediteran		0	4	0
Hutan Produksi	Mediteran	85,688	3,5	4	14
Hutan Rawa	Aluvial	0)0	0	4	0
Perkebunan	Aluvial	85,688	3,5	4	14
Perkebunan	Mediteran	85,688	3,5	4	14
Permukiman	Aluvial	45,231	2,1	4	8,4
Permukiman	Grumosol	45,231	2,1	4	8,4
Permukiman	Mediteran	45,231	2,1	4	8,4
Rawa	Aluvial	0	0	4	0
Sawah Irigasi	Aluvial	120,045	5,1	4	20,4
Sawah Irigasi	Grumosol	120,045	5,1	4	20,4
Sawah Irigasi	Mediteran	120,045	5,1	4	20,4
Sawah Tadah Hujan	Aluvial	120,045	5,1	4	20,4

Lanjutan Tabel 4.28.

Tata Guna Lahan	Jenis	Infiltrasi	Skor	Bobot	Indeks Potensial Pencemaran
Tata Gulia Laliali	Tanah	IIIIIIIIIIIII	(I_r)	(I_w)	(Ir.Iw)
Sawah Tadah Hujan	Grumosol	120,045	5,1	4	20,4
Sawah Tadah Hujan	Mediteran	120,045	5,1	4	20,4
Sungai	Aluvial	0	0	4	
Tambak	Aluvial	0	0	4	0
Tanah Kosong	Aluvial	45,231	2,1	4	8,4
Tanah Kosong	Mediteran	45,231	2,1	4	8,4
Tegalan	Aluvial	111,281	5	4	20
Tegalan	Grumosol	111,281	5	543	20
Tegalan	Mediteran	111,281	5	4	20
Sawah Irigasi	Aluvial	120,045	5,1	4	20,4
Tambak	Aluvial	0	0	4	0

Sumber: Hasil Analisa

3. Non - Saturo (Kondisi Zona Tak Jenuh)

Nilai indeks potensial maksimum untuk parameter kondisi zona tak jenuh adalah 50. Hal ini dikarenakan nilai maksimum dari skor parameter ini adalah 10 dan nilai bobotnya 5. Semakin tinggi atau mendekati nilai maksimum indeks potensial pencemaran, maka semakin tinggi pula parameter ini untuk mempengaruhi polusi airtanah dangkal. Untuk zona tak jenuh dengan perpindahan yang lebih lambat memiliki nilai indeks potensial pencemaran rendah dan potensi polusi yang rendah pula.

Tabel 4.29. Nilai Indeks Potensial Pencemaran dari Kondisi Zona Tak Jenuh

Vandici Zana Tak Janub	Skor	Bobot	Indeks Potensial Pencemaran
Kondisi Zona Tak Jenuh	(N_r)	(N_w)	(Nr . Nw)
Lanau	1,5	5	7,5
Lempung	1,5	5	7,5

Sumber: Hasil Analisa

4. Tipologia Della Copertura (Tekstur Tanah)

Nilai indeks potensial maksimum untuk parameter tekstur tanah adalah 30. Hal ini dikarenakan nilai maksimum dari skor parameter ini adalah 10 dan nilai bobotnya 3. Semakin tinggi atau mendekati nilai maksimum indeks potensial pencemaran, maka semakin tinggi pula parameter ini untuk mempengaruhi polusi airtanah dangkal.

Semakin halus tekstur tanahnya, semakin kecil penyusutan lempungnya maka potensi polusinya semakin rendah.

Tabel 4.30. Nilai Indeks Potensial Pencemaran dari Tekstur Tanah

Talastun Tanah	Skor	Bobot	Indeks Potensial Pencemaran		
Tekstur Tanah	(T_r)	(T_w)	(Tr. Tw)		
Liat berpasir	6,6	3	19,8		
Liat	3,5	3	10,5		
Liat	3,5	3	10,5		

Sumber: Hasil Analisa

5. Acquifero (Media Akuifer)

Nilai indeks potensial maksimum untuk parameter media akuifer adalah 30. Hal ini dikarenakan nilai maksimum dari skor parameter ini adalah 10 dan nilai bobotnya 3. Semakin tinggi atau mendekati nilai maksimum indeks potensial pencemaran, maka semakin tinggi pula parameter ini untuk mempengaruhi polusi airtanah dangkal. Semakin besar ukuran butiran dan semakin banyaknya retakan dalam jenis akuifer, semakin tinggi pula permeabilitas dan potensi polusi pada akuifernya.

Tabel 4.31. Nilai Indeks Potensial Pencemaran dari Media Akuifer

Media Akuifer	Skor (A _r)	Bobot (A _w)	Indeks Potensial Pencemaran (Ar. Aw)
Tufa	9 3	3	27
Pasir	8	3	24
Kerikil	8,5	3	25,5

Sumber: Hasil Analisa

6. Conducibilità Idraulica Dell'Acquifero (Konduktifitas Hidraulik)

Nilai indeks potensial maksimum untuk parameter konduktifitas hidraulik adalah 30. Hal ini dikarenakan nilai maksimum dari skor parameter ini adalah 10 dan nilai bobotnya 3. Semakin tinggi atau mendekati nilai maksimum indeks potensial pencemaran, maka semakin tinggi pula parameter ini untuk mempengaruhi polusi airtanah dangkal. Jika nilai koefisien kelulusan airnya tinggi akan menyebabkan tingginya potensi pencemaran.

Tabel 4.32. Nilai Indeks Potensial Pencemaran dari Konduktifitas Hidraulik

Konduktivitas Hidraulik	Skor	Bobot	Indeks Potensial Pencemaran
(m/hari)	(C_r)	(\mathbf{C}_w)	(Cr. Cw)
0,0005 m/detik – 0,001 m/detik	8,8	3	26,4
0,001 m/detik – 0,01 m/detik	9,6	3	28,8
0,01 m/detik – 0,2 m/detik	10	3	30

Sumber: Hasil Analisa

7. Superficie Topografica (Kemiringan Lereng)

Nilai indeks potensial maksimum untuk parameter kemiringan lereng adalah 30. Hal ini dikarenakan nilai maksimum dari skor parameter ini adalah 10 dan nilai bobotnya 3. Semakin tinggi atau mendekati nilai maksimum indeks potensial pencemaran, maka semakin tinggi pula parameter ini untuk mempengaruhi polusi airtanah dangkal. Slope yang curam memiliki tingkat potensi polusi yang lebih rendah karena mempermudah terjadinya limpasan daripada masuknya polutan ke dalam airtanah.

Tabel 4.33. Nilai Indeks Potensial Pencemaran dari Kemiringan Lereng

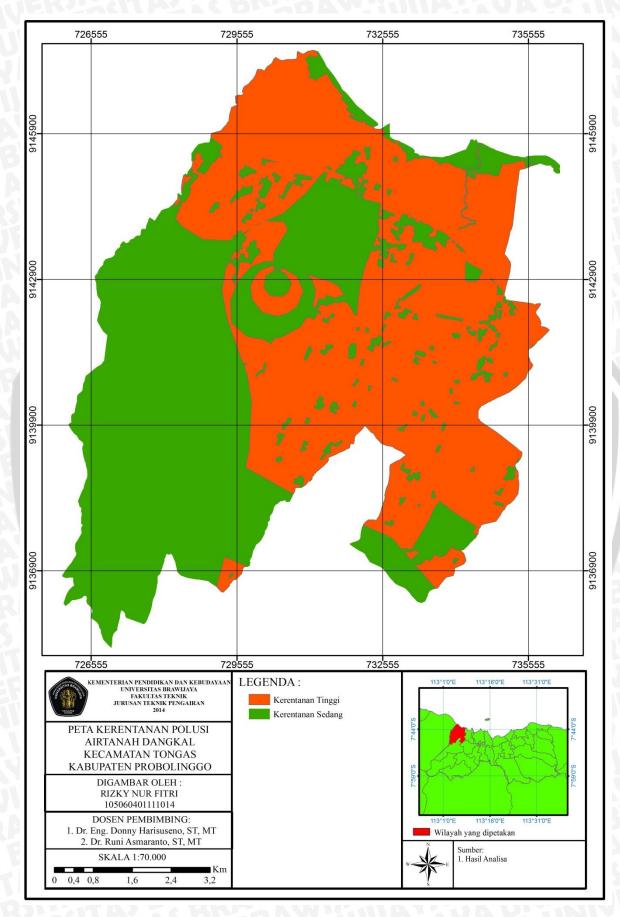
V (0)	Skor	Bobot	Indeks Potensial Pencemaran
Kemiringan Lereng (°)	(S_r)	(S_w)	(Sr. Sw)
0° - 2°	10	3	30
3° - 4°	9	3	27

Sumber: Hasil Analisa

4.4. Penyajian Peta Kerentanan Polusi Airtanah Dangkal

Penyajian peta kerentanan polusi airtanah dangkal dilakukan dengan cara menggabungkan (overlay) tujuh peta parameter yang sudah dihitung nilai indeks potensial pencemarannya. Antara lain peta kedalaman airtanah, peta laju pengisian kembali, peta media akuifer, peta tekstur tanah, peta kemiringan lereng, peta kondisi zona takjenuh, dan peta nilai konduktifitas hidraulik.

Langkah-langkah penggambaran peta kerentanan polusi airtanah dangkal menggunakan ArcGIS 10.1 adalah sebagai berikut:


- Buka program ArcGIS 10.1. dan klik "Add Data" dan pilih peta shapefile tiap parameter SINTACS yang telah dibuat sehingga terpilih 7 peta.
- Setelah semua file masuk, pilih "Analysis Tools" pada "ArcToolbox", kemudian pilih "Overlay" dan pilih "Intersect". Pada "Input Features", masukkan 7 peta

- parameter *SINTACS*, dan pada "*Output Feature*" masukkan nama file baru untuk hasil peta. Kemudia pilih OK.
- 3. Hasil *intersect* tujuh peta parameter tersebut adalah peta kerentanan polusi airtanah dangkal. Lakukan *editing* pada *data atributes* dengan cara menambahkan *fields* baru untuk perhitungan *Indeks SINTACS* dan tingkat kerentanan.

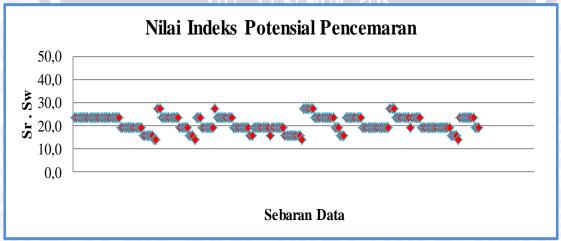
4.5. Perhitungan *Indeks SINTACS*

Setelah menggabungkan (*overlay*) tujuh peta parameter yang sudah dihitung nilai indeks potensial pencemarannya selanjutnya melakukan perhitungan nilai *Indeks SINTACS* dengan menggunakan Persamaan (2-7). Dari nilai *Indeks SINTACS* tersebut maka akan ditetapkan rentang tingkat kerentanan airtanah terhadap polusi. Hasil perhitungan *Indeks SINTACS* dilihat pada Lampiran 5 Halaman 151. Dan tampilan Peta Kerentanan Polusi Airtanah Dangkal Kecamatan Tongas disajikan pada Gambar 4.33.

Gambar 4.33. Peta Kerentanan Polusi Airtanah Dangkal Kecamatan Tongas

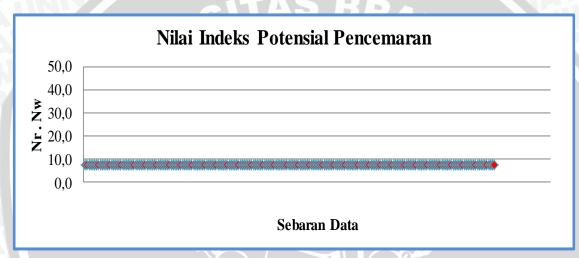
4.6. Pembahasan

4.6.1. Analisa Pengaruh Parameter SINTACS

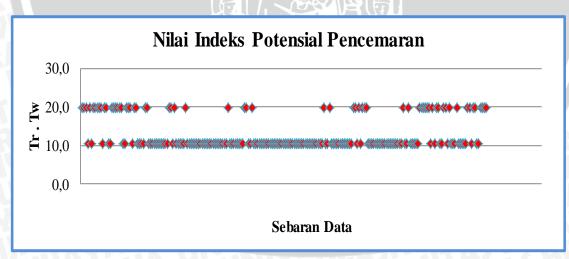

Berdasarkan hasil perhitungan *Indeks SINTACS* pada Lampiran 5 Halaman 151 dan seperti yang disajikan pada Peta Kerentanan Airtanah Dangkal Kecamatan Tongas (Gambar 4.33) bahwa kerentanan polusi airtanah dangkal di Kecamatan Tongas mulai dari sedang sampai tinggi.

Tabel 4.34. Luas Tingkat Kerentanan di Kecamatan Tongas

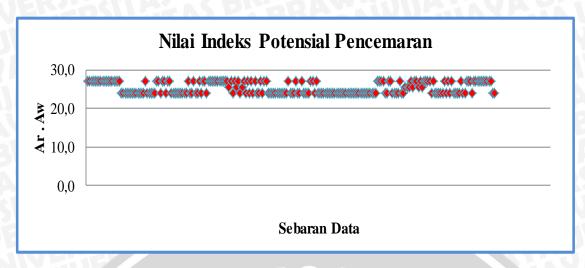
N	lo	Kerentanan	Indeks SINTACS	Luas (km²)	Luas (%)
	1	Sedang	140 - 106	36,166	48,691
2	2	Tinggi	186 - 141	38,111	51,309
		Jumlah	CATIAS	74,277	100

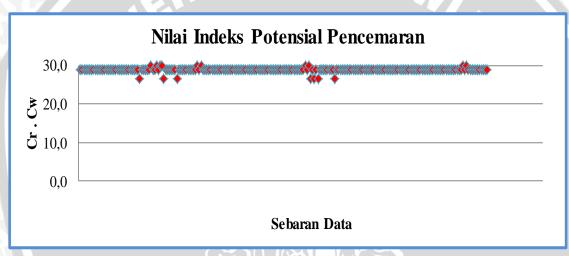

Sumber: Hasil Analisa

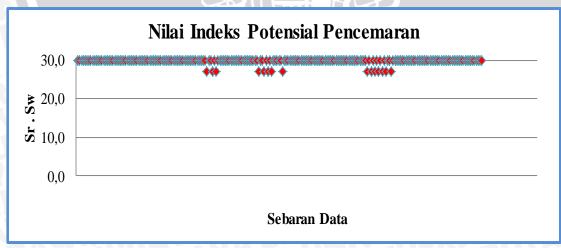
Hasil kerentanan polusi airtanah dangkal di Kecamatan Tongas ini, dapat dipengaruhi oleh beberapa parameter. Untuk dapat mengetahui parameter yang berpengaruh dominan di Kecamatan Tongas, maka dapat dilihat perbandingan nilai indeks potensial pencemaran dari tujuh parameter *SINTACS* berikut. Grafik berikut menunjukkan nilai indeks potensial pencemaran dengan sumbu X adalah nilai indeks potensial pencemaran dan sumbu Y adalah sebaran data yang berasal dari atribut Peta Kerentanan Polusi Airtanah Dangkal Kecamatan Tongas. Setiap parameter memiliki nilai indeks potensial maksimum yang berbeda. Nilai makismal ini dipengaruhi oleh nilai skor masimum dan nilai bobot dari setiap parameter. Nilai indeks potensial pencemaran maksimum untuk kedalaman muka airtanah 50, laju pengisian kembali 40, kondisi zona tak jenuh 50, tekstur tanah 30, media akuifer 30, konduktifitas hidraulik 30 dan kemiringan lereng 30.



Gambar 4.34. Nilai Indeks Potensial Pencemaran Untuk Kedalaman Muka Airtanah


Gambar 4.35. Nilai Indeks Potensial Pencemaran Untuk Laju Pengisian Kembali


Gambar 4.36. Nilai Indeks Potensial Pencemaran Untuk Kondisi Zona Tanah


Gambar 4.37. Nilai Indeks Potensial Pencemaran Untuk Tekstur Tanah

Gambar 4.38. Nilai Indeks Potensial Pencemaran Untuk Media Akuifer

Gambar 4.39. Nilai Indeks Potensial Pencemaran Untuk Konduktifitas Hidraulik

Gambar 4.40. Nilai Indeks Potensial Pencemaran Untuk Kemiringan Lereng

Berdasarkan perbandingan nilai indeks potensial pencemaran dari 7 parameter *SINTACS* di atas, di Kecamatan Tongas terdapat beberapa parameter dominan yang mempengaruhi kerentanan polusi airtanah dangkal di Kecamatan Tongas. Parameter

tersebut antara lain dari media akuifer, konduktifitas hidraulik dan kemiringan lereng. Dimana media akuifer tufa dan kerikil, nilai konduktifitas hidraulik sebagian besar 0,001 m/detik -0.01 m/detik dan untuk kemiringan lereng seluruhnya adalah 0° - 4° . Hal ini dikarenakan jika nilai skor dikalikan dengan nilai bobot dari masing-masing parameter dominan tersebut dapat diperoleh indeks potensial pencemaran yang mendekati nilai maksimum dari tiap parameter.

Contoh perhitungan Indeks SINTACS:

Tabel 4.35. Contoh Perhitungan Indeks SINTACS di Desa Bayeman (A)

Parameter	Definisi	Skor	Bobot	Indeks Potensial Pencemaran	
S	10 m -15 m	4,7	5	23,5	
I Permukiman - Aluvial		2,1	4	8,4	
N	Lempung	1,5	5	7,5	
Т	Aluvial	6,6	3	19,8	
A	Tufa	29:	3	27	
C	0,001 m/detik -0,01 m/detik	9,6	34/	28,8	
S	0° - 2°	10	3	30	
Indeks SINTACS = 145 (Tinggi)					

Sumber: Hasil Analisa

Tabel 4.36. Contoh Perhitungan Indeks SINTACS di Desa Bayeman (B)

Parameter	Definisi	Skor	Bobot	Indeks Potensial Pencemaran	
S	10 m -15 m	4,7	5	23,5	
I	I Permukiman-Mediteran		4	8,4	
N	Lempung	1,5	5	7,5	
T	Mediteran	3,5	3	10,5	
- A	Tufa	9	3	27	
C	0,001 m/detik -0,01 m/detik	9,6	3	28,8	
S	0° - 2°	10	3	30	
Indeks SINTACS = 136 (Sedang)					

Sumber: Hasil Analisa

Dari analisa dua contoh perhitungan di atas, dapat dilihat perbedaan antara kedua perhitungan dalam penentuan tingkat kerentanan. Pada contoh diatas, parameter kedalaman muka airtanah (S), laju pengisian kembali (I), kondisi zona tak jenuh (N), media akuifer (A), nilai konduktifitas hidraulik (C) dan kemiringan lereng (S) memiliki

indeks potensial pencemaran yang sama. Perbedaan hanya pada indeks potensial pencemaran untuk parameter tekstur tanah (T) pada perhitungan A nilainya lebih tinggi daripada perhitungan B. Perbedaan inilah yang mengakibatkan tingkat kerentanan juga berbeda, yaitu perhitungan A termasuk tingkat kerentanan tinggi dan perhitungan B termasuk tingkat kerentanan sedang. Oleh karena itu, dapat disimpulkan bahwa setiap parameter memiliki peran dalam penentuan tingkat kerentanan polusi. Penentuan tingkat kerentanan tidak hanya menitikberatkan pada nilai bobot yang besar, namun juga pada parameter lain yang memiliki nilai bobot kecil. Hal ini dikarenakan oleh sedikit saja perbedaan hasil *Indeks SINTACS* dapat juga membedakan penentuan tingkat kerentanan polusi.

Untuk Desa Klampok dan Pamatan hampir seluruh wilayahnya termasuk tingkat kerentanan sedang. Hal ini dapat dipengaruhi oleh tekstur tanah yang merupakan liat dan kedalaman muka air tanah yang berkisar antara 20-28 m.

Meskipun secara umum terdapat beberapa parameter utama yang mendukung kerentanan polusi airtanah dangkal di Kecamatan Tongas seperti yang telah disebutkan di atas. Terdapat juga faktor lain yang menjadi pertimbangan yaitu tata guna lahan dan jenis tanah. Karena dengan mengetahui tata guna lahan dan jenis tanah, dapat ditentukan besarnya air yang masuk ke dalam tanah dan berpotensi untuk mencemari airtanah dangkal. Namun secara nilai bobot (weight) kedalaman muka airtanah dan kondisi zona tak jenuh merupakan parameter yang memiliki nilai bobot tertinggi. Semakin dangkal kedalaman muka airtanah dangkal, maka semakin besar potensi airtanah dangkal untuk tercemar oleh polusi dan begitu juga sebaliknya. Dan semakin berbutir lapisan zona tak jenuhnya, maka semakin besar potensi airtanah dangkal untuk tercemar polusi dan begitu juga sebaliknya.

4.6.2. Analisa Tata Guna Lahan

Dilihat dari tata guna lahan di Kecamatan Tongas, maka sebagian besar yang merupakan kerentanan sedang maupun tinggi adalah lahan yang digunakan sebagai lahan pertanian seperti sawah irigasi maupun sawah tadah hujan. Penggunaan lahan untuk pertanian mengakibatkan potensi kerentanan polusi airtanah dangkal di Kecamatan Tongas semakin tinggi. Hal ini dikarenakan penggunaan pupuk sintetik untuk menyuburkan tanah/tanaman seperti pupuk dan pestisida pemberantas hama tanaman merupakan salah satu sumber yang dikhawatirkan dapat menimbulkan polusi airtanah dangkal. Selain dari lahan pertanian, sumber lain yang dapat dapat menjadi sumber polusi adalah limbah domestik. Namun pada lokasi studi, limbah domestik di

lapangan dibuang melalui saluran pembuang sehingga tidak terlalu diperhitungkan sebagai sumber polusi. Hal ini dikarenakan limbah domestik memiliki sedikit sekali kemungkinan akan bercampur dengan air permukaan dan ikut dalam proses infiltrasi, terkecuali terdapat curah hujan dengan intensitas tinggi yang dapat mengakibatkan limbah di saluran tersebut melimpas dan bercampur dengan air permukaan.

Berdasarkan hasil analisa kualitas airtanah dangkal di Kecamatan Tongas menunjukkan adanya kandungan bahan kimia phospat dan nitrit. Penentuan parameter bahan kimia tersebut berdasarkan analisa bahan kimia yang terdapat pada limbah domestik seperti detergen dan limbah pertanian seperti pupuk dan pestisida. Limbah pupuk mengandung fosfat yang dapat merangsang pertumbuhan gulma air seperti ganggang dan eceng gondok. Sedangkan semua zat ber-N (Nitrit) akan teroksidasi menjadi nitrat (NO₃). Nitrat akan menghambat darah melepaskan oksigen ke sel-sel tubuh. Sekali nitrat masuk kedalam sistim peredaran darah, penderita dapat mengalami kekurangan oksigen dalam tubuhnya. Penyakit ini dikenal sebagai Baby Blue Syndrome yang dapat menjadi penyebab kematian bagi bayi dibawah umur 3 bulan. (Sumber: www.hydro.co.id/knowledge/pencemaran-air/). Dan standart kualitas air berdasarkan Peraturan Pemerintah Republik Indonesia No. 82 Tahun 2001 Tentang Pengelolaan Kualitas Air dan Pengendalian Pencemaran Air. Sampel airtanah dangkal yang diambil berasal dari sumur penduduk yang tersebar di lima desa di Kecamatan Tongas, yaitu Desa Tanjungrejo, Desa Bayeman, Desa Tongas Wetan, Desa Klampok dan Desa Sumberejo. Untuk peta lokasi sumur pengambilan sampel airtanah pada Lampiran 6 Halaman 161. Hasil analisa kualitas airtanah dapat dilihat pada Tabel 4.37. berikut.

Tabel 4.37. Hasil Analisa Kualitas Airtanah Dangkal di Kecamatan Tongas

No	Kode Sampel	Parameter	Satuan	Hasil Analisa	Standart Air Kelas I
1	A	Total Phospat	mg/L	18,1	0,2
	(Desa Tanjungrejo)	Nitrit	mg/L	0,1	0,06
2	В	Total Phospat	mg/L	32,58	0,2
2	(Desa Bayeman)	Nitrit	mg/L	0,12	0,06
3	C	Total Phospat	mg/L	10,41	0,2
3	(Desa Tongas Wetan)	Nitrit	mg/L	0,13	0,06
4	D	Total Phospat	mg/L	7,69	0,2
7	(Desa Klampok)	Nitrit	mg/L	0,09	0,06
5	E	Total Phospat	mg/L	14,48	0,2
3	(Desa Sumberejo)	Nitrit	mg/L	0,07	0,06

Sumber: Hasil Analisa

Dari hasil analisa kualitas airtanah dangkal tersebut dapat dilihat bahwa hampir di seluruh Kecamatan Tongas sudah terjadi polusi airtanah yang berasal dari limbah pertanian. Hal ini dikarenakan hasil analisa pada lima sampel tersebut menunjukkan nilai yang lebih tinggi dari nilai standart air kelas I sehingga sebaiknya tidak digunakan sebagai bahan baku air minum. Hasil analisa kualitas airtanah yang menunjukkan adanya polusi airtanah dangkal sesuai dengan hasil analisa kerentanan airtanah dangkal dengan metode *SINTACS* yang menunjukkan hasil kerentanan sedang sampai tinggi.

Sumber polusi airtanah dangkal yang lain adalah limbah domestik dapat berasal dari daerah pemukiman penduduk, perdagangan/pasar dapat berupa limbah padat dan cair. Limbah cair berupa tinja, deterjen, oli, cat dan sampah organik lainnya. Wilayah pemukiman padat tersebar sepanjang Desa Bayeman sampai Desa Tambakrejo. Wilayah ini juga dilintasi oleh jalur pantura yang merupakan jalur nasional, sehingga semakin memungkinkan terjadinya perkembangan pemukiman di wilayah ini yang dikhawatirkan juga dapat menimbulkan polusi airtanah dangkal. Untuk Peta Kesesuaian Lahan dengan Hasil Kerentanan Polusi Airtanah Dangkal Kecamatan Tongas, dapat dilihat pada Lampiran 1 Halaman 120.

SINTACS memiliki konsep yang berbeda dengan konsep konservasi. Menurut konsep konservasi, semakin banyak air yang masuk ke dalam tanah untuk kembali mengisi jumlah air tanah adalah baik, sedangkan SINTACS menerapkan konsep bahwa air yang masuk ke dalam tanah semakin kecil maka akan semakin kecil pula peluang polutan untuk ikut ke dalam airtanah. Tapi dengan sedikitnya air yang meresap akan mengakibatkan limpasan permukaan menjadi semakin besar dan dapat dimungkinkan akan terjadinya banjir akan semakin besar.

Oleh karena itu diperlukan manajemen arah pengembangan Rencana Tata Ruang Wilayah (RTRW) yang tepat untuk masa mendatang. Sehingga konsep *SINTACS* dan konsep konservasi bisa sejalan. Hal ini karena peta kerentanan airtanah dangkal juga dapat digunakan sebagai dasar pencegahan kontaminasi airtanah dangkal dan perencanaan perlindungan akuifer.

Selain itu, melihat penggunaan lahan di Kecamatan Tongas yang sebagian lahan pertanian dan perkebunan yang dikhawatirkan menimbulkan polusi airtanah, maka untuk pencegahan dapat digunakan pupuk alami dalam kegiatan pertanian ataupun tidak membuang sisa pupuk pertanian secara sembarangan.

Peta kerentanan airtanah dangkal bisa diaplikasikan untuk semua polutan yang mungkin berpengaruh pada air di permukaan (sebelum meresap ke dalam tanah) tetapi

BRAWIJAYA

tidak memberikan penjelasan tentang potensi polusi dari tiap jenis bahan kimia dan jumlah pengaruhnya terhadap polusi airtanah tersebut. Hal ini merupakan batasan penting dalam studi ini.

