ANALISIS KESTABILAN SISTEM DAYA PADA INTERKONEKSI PT.AJINOMOTO INDONESIA DAN PT.AJINEX INTERNASIONAL *MOJOKERTO FACTORY*

SKRIPSI

KONSENTRASI TEKNIK ENERGI ELEKTRIK

Diajukan untuk memenuhi persyaratan memperoleh gelar Sarjana Teknik

Disusun oleh: TRIYUDHA YUSTICEA SULAKSONO NIM. 0810633019 - 63

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN UNIVERSITAS BRAWIJAYA FAKULTAS TEKNIK MALANG 2013

ANALISIS KESTABILAN SISTEM DAYA PADA INTERKONEKSI PT.AJINOMOTO INDONESIA DAN PT.AJINEX INTERNASIONAL *MOJOKERTO FACTORY*

SKRIPSI

KONSENTRASI TEKNIK ENERGI ELEKTRIK

Diajukan untuk memenuhi persyaratan memperoleh gelar Sarjana Teknik

Disusun oleh: TRIYUDHA YUSTICEA SULAKSONO NIM. 0810633019 - 63

Telah diperiksa dan disetujui oleh :

Dosen Pembimbing I

Dosen Pembimbing II

Hadi Suyono, S.T., M.T., Ph.D. NIP. 19730520 200801 1 013 <u>Hery Purnomo, Ir., MT.</u> NIP. 19550708 198212 1 001

LEMBAR PENGESAHAN

ANALISIS KESTABILAN SISTEM DAYA PADA INTERKONEKSI PT.AJINOMOTO INDONESIA DAN PT.AJINEX INTERNASIONAL *MOJOKERTO FACTORY*

SKRIPSI

KONSENTRASI TEKNIK ENERGI ELEKTRIK

Diajukan untuk memenuhi persyaratan memperoleh gelar Sarjana Teknik

Disusun oleh: TRIYUDHA YUSTICEA SULAKSONO NIM. 0810633019 - 63

Skripsi ini telah diuji dan dinyatakan lulus pada

tanggal 13 Mei 2013

Majelis Penguji :

<u>Mahfudz Shidiq, Ir., MT.</u> NIP. 19580609 198703 1 003 <u>Hari Santoso, Ir., MS.</u> NIP. 19531205 198503 1 001

<u>Soemarwanto, Ir., MT.</u> NIP. 19500715 198003 1 002

Mengetahui : Ketua Jurusan Teknik Elektro

Dr. Ir. Sholeh Hadi Pramono, MS. NIP. 19580728 198701 1 001

KATA PENGANTAR

Assalammualaikum Wr. Wb.

Segala puji syukur penulis panjatkan kehadirat Allah SWT karena hanya dengan berkat rahmat dan hidayah-Nya penulis dapat menyelesaikan penelitian dengan judul "Analisis Kestabilan Sistem Daya pada Interkoneksi PT.Ajinomoto Indonesia dan PT.Ajinex Internasional *Mojokerto Factory*". Penelitian tersebut disusun dalam rangka untuk memenuhi persyaratan memperoleh gelar Sarjana Teknik, di Fakultas Teknik Universitas Brawijaya.

Penelitian ini membahas tentang analisis kestabilan sistem daya meliputi kestabilan tegangan dan kestabilan sudut rotor di PT.Ajinomoto Indonesia dan PT.Ajinex Internasional *Mojokerto Factory*. Penelitian dilakukan dengan menganalisis kestabilan sistem daya pada kondisi awal, yaitu kondisi sebelum interkoneksi dan kestabilan sistem setelah interkoneksi.

Dalam menyelesaikan penelitian ini, banyak kendala yang dihadapi oleh penulis. Namun, kendala tersebut dapat terselesaikan berkat bantuan dari pihak-pihak yang telah meluangkan waktu untuk membantu penulis. Oleh karena itu, penulis ingin mengucapkan terima kasih kepada pihak-pihak tersebut, yaitu:

- 1. Bapak Dr.Ir.Sholeh Hadi Pramono., MS selaku Ketua Jurusan Teknik Elektro.
- 2. Bapak M. Aziz Muslim, S.T., M.Sc, Ph.D. selaku Sekretaris Jurusan Teknik Elektro.
- 3. Bapak Mochammad Rif'an S.T., M.T. selaku Ketua Program Studi Teknik Elektro.
- 4. Bapak Hadi Suyono, S.T., M.T., Ph.D. dan Bapak Hery Purnomo, Ir., MT. selaku dosen pembimbing skripsi.
- 5. Ibu, Bapak, dan keluarga tercinta atas segala bentuk cinta kasihnya kepadaku yang terwujud dalam bentuk materil, doa dan perjuangannya yang tidak terkira nilainya.
- 6. Rekan-rekan mahasiswa Teknik Elektro Universitas Brawijaya, khususnya rekanrekan mahasiswa Teknik Energi Elektrik.
- 7. Semua pihak yang tidak dapat disebutkan satu persatu sehingga skripsi ini dapat diselesaikan dengan baik.

Dalam penyusunan penelitian ini masih terdapat banyak kekurangan, baik itu dalam materi yang ditulis serta sistematika penulisannya. Oleh karena itu, saran dan

kritik masih sangat diharapkan agar skripsi ini dapat menjadi karya tulis yang mendekati sempurna. Akhir kata, semoga penelitian ini dapat bermanfaat bagi kita semua.

NERSITAS

Malang, Maret 2013

Penulis

BRAWIUAL

DAFTAR ISI

Halaman

KATA PENGANTAR	i
DAFTAR ISI	iii
DAFTAR TABEL	vi
DAFTAR GAMBAR	viii
DAFTAR LAMPIRAN	xi
ABSTRAK	xii
BAB I PENDAHULUAN	1
1.1 Latar Belakang	1
1.2 Rumusan Masalah	2
1.3 Batasan Masalah	2
1.4 Tujuan Penelitian	
1.5 Manfaat Penelitian	
1.6 Sistematika Pembahasan	3
BAB II TINJAUAN PUSTAKA	5
2.1 Analisis Aliran Daya	5
2.2 Persamaan Aliran Daya	5
2.3 Metode Aliran Daya	8
2.4 Sistem Per Unit	
2.5 Stabilitas Sistem Daya	11
2.5.1 Stabilitas <i>Steady State</i>	
2.5.2 Stabilitas <i>Transient</i>	11
2.5.3 Stabilitas Dinamis	12
2.6 Dinamika Rotor dan Persamaan Ayunan	12
2.6.1 Stabilitas Sudut Rotor	12
2.6.2 Persamaan Ayunan	14
2.6.3 Hubungan Sudut Daya	16
2.7 Stabilitas tegangan	
2.8 Persamaan Dalam Studi Stabilitas	
2.8.1 Persamaan Keadaan Mantap (Steady State)	19
2.8.2 Pesamaan Peralihan	20
2.8.3 Persamaan Sub-peralihan	21

2.9Unit Pembangki222.9.1Generator Sinkron222.9.2Exciters dan Automatic Voltage Regulators232.9.3Turbin Gas242.10Komputer Digital untuk Analisis Sistem Daya25BAB III METODE PENELITIAN263.1Studi Literatur273.2Pengambilan Data273.3Pemodelan273.4Simulasi273.5Hasil Simulasi dan Analisis303.6Kesimpulan dan Saran303.6Kesimpulan dan Saran303.6Kesimpulan dan Saran324.1Kondisi Kelistrikan di PT.Ajinomoto Indonesia dan PT.Ajinex Internasional Mojokerto Factory324.1.2Sistem Distribusi Daya324.2Pemodelan Sistem dan Pengolahan Data334.2.1Pemodelan Sistem334.2.2Data Generator364.2.3Data Baban384.3Simulasi Aliran Daya394.3.1Simulasi Aliran Daya PT.Ajinomoto Indonesia Mojokerto Factory404.3.3Simulasi Aliran Daya PA394.3.4Pemilihan Konduktor Interkoneksi41
2.9.1 Generator Sinkron 22 2.9.2 Exciters dan Automatic Voltage Regulators 23 2.9.3 Turbin Gas 24 2.10 Komputer Digital untuk Analisis Sistem Daya 25 BAB III METODE PENELITIAN 26 3.1 Studi Literatur 27 3.2 Pengambilan Data 27 3.3 Pemodelan 27 3.4 Simulasi 27 3.5 Hasil Simulasi dan Analisis 30 3.6 Kesimpulan dan Saran 30 3.6 Kesimpulan dan Saran 30 8.6 Kondisi Kelistrikan di PT. Ajinomoto Indonesia dan PT. Ajinex Internasional <i>Mojokerto Factory</i> 4.1 Kondisi Kelistrikan di PT. Ajinomoto Indonesia dan PT. Ajinex Internasional 32 4.1.1 Sistem Distribusi Daya 32 4.2 Pemodelan Sistem dan Pengolahan Data 33 4.2.1 Pemodelan Sistem 33 4.2.2 Data Generator 36 4.2.3 Data Beban 38 4.3 Simulasi Aliran Daya 39 4.3.1 Simulasi Aliran Daya P
2.9.2 Exciters dan Automatic Voltage Regulators 23 2.9.3 Turbin Gas 24 2.10 Komputer Digital untuk Analisis Sistem Daya 25 BAB III METODE PENELITIAN 26 3.1 Studi Literatur 27 3.2 Pengambilan Data 27 3.3 Pemodelan 27 3.4 Simulasi 27 3.5 Hasil Simulasi dan Analisis 30 3.6 Kesimpulan dan Saran 32
2.9.3 Turbin Gas 24 2.10 Komputer Digital untuk Analisis Sistem Daya 25 BAB III METODE PENELITIAN 26 3.1 Studi Literatur 27 3.2 Pengambilan Data 27 3.3 Pemodelan 27 3.4 Simulasi 27 3.5 Hasil Simulasi dan Analisis 30 3.6 Kesimpulan dan Saran 32 4.1 Kondisi Kelistrikan di PT.Ajinomoto Indonesia dan PT.Ajinex Internasional Mojokerto Factory 4.1.1 Sistem Destribusi Daya 32 32 4.2.1 Pemodelan Sistem dan Pengolahan Data 33 4.2.2 Data Generator 36 4.
2.10 Komputer Digital untuk Analisis Sistem Daya 25 BAB III METODE PENELITIAN 26 3.1 Studi Literatur 27 3.2 Pengambilan Data 27 3.3 Pemodelan 27 3.4 Simulasi 27 3.5 Hasil Simulasi dan Analisis 27 3.5 Hasil Simulasi dan Analisis 27 3.6 Kesimpulan dan Saran 30 3.6 Kesimpulan dan Saran 32 4.1 Kondisi Kelistrikan di PT.Ajinomoto Indonesia dan PT.Ajinex Internasional <i>Mojokerto Factory</i> 4.1.1
BAB III METODE PENELITIAN 26 3.1 Studi Literatur 27 3.2 Pengambilan Data 27 3.3 Pemodelan 27 3.4 Simulasi 27 3.5 Hasil Simulasi dan Analisis 30 3.6 Kesimpulan dan Saran 32 4.1 Kondisi Kelistrikan di PT.Ajinomoto Indonesia dan PT.Ajinex Internasional <i>Mojokerto Factory</i> 4.1.1 Sistem Pembangkitan 32 4.1.2 Sistem Distribusi Daya 32 4.2 Pemodelan Sistem dan Pengolahan Data 33 4.2.1 Pemodelan Sistem 33 4.2.2 Data Generator
3.1 Studi Literatur 27 3.2 Pengambilan Data 27 3.3 Pemodelan 27 3.4 Simulasi 27 3.5 Hasil Simulasi dan Analisis 30 3.6 Kesimpulan dan Saran 32 4.1 Kondisi Kelistrikan di PT.Ajinomoto Indonesia dan PT.Ajinex Internasional Mojokerto Factory 33 4.2.1 Pemodelan Sistem dan Pengolahan Data 33 4.2.2 <t< td=""></t<>
3.2 Pengambilan Data
3.3 Pemodelan 27 3.4 Simulasi 27 3.5 Hasil Simulasi dan Analisis 30 3.6 Kesimpulan dan Saran 30 BAB IV SIMULASI DAN PEMBAHASAN HASIL 32 4.1 Kondisi Kelistrikan di PT.Ajinomoto Indonesia dan PT.Ajinex Internasional Mojokerto Factory 4.1 Sistem Distribusi Daya 32 4.1.1 Sistem Dembangkitan 32 4.1.2 Sistem Distribusi Daya 32 4.1.2 Sistem dan Pengolahan Data 33 4.2.1 Pemodelan Sistem dan Pengolahan Data 33 4.2.2 Data Generator 36 4.2.3 Data Saluran 37 4.2.4 Data Beban 38 4.3 Simulasi Aliran Daya PT.Ajinomoto Indonesia Mojokerto Factory 39 4.3.1 Simulasi Aliran Daya PT.Ajinex Internasional Mojokerto Factory 40 4.3.3 Simulasi Aliran Daya pada Sistem Interkoneksi 41 <td< td=""></td<>
3.4 Simulasi 27 3.5 Hasil Simulasi dan Analisis 30 3.6 Kesimpulan dan Saran 30 3.6 Kesimpulan dan Saran 30 BAB IV SIMULASI DAN PEMBAHASAN HASIL 32 4.1 Kondisi Kelistrikan di PT.Ajinomoto Indonesia dan PT.Ajinex Internasional Mojokerto Factory 4.1.1 Sistem Pembangkitan 32 4.1.2 Sistem Distribusi Daya 32 4.1.2 Sistem dan Pengolahan Data 33 4.2.1 Pemodelan Sistem dan Pengolahan Data 33 4.2.2 Data Generator 36 4.2.3 Data Saluran 37 4.2.4 Data Beban 38 4.3 Simulasi Aliran Daya 39 4.3.1 Simulasi Aliran Daya PT.Ajinomoto Indonesia Mojokerto Factory 39 4.3.2 Simulasi Aliran Daya pada Sistem Internasional Mojokerto Factory 40 4.3.3 Simulasi Aliran Daya pada Sistem Interkoneksi 41 4.3.4 Pemilihan Konduktor Interkoneksi 45
3.5 Hasil Simulasi dan Analisis 30 3.6 Kesimpulan dan Saran 30 BAB IV SIMULASI DAN PEMBAHASAN HASIL 32 4.1 Kondisi Kelistrikan di PT.Ajinomoto Indonesia dan PT.Ajinex Internasional Mojokerto Factory 32 4.1.1 Sistem Pembangkitan 32 4.1.2 Sistem Distribusi Daya 32 4.1.2 Sistem Distribusi Daya 32 4.2 Pemodelan Sistem dan Pengolahan Data 33 4.2.1 Pemodelan Sistem 33 4.2.2 Data Generator 36 4.3 Simulasi Aliran Daya 39 4.3.1 Simulasi Aliran Daya PT.Ajinomoto Indonesia Mojokerto Factory 39 4.3.3 Simulasi Aliran Daya PT.Ajinex Internasional Mojokerto Factory 40 4.3.4 Pemilihan Konduktor Interkoneksi 41
3.6 Kesimpulan dan Saran 30 BAB IV SIMULASI DAN PEMBAHASAN HASIL 32 4.1 Kondisi Kelistrikan di PT.Ajinomoto Indonesia dan PT.Ajinex Internasional Mojokerto Factory 32 4.1.1 Sistem Pembangkitan 32 4.1.2 Sistem Distribusi Daya 32 4.1.2 Sistem Distribusi Daya 32 4.2 Pemodelan Sistem dan Pengolahan Data 33 4.2.1 Pemodelan Sistem 33 4.2.2 Data Generator 36 4.3 Simulasi Aliran Daya 39 4.3.1 Simulasi Aliran Daya PT.Ajinomoto Indonesia Mojokerto Factory 39 4.3.3 Simulasi Aliran Daya PT.Ajinex Internasional Mojokerto Factory 40 4.3.4 Pemilihan Konduktor Interkoneksi 45
BAB IV SIMULASI DAN PEMBAHASAN HASIL324.1 Kondisi Kelistrikan di PT.Ajinomoto Indonesia dan PT.Ajinex Internasional <i>Mojokerto Factory</i> 324.1.1 Sistem Pembangkitan324.1.2 Sistem Distribusi Daya324.2 Pemodelan Sistem dan Pengolahan Data334.2.1 Pemodelan Sistem dan Pengolahan Data334.2.2 Data Generator364.2.3 Data Saluran374.2.4 Data Beban384.3 Simulasi Aliran Daya394.3.1 Simulasi Aliran Daya PT.Ajinex Internasional <i>Mojokerto Factory</i> 394.3.2 Simulasi Aliran Daya PT.Ajinex Internasional <i>Mojokerto Factory</i> 404.3.3 Simulasi Aliran Daya pada Sistem Interkoneksi414.3.4 Pemilihan Konduktor Interkoneksi45
4.1 Kondisi Kelistrikan di PT.Ajinomoto Indonesia dan PT.Ajinex Internasional Mojokerto Factory 32 4.1.1 Sistem Pembangkitan 32 4.1.2 Sistem Distribusi Daya 32 4.2 Pemodelan Sistem dan Pengolahan Data 33 4.2.1 Pemodelan Sistem dan Pengolahan Data 33 4.2.2 Data Generator 36 4.2.3 Data Saluran 37 4.2.4 Data Beban 38 4.3 Simulasi Aliran Daya 39 4.3.1 Simulasi Aliran Daya PT.Ajinomoto Indonesia Mojokerto Factory 39 4.3.3 Simulasi Aliran Daya PT.Ajinex Internasional Mojokerto Factory 40 4.3.4 Pemilihan Konduktor Interkoneksi 45
Mojokerto Factory324.1.1Sistem Pembangkitan324.1.2Sistem Distribusi Daya324.2Pemodelan Sistem dan Pengolahan Data334.2.1Pemodelan Sistem dan Pengolahan Data334.2.2Data Generator364.2.3Data Saluran374.2.4Data Beban384.3Simulasi Aliran Daya394.3.1Simulasi Aliran Daya PT.Ajinomoto Indonesia Mojokerto Factory394.3.3Simulasi Aliran Daya pada Sistem Interkoneksi414.3.4Pemilihan Konduktor Interkoneksi45
4.1.1Sistem Pembangkitan324.1.2Sistem Distribusi Daya324.2Pemodelan Sistem dan Pengolahan Data334.2.1Pemodelan Sistem334.2.2Data Generator364.2.3Data Saluran374.2.4Data Beban384.3Simulasi Aliran Daya394.3.1Simulasi Aliran Daya PT.Ajinomoto Indonesia Mojokerto Factory394.3.2Simulasi Aliran Daya PT.Ajinex Internasional Mojokerto Factory404.3.3Simulasi Aliran Daya pada Sistem Interkoneksi414.3.4Pemilihan Konduktor Interkoneksi45
4.1.2Sistem Distribusi Daya324.2Pemodelan Sistem dan Pengolahan Data334.2.1Pemodelan Sistem334.2.2Data Generator364.2.3Data Saluran374.2.4Data Beban384.3Simulasi Aliran Daya394.3.1Simulasi Aliran Daya PT.Ajinomoto Indonesia Mojokerto Factory394.3.2Simulasi Aliran Daya PT.Ajinex Internasional Mojokerto Factory404.3.3Simulasi Aliran Daya pada Sistem Interkoneksi414.3.4Pemilihan Konduktor Interkoneksi45
4.2Pemodelan Sistem dan Pengolahan Data
4.2.1Pemodelan Sistem334.2.2Data Generator364.2.3Data Saluran374.2.4Data Beban384.3Simulasi Aliran Daya394.3.1Simulasi Aliran Daya PT.Ajinomoto Indonesia Mojokerto Factory394.3.2Simulasi Aliran Daya PT.Ajinex Internasional Mojokerto Factory404.3.3Simulasi Aliran Daya pada Sistem Interkoneksi414.3.4Pemilihan Konduktor Interkoneksi45
4.2.2Data Generator
4.2.3Data Saluran374.2.4Data Beban384.3Simulasi Aliran Daya394.3.1Simulasi Aliran Daya PT.Ajinomoto Indonesia Mojokerto Factory394.3.2Simulasi Aliran Daya PT.Ajinex Internasional Mojokerto Factory404.3.3Simulasi Aliran Daya pada Sistem Interkoneksi414.3.4Pemilihan Konduktor Interkoneksi45
4.2.4Data Beban384.3Simulasi Aliran Daya394.3.1Simulasi Aliran Daya PT.Ajinomoto Indonesia Mojokerto Factory394.3.2Simulasi Aliran Daya PT.Ajinex Internasional Mojokerto Factory404.3.3Simulasi Aliran Daya pada Sistem Interkoneksi414.3.4Pemilihan Konduktor Interkoneksi45
 4.3 Simulasi Aliran Daya
 4.3.1 Simulasi Aliran Daya PT.Ajinomoto Indonesia <i>Mojokerto Factory</i>
 4.3.2 Simulasi Aliran Daya PT.Ajinex Internasional <i>Mojokerto Factory</i>40 4.3.3 Simulasi Aliran Daya pada Sistem Interkoneksi41 4.3.4 Pemilihan Konduktor Interkoneksi
4.3.3Simulasi Aliran Daya pada Sistem Interkoneksi414.3.4Pemilihan Konduktor Interkoneksi45
434 Pemilihan Konduktor Interkoneksi 45
4.4 Rangkaian Ekivalen Sistem
4.5 Simulasi Stabilitas Tegangan dan Sudut rotor Sebelum Interkoneksi
4.5.1 Simulasi Stabilitas Tegangan dan Sudut rotor pada Sistem Daya
PT.Ajinomoto Indonesia Mojokerto Factory
4.5.2 Simulasi Stabilitas Tegangan dan Sudut rotor pada Sistem Daya
PT.Ajinex Internasional Mojokerto Factory
4.6 Simulasi Stabilitas Tegangan dan Sudut Rotor Setelah Interkoneksi

4.	6.1 Perbandingan Stabilitas Sistem Sebelum dan Setelah Interkoneksi	85
4.7	Simulasi Pengaruh TG dan AVR terhadap Stabilitas Sistem Interkoneksi	86
4.8	Waktu Pemutus Kritis	87

BAB V	PENUTUP	
5.1	Kesimpulan	
5.2	Saran	
DAFTA	R PUSTAKA	
LAMPI	RAN	
	SHINERSITAS BRAWING	

DAFTAR TABEL

Halaman	
1 Iuiuiiuii	

Tabel 4.1	Data parameter dinamik generator	.36
Tabel 4.2	Data saluran	.37
Tabel 4.3	Data pembebanan 2 perusahaan	38
Tabel 4.4	Data aliran daya PT.Ajinomoto Indonesia Mojokerto Factory	.39
Tabel 4.5	Data aliran daya PT.Ajinex Internasional Mojokerto Factory	40
Tabel 4.6	Data aliran daya pada sistem interkoneksi	42
Tabel 4.7	Aliran daya pada saluran interkoneksi	44
Tabel 4.8	Impedansi rangkaian ekivalen PT.Ajinomoto Indonesia	46
Tabel 4.9	Skenario gangguan pada PT.Ajinomoto Indonesia	47
Tabel 4.10	Simulasi stabilitas tegangan pada skenario 1a	48
Tabel 4.11	Simulasi stabilitas sudut rotor pada skenario 1a	49
Tabel 4.12	Simulasi stabilitas tegangan pada skenario 2a	50
Tabel 4.13	Simulasi stabilitas sudut rotor pada skenario 2a	51
Tabel 4.14	Simulasi stabilitas tegangan pada skenario 3a	52
Tabel 4.15	Simulasi stabilitas sudut rotor pada skenario 3a	53
Tabel 4.16	Simulasi stabilitas tegangan pada skenario 4a	54
Tabel 4.17	Simulasi stabilitas sudut rotor pada skenario 4a	55
Tabel 4.18	Skenario gangguan pada PT.Ajinex Internasional	56
Tabel 4.19	Simulasi stabilitas tegangan pada skenario 1b	56
Tabel 4.20	Simulasi stabilitas sudut rotor pada skenario 1b	57
Tabel 4.21	Simulasi stabilitas tegangan pada skenario 2b	58
Tabel 4.22	Simulasi stabilitas sudut rotor pada skenario 2b	59
Tabel 4.23	Simulasi stabilitas tegangan pada skenario 3b	60
Tabel 4.24	Simulasi stabilitas sudut rotor pada skenario 3b	61
Tabel 4.25	Simulasi stabilitas tegangan pada skenario 4b	62
Tabel 4.26	Simulasi stabilitas sudut rotor pada skenario 4b	63
Tabel 4.27	Skenario gangguan sistem daya setelah interkoneksi	64
Tabel 4.28	Simulasi stabilitas tegangan pada skenario 1c	65
Tabel 4.29	Simulasi stabilitas sudut rotor pada skenario 1c	66
Tabel 4.30	Simulasi stabilitas tegangan pada skenario 2c	67
Tabel 4.31	Simulasi stabilitas sudut rotor pada skenario 2c	68

Simulasi stabilitas tegangan pada skenario 3c	69
Simulasi stabilitas sudut rotor pada skenario 3c	70
Simulasi stabilitas tegangan pada skenario 4c	71
Simulasi stabilitas sudut rotor pada skenario 4c	72
Simulasi stabilitas tegangan pada skenario 5c	73
Simulasi stabilitas sudut rotor pada skenario 5c	74
Simulasi stabilitas tegangan pada skenario 6c	75
Simulasi stabilitas sudut rotor pada skenario 6c	76
Simulasi stabilitas tegangan pada skenario 7c	77
Simulasi stabilitas sudut rotor pada skenario 7c	78
Simulasi stabilitas tegangan pada skenario 8c	79
Simulasi stabilitas sudut rotor pada skenario 8c	80
Simulasi stabilitas tegangan pada skenario 9c	81
Simulasi stabilitas sudut rotor pada skenario 9c	82
Simulasi stabilitas tegangan pada skenario 10c	83
Simulasi stabilitas sudut rotor pada skenario 10c	84
Perbandingan stabilitas tegangan dalam berbagai letak gangguan	85
	Simulasi stabilitas tegangan pada skenario 3c Simulasi stabilitas sudut rotor pada skenario 4c Simulasi stabilitas tegangan pada skenario 4c Simulasi stabilitas sudut rotor pada skenario 5c Simulasi stabilitas tegangan pada skenario 5c Simulasi stabilitas tegangan pada skenario 6c Simulasi stabilitas sudut rotor pada skenario 6c Simulasi stabilitas tegangan pada skenario 7c Simulasi stabilitas tegangan pada skenario 7c Simulasi stabilitas tegangan pada skenario 8c Simulasi stabilitas tegangan pada skenario 8c Simulasi stabilitas tegangan pada skenario 9c Simulasi stabilitas tegangan pada skenario 9c Simulasi stabilitas tegangan pada skenario 9c Simulasi stabilitas tegangan pada skenario 10c Perbandingan stabilitas tegangan dalam berbagai letak gangguan

DAFTAR GAMBAR

Hal	aman
1 1001	contraction in the second seco

Gambar 2.1	Tipikal bus dari sistem tenaga
Gambar 2.2	Model saluran transmisi untuk perhitungan aliran daya dan rugi saluran 7
Gambar 2.3	Respon sudut rotor pada saat terjadi gangguan13
Gambar 2.4	Model sistem sederhana (a) diagram segaris sistem (b) rangkaian
	ekivalen sistem 16
Gambar 2.5	Hubungan sudut daya antara dua mesin17
Gambar 2.6	Jenis-jenis gangguan hubung singkat
Gambar 2.7	Diagram fasor mesin sinkron rotor silindris pada keadaan mantab 20
Gambar 2.8	Diagaram fasor mesin sinkron pada keadaan peralihan
Gambar 2.9	Diagram fasor mesin sinkron pada keadaan sub-peralihan
Gambar 2.10	Diagram fasor generator yangterlalu diperkuat (overexcited)
Gambar 2.11	Diagram blok sistem dan AVR
Gambar 2.12	Siklus regeneratif terbuka pada turbin gas
Gambar 2.13	Estimasi waktu gangguan pada analisis stabilitas
Gambar 3.1	Diagram alir penelitian
Gambar 3.2	Diagram alir simulasi sebelum interkoneksi
Gambar 3.3	Diagram alir simulasi setelah interkoneksi 29
Gambar 4.1	Diagram segaris sistem daya PT.Ajinomoto Indonesia
Gambar 4.2	Diagram segaris sistem daya PT.Ajinex Internasional 34
Gambar 4.3	Diagram segaris interkoneksi sistem daya dua perusahaan
Gambar 4.4	Diagram aliran daya pada saluran interkoneksi
Gambar 4.5	Rangkaian ekivalen sistem daya PT.Ajinomoto Indonesia
Gambar 4.6	Grafik tegangan=f(t) pada bus PLN NE dan bus Gen NE saat gangguan
	skenario 1a 48
Gambar 4.7	Grafik sudut rotor=f(t) pada gen PLN NE dan Gen NE saat gangguan
	skenario 1a 49
Gambar 4.8	Grafik tegangan=f(t) pada bus PLN NE dan bus Gen NE saat gangguan
	skenario 2a 50
Gambar 4.9	Grafik sudut rotor=f(t) pada gen PLN NE dan Gen NE saat gangguan
	skenario 2a 51

Gambar 4.10	Grafik tegangan=f(t) pada bus PLN NE dan bus Gen NE saat gangguan
	skenario 3a
Gambar 4.11	Grafik sudut rotor=f(t) pada gen PLN NE dan Gen NE saat gangguan
	skenario 3a 53
Gambar 4.12	Grafik tegangan=f(t) pada bus PLN NE dan bus Gen NE saat gangguan
	skenario 4a 54
Gambar 4.13	Grafik sudut rotor=f(t) pada gen PLN NE dan Gen NE saat gangguan
	skenario 4a 55
Gambar 4.14	Grafik tegangan = $f(t)$ pada bus PLN NEX dan bus Gen NEX saat
	gangguan skenario 1b56
Gambar 4.15	Grafik sudut rotor = $f(t)$ pada gen PLN NEX dan Gen NEX saat
	gangguan skenario 1b57
Gambar 4.16	Grafik tegangan=f(t) pada bus PLN NEX dan bus Gen NEX saat
	gangguan skenario 2b
Gambar 4.17	Grafik sudut rotor = $f(t)$ pada gen PLN NEX dan Gen NEX saat
	gangguan skenario 2b
Gambar 4.18	Grafik tegangan=f(t) pada bus PLN NEX dan bus Gen NEX saat
	gangguan skenario 3b 60
Gambar 4.19	Grafik sudut rotor = $f(t)$ pada gen PLN NEX dan Gen NEX saat
	gangguan skenario 3b
Gambar 4.20	Grafik tegangan=f(t) pada bus PLN NEX dan bus Gen NEX saat
	gangguan skenario 4b 62
Gambar 4.21	Grafik sudut rotor = $f(t)$ pada gen PLN NEX dan Gen NEX saat
	gangguan skenario 4b 63
Gambar 4.22	Grafik tegangan = $f(t)$ setelah interkoneksi saat gangguan skenario 1c. 65
Gambar 4.23	Grafik sudut rotor=f(t)setelah interkoneksi saat gangguan skenario 1c.66
Gambar 4.24	Grafik tegangan = $f(t)$ setelah interkoneksi saat gangguan skenario 2c 67
Gambar 4.25	Grafik sudut rotor=f(t)setelah interkoneksi saat gangguan skenario 2c. 68
Gambar 4.26	Grafik tegangan = $f(t)$ setelah interkoneksi saat gangguan skenario 3c 69
Gambar 4.27	Grafik sudut rotor=f(t)setelah interkoneksi saat gangguan skenario 3c. 70
Gambar 4.28	Grafik tegangan = $f(t)$ setelah interkoneksi saat gangguan skenario 4c 71
Gambar 4.29	Grafik sudut rotor=f(t)setelah interkoneksi saat gangguan skenario 4c.72
Gambar 4.30	Grafik tegangan = $f(t)$ setelah interkoneksi saat gangguan skenario 5c 73
Gambar 4.31	Grafik sudut rotor=f(t)setelah interkoneksi saat gangguan skenario 5c.74

Gambar 4.32	Grafik tegangan = $f(t)$ setelah interkoneksi saat gangguan skenario 6c 75
Gambar 4.33	Grafik sudut rotor=f(t)setelah interkoneksi saat gangguan skenario 6c . 76
Gambar 4.34	Grafik tegangan = $f(t)$ setelah interkoneksi saat gangguan skenario 7c 77
Gambar 4.35	Grafik sudut rotor=f(t)setelah interkoneksi saat gangguan skenario 7c. 78
Gambar 4.36	Grafik tegangan = $f(t)$ setelah interkoneksi saat gangguan skenario 8c 79
Gambar 4.37	Grafik sudut rotor=f(t)setelah interkoneksi saat gangguan skenario 8c.80
Gambar 4.38	Grafik tegangan = $f(t)$ setelah interkoneksi saat gangguan skenario 9c 81
Gambar 4.39	Grafik sudut rotor=f(t)setelah interkoneksi saat gangguan skenario 9c.82
Gambar 4.40	Grafik tegangan = $f(t)$ setelah interkoneksi saat gangguan skenario 10c 83
Gambar 4.41	Grafik sudut rotor=f(t)setelah interkoneksi saat gangguan skenario 10c 84
Gambar 4.42	Grafik sudut rotor = f(t) pada Gen NE
Gambar 4.43	Grafik sudut rotor = f(t) pada Gen NEX
Gambar 4.44	Grafik sudut rotor = $f(t)$ pada gen PLN NE dan Gen NE sebelum
	interkoneksi
Gambar 4.45	Grafik sudut rotor = $f(t)$ pada gen PLN NEX dan Gen NEX sebelum
	interkoneksi
Gambar 4.46	Grafik sudut rotor = $f(t)$ pada gen PLN NE dan Gen NE setelah
	interkoneksi
Gambar 4.47	Grafik sudut rotor = $f(t)$ pada gen PLN NEX dan Gen NEX setelah

DAFTAR LAMPIRAN

Halaman

Lampiran 1	1. Data generator PT.Ajinomoto Indonesia Mojokerto Factory	. 93
	2. Data transformator PT.Ajinomoto Indonesia Mojokerto Factory	. 93
Lampiran 2	1. Data generator PT.Ajinex Internasional	. 94
	2. Data transformator PT.Ajinex Internasional	. 94
Lampiran 3	Data panjang saluran PT.Ajinomoto dan PT.Ajinex	. 95
Lampiran 4	Karakteristik kabel	.96
Lampiran 5	Data dinamik generator	. 97
Lampiran 6	Diagram segaris PT.Ajinomoto Indonesia	. 98
Lampiran 7	Diagram segaris PT.Ajinex Internasional	. 99
Lampiran 8	Perhitungan impedansi saluran PT.Ajinomoto Indonesia	100
Lampiran 9	Perhitungan impedansi saluran PT.Ajinex Internasional	101
Lampiran 10	1. Listing program untuk impedansi rel dalam perhitungan gangguan	102
	2. Hasil perhitungan impedansi rel dalam perhitungan gangguan	104

ABSTRAK

Triyudha Yusticea Sulaksono, Jurusan Teknik Elektro, Fakultas Teknik, Universitas Brawijaya, Januari 2013, Analisis Kestabilan Sistem Daya pada Interkoneksi PT.Ajinomoto Indonesia dan PT.Ajinex Internasional Mojokerto Factory, Dosen Pembimbing : Hadi Suyono, S.T., M.T., Ph.D. dan Hery Purnomo, Ir., MT.

PT.Ajinomoto Indonesia dan PT.Ajinex Internasional *Mojokerto Factory* merupakan perusahaan penghasil produk utama yaitu *monosodium glutamate* atau yang sering dikenal dengan *MSG* dan berlokasi di desa Jetis kabupaten Mojokerto. Dalam melakukan kegiatan operasional, kebutuhan energi listrik setiap perusahaan dipenuhi oleh sistem daya yang tidak diinterkoneksi. Berdasarkan kondisi tersebut, maka perlu adanya suatu sistem yang dapat menyalurkan energi listrik yang kontinuitasnya lebih terjamin, yaitu dengan melakukan interkoneksi terhadap sumber daya kedua perusahaan. Suatu gangguan dalam sistem tenaga listrik dapat memicu ketidakstabilan sistem sehingga perlu dilakukan analisis terhadap kestabilan pada sistem daya.

Penelitian akan menganalisis stabilitas sistem daya pada saat kondisi awal sistem, yaitu ketika sistem daya kedua perusahaan belum diinterkoneksi dan kondisi ketika sistem daya kedua perusahaan telah diinterkoneksi. Hasil analisis akan menunjukkan kondisi tegangan dan sudut rotor sistem sebelum, selama dan setelah gangguan terjadi. Selain itu dilakukan juga analisis mengenai pengaruh penggunaan *turbine governor* dan *automatic voltage regulator* terhadap stabilitas sistem daya dan penentuan waktu pemutus kritis.

Hasil analisis kestabilan pada sistem menunjukkan jika tegangan dan sudut rotor dapat kembali ke kondisi normal setelah sistem mengalami gangguan. *Drop* tegangan pada saat interkoneksi lebih kecil daripada sebelum interkoneksi. *Turbine governor* memiliki pengaruh terhadap waktu pemulihan yang lebih cepat setelah gangguan terjadi.

Kata kunci : interkoneksi, kestabilan, sudut rotor, tegangan

BAB I PENDAHULUAN

1.1 Latar Belakang

Pada saat ini energi listrik memegang peranan penting dalam kehidupan manusia. Daya listrik sangat penting dalam pengembangan berbagai sektor, salah satunya adalah sektor industri, karena dalam kenyataan sektor industri modern sangat bergantung pada listrik sebagai input dasar. Pemanfaatan daya listrik yang ada pada saat ini disediakan oleh PT.PLN (Persero). Namun, tidak semua sumber daya pada suatu industri bersumber pada daya dari PLN. Sumber listrik tersebut dapat dihasilkan oleh pembangkit mandiri milik industri tersebut guna menyuplai aliran daya ke beban-beban untuk melakukan proses produksi. Salah satu perusahaan yang menggunakan sumber mandiri adalah PT.Ajinomoto Indonesia dan PT.Ajinex Internasional *Mojokerto Factory* tidak hanya memanfaatkan sumber daya PLN saja, namun sumber daya PLN tersebut diinterkoneksi dengan sumber daya mandiri (generator).

PT.Ajinomoto Indonesia merupakan salah satu industri berskala besar yang ada di Indonesia. Perusahaan ini menghasilkan produk utama yaitu *monosodium glutamate* atau *sodium glutamat* yang sering dikenal dengan *MSG*. Dalam pembuatan *MSG* ini melewati beberapa proses dari tetes gula hingga menjadi *MSG*. Proses ini membutuhkan motor listrik yang banyak mulai dari proses pembuatan sampai pengiriman. Oleh karena itu dibutuhkan suatu sistem kelistrikan yang handal untuk mencatu motor – motor listrik tersebut agar dapat beroperasi selama 24 jam.

PT.Ajinomoto Indonesia dan PT.Ajinex Internasional berada dalam satu kawasan industri. PT.Ajinomoto Indonesia bertugas untuk menyuplai dan memenuhi permintaan dalam negeri sedangkan PT.Ajinex Internasional bertugas untuk menyuplai hasil produksi ke luar negeri. Dalam kenyataannya, PT.Ajinomoto Indonesia dan PT.Ajinex Internasional memiliki sumber daya yang tidak saling terhubung. Sehingga aliran daya setiap perusahaan tidak akan mempengaruhi kestabilan sistem tenaga perusahaan yang lain. PT.Ajinomoto Indonesia memiliki 1 pembangkit mandiri (generator) yang diinterkoneksi dengan sumber daya dari PLN. Begitu pula dengan PT.Ajinex Internasional, dimana perusahaan tersebut juga memiliki 1 pembangkit mandiri (generator) yang diinterkoneksi dengan sumber daya dari PLN. Sumber daya tersebut

akan menyuplai beban-beban yang berfungsi untuk menunjang hasil produksi. Sebagian besar proses produksi dikerjakan oleh mesin-mesin yang membutuhkan input daya listrik yang cukup besar. Oleh karena itu dibutuhkan kestabilan daya listrik agar proses produksi dapat berjalan dengan baik. Gangguan pada sistem tenaga listrik dapat memicu ketidakstabilan sistem dan dapat menyebabkan runtuh tegangan yang kemudian berakhir dengan *blackout* sebagian ataupun *blackout* seluruh sistem. Sehingga akan berakibat matinya sebagian maupun semua mesin produksi karena tidak adanya pasokan energi listrik. Hal ini merupakan kerugian bagi perusahaan dan harus diantisipasi agar proses produksi dapat terus berjalan. Berdasarkan dari pemikiran tersebut, maka pada penelitian ini akan menganalisis kestabilan sistem tenaga listrik di PT.Ajinomoto Indonesia dan PT.Ajinex Internasional *Mojokerto Factory*, yaitu ketika kondisi sebelum dan setelah interkoneksi dilakukan.

1.2 Rumusan Masalah

Sesuai dengan latar belakang di atas, maka rumusan masalah dalam penelitian ini adalah :

- 1. Bagaimana stabilitas tegangan dan sudut rotor pada sistem daya di PT.Ajinomoto Indonesia dan PT.Ajinex Internasional *Mojokerto Factory* pada saat terjadi gangguan sebelum interkoneksi.
- 2. Bagaimana stabilitas tegangan dan sudut rotor pada sistem daya di PT.Ajinomoto Indonesia dan PT.Ajinex Internasional *Mojokerto Factory* pada saat terjadi gangguan setelah interkoneksi.
- 3. Bagaimana pengaruh penggunaan *Turbine Governor* dan *Automatic Voltage Regulator* terhadap stabilitas sistem daya di PT.Ajinomoto Indonesia dan PT.Ajinex Internasional.
- Bagaimana waktu pemutus kritis pada generator di PT.Ajinomoto Indonesia dan PT.Ajinex Internasional.

1.3 Batasan Masalah

Agar pembahasan pada penelitian ini lebih terfokus pada permasalahan intinya, maka ditetapkan beberapa batasan masalah sebagai berikut:

- 1. Tidak dibahas masalah sistem proteksi.
- 2. Sistem kelistrikan yang dianalisis adalah sistem kelistrikan di PT.Ajinomoto Indonesia dan PT.Ajinex Internasional *Mojokerto Factory*.

- 3. Sumber daya yang diinterkoneksi adalah sumber daya dari generator (generator PT.Ajinomoto Indonesia dan PT.Ajinex Internasional *Mojokerto Factory*) dengan sumber daya dari PLN.
- 4. Dalam analisis dan simulasi hanya melakukan gangguan pada salah satu bus.
- 5. Parameter yang dianalisis adalah sudut rotor dan tegangan pada bus.
- 6. Stabilitas yang dibahas adalah stabilitas sistem daya terhadap gangguan hubung singkat tiga fasa.
- 7. Desain dan simulasi dilakukan menggunakan perangkat lunak PSSE (Power System Simulator for Engineering).
- 8. Pembahasan tidak meliputi perancangan interkoneksi secara terperinci.

1.4 Tujuan Penelitian

Tujuan penelitian dalam skripsi ini adalah untuk menganalisis stabilitas sistem daya di PT.Ajinomoto Indonesia dan PT.Ajinex Internasional *Mojokerto Factory* pada saat sebelum dan setelah interkoneksi dilakukan.

1.5 Manfaat Penelitian

Manfaat dari penelitian ini adalah sebagai bahan kajian kepada PT.Ajinomoto Indonesia *Mojokerto Factory* mengenai stabilitas sistem daya di PT.Ajinomoto Indonesia dan PT.Ajinex Internasional *Mojokerto Factory* pada saat sebelum interkoneksi dan setelah interkoneksi dilakukan yang disimulasikan menggunakan perangkat lunak.

1.6 Sistematika Pembahasan

Sistematika pembahasan yang digunakan dalam penyusunan laporan penelitian ini adalah sebagai berikut:

- **BABI** : Pada bab ini dibahas mengenai latar belakang, rumusan masalah, batasan masalah, tujuan dan sistematika penulisan.
- BAB II : Berisi tinjauan pustaka atau dasar teori yang digunakan untuk dasar penelitian yang dilakukan dan untuk mendukung permasalahan yang diungkapkan yang mencakup teori stabilitas pada sistem daya.

- **BAB III** : Memberikan penjelasan tentang metodologi penelitian yang akan dilakukan, meliputi metode yang digunakan, objek penelitian dan data yang diperlukan, serta langkah penelitian.
- **BAB IV** : Melakukan perhitungan dan analisa terhadap masalah yang diajukan dalam penelitian dengan memperhatikan data hasil analisis yang diperoleh.
- **BAB V** : Berisi kesimpulan dan saran yang diperoleh dari hasil analisis.

BAB II TINJAUAN PUSTAKA

2.1 Analisis Aliran Daya

Studi aliran daya merupakan hal penting dalam desain dan perencanaan pengembangan sistem daya guna menentukan operasi terbaik pada sistem. Keterangan utama yang diperoleh dari sebuah studi aliran daya adalah besar dan sudut fasa tegangan, daya reaktif, daya aktif yang dibangkitkan generator dan daya aktif dan reaktif yang mengalir pada setiap saluran/cabang. Studi ini juga digunakan untuk mengevaluasi sistem tenaga listrik terhadap pengaruh kondisi pembebanan yang berbeda. Studi-studi seperti hubung singkat, stabilitas, pembebanan ekonomis juga memerlukan studi aliran daya terlebih dahulu.

Setiap titik/bus pada suatu sistem tenaga listrik terdapat daya aktif P, daya reaktif Q, tegangan E, dan sudut fasa tegangan δ . Jadi pada setiap bus terdapat empat besaran yaitu P, Q, E dan δ . Di dalam studi aliran daya, dua dari keempat besaran itu diketahui, dan dua yang lain perlu dicari. Berdasarkan hal tersebut di atas, bus-bus dibedakan menjadi tiga jenis yaitu bus beban, bus generator, dan bus berayun (*slack bus*). (Grainger dan Stevenson, 1994 : 332)

- Bus beban (*P-Q bus*)
 Pada bus ini, selisih daya antara daya yang dibangkitkan oleh generator dan daya yang diserap oleh beban diketahui nilainya.
- Bus generator (*P-V bus*)
 Komponen yang dikatahui dalam bus ini adalah besar tegangan dan daya aktif P, sedangkan yang tidak diketahui adalah sudut fasa tegangan dan daya reaktif Q.
- Bus berayun (*Slack bus*)
 Komponen yang diketahui dalam bus ini adalah besar tegangan dan sudut fasa, sedangkan yang tidak diketahui adalah daya aktif P dan daya reaktif Q. Umumnya dalam studi aliran daya hanya terdapat satu bus berayun.

2.2 Persamaan Aliran Daya

Jaringan sistem tenaga seperti pada gambar 2.1, salurannya dapat digambarkan dengan model- π yang mana impedansi-impedansinya telah diubah mejadi admintansi-admintansi per-unit pada *base*/dasar MVA.

Aplikasi hukum arus kirchoff pada bus ini diberikan dalam (Cekmas Cekdin,2007:4):

$$I_{i} = y_{io}V_{i} + y_{il}(V_{i} - V_{l}) + y_{i2}(V_{i} - V_{2}) + \dots + y_{in}(V_{i} - V_{n})$$

= $(y_{io} + y_{il} + y_{i2} + y_{in})V_{i} - y_{il}V_{l} - y_{i2}V_{2} - \dots + y_{in}V_{n}$ (2-1)

Atau,

 $I_i = V_i \sum_{j=0}^n y_{ij} - \sum_{j=0}^n y_{ij} V_j \quad , \text{ dimana } j \neq i$ (2-2)

Daya reaktif dan aktif pada bus *i* adalah:

$$P_i + jQ_i = V_i I_i^* \tag{2-3}$$

Atau,

$$I_i = \frac{P_i - jQ_i}{V_i^*}$$
 (2-4)

Subtitusi untuk I_i pada persamaan 2-2 maka:

$$\frac{P_i - jQ_i}{V_i^*} = V_i \sum_{j=0}^n y_{ij} - \sum_{j=0}^n y_{ij} V_j \quad , \text{ dimana } j \neq i$$
 (2-5)

Dari hubungan diatas formulasi perhitungan dari aliran daya dalam sistem tenaga harus diselesaikan dengan menggunakan teknik iterasi.

Gambar 2.1 Tipikal bus dari sistem tenaga Sumber: Cekmas Cekdin ,2007: 5

Dalam perhitungan aliran daya selain menentukan besaran daya pada tiap bus, analisis aliran daya juga digunakan untuk menentukan besar kerugian daya yang hilang pada saluran transmisi selama proses penyaluran daya dari pembangkit ke pusat beban. Misalkan saluran dihubungkan dengan dua bus, yaitu bus i dan bus j seperti pada gambar 2.2.

Gambar 2.2 Model saluran transmisi untuk perhitungan aliran daya dan rugi saluran Sumber: Cekmas Cekdin ,2007 : 7

Perhatikan saluran yang terhubung antara bus *i* dan *j* pada gambar 2.2. Arus saluran I_{ij} diukur pada bus *i* dan dianggap positif untuk arah *i* ke *j*, sehingga dapat ditulis pada persamaan (2-6) (Cekmas Cekdin,2007:7).

$$I_{ij} = I_i + I_{i0} = y_{ij} (V_i - V_j) + y_{i0} V_i$$

dimana, I_{pq} : Arus pada bus p

 I_i : Arus pada saluran antara bus i dan bus j

*I*_{i0}: Arus pada saluran half line charging

yij: Admitansi saluran antara bus i dan bus j

yi0 : *Half line charghing*

 V_i : Tegangan bus *i*

 V_i : Tegangan bus j

Demikian juga arus saluran I_{ji} diukur pada bus *j* dan dianggap positif untuk arah *j* ke *i*, dapat ditulis pada persamaan (2-7).

$$I_{ji} = -I_i + I_{j0} = y_{ij} (V_j - V_i) + y_{j0} V_j$$
(2-7)

Daya kompleks S_{ij} dari bus *i* ke *j* dan S_{ji} dari bus *j* ke *i* dinyatakan pada Persamaan (2-8) dan (2-9).

$$S_{ij} = V_i I_{ij}^*$$
 (2-8)
 $S_{ii} = V_i I_{ii}^*$ (2-9)

Rugi daya dalam saluran *i-j* adalah penjumlahan aljabar dari daya yang ditentukan dari persamaan (2-8) dan (2-9), sehingga dapat dinyatakan pada persamaan (2-10).

(2-6)

Sehingga persamaan untuk mendapatkan total rugi saluran untuk sistem dengan jumlah *n* bus adalah pada Persamaan (2-11) (Cekmas Cekdin, 2007:8).

$$S_{LT} = \sum_{i=1}^{n} \sum_{j=1}^{n} S_{L\ ij} \tag{2-11}$$

Dimana,

 S_{Lij} : Rugi daya pada saluran antara bus *i* dan *j*

SLT: Total rugi daya

2.3 Metode Aliran Daya

Dalam menganalisa sistem jaringan yang memiliki lebih dari satu sumber listrik ataupun pada sistem jaringan kompleks maka diperlukan suatu metode analisa daya yang sesuai untuk memudahkan perhitungan. Oleh karena itu, untuk mempermudah perhitungan akan digunakan metode *Newton-Raphson* (Hadi Saadat, 1999: 232).

Dalam metode ini persamaan aliran daya dirumuskan dalam bentuk polar. Dari gambar 2.1, arus yang memasuki bus *i* dapat dicari dengan menggunakan persamaan (Hadi Saadat, 1999: 232):

$$I_i = \sum_{j=1}^n Y_{ij} V_j \tag{2-12}$$

Persamaan diatas dapat ditulis dalam bentuk polar yaitu:

$$_{i} = \sum_{j=1}^{n} |Y_{ij}| |V_j| \angle \theta_{ij} + \delta_j$$

$$(2-13)$$

Dimana :

 θ_{ij} = sudut pada admitansi Y_{ij}

 δ_i = sudut pada tegangan V_i

Daya kompleks pada bus-*i* yaitu:

$$P_i - jQ_i = V_i^* I_i$$

Persamaan (2.13) dapat disubtitusikan kedalam persamaan (2-14) sehingga menghasilkan:

$$P_i - jQ_i = |V_i| \angle \delta_i - \sum_{j=1}^n |Y_{ij}| |V_j| \angle \theta_{ij} + \delta_j$$
(2-15)

Setelah itu, pisahkan bagian real dan imajiner persamaan diatas sehingga menjadi:

$$P_{i} = \sum_{j=1}^{n} |V_{i}|| |V_{j}|| Y_{ij} |\cos(\theta_{ij} - \delta_{i} + \delta_{j})$$
(2-16)

$$Q_{i} = -\sum_{j=1}^{n} |V_{i}||V_{j}||Y_{ij}| \sin(\theta_{ij} - \delta_{i} + \delta_{j})$$
(2-17)

Persamaan (2-16) dan (2-17) akan membentuk persamaan non linier. Besar setiap variable dinyatakan dalam p.u. (per-unit) sedangkan sudut fasa dinyataan dalam radian.

(2-14)

Persamaan (2-16) dan (2-17) dikembangkan dalam deret Taylor seperti pada persamaan dibawah ini : (Hadi Saadat, 1999: 233)

$$\begin{bmatrix} \Delta P_{2}^{(k)} \\ \vdots \\ \Delta P_{n}^{(k)} \\ \Delta Q_{2}^{(k)} \\ \vdots \\ \Delta Q_{n}^{(k)} \end{bmatrix} = \begin{bmatrix} \frac{\partial P_{2}^{(k)}}{\partial \delta_{2}} & \cdots & \frac{\partial P_{2}^{(k)}}{\partial \delta_{n}} & \frac{\partial P_{2}^{(k)}}{\partial |V_{2}|} & \cdots & \frac{\partial P_{2}^{(k)}}{\partial |V_{n}|} \\ \vdots \\ \frac{\partial P_{n}^{(k)}}{\partial \delta_{2}} & \cdots & \frac{\partial P_{n}^{(k)}}{\partial \delta_{n}} & \frac{\partial P_{n}^{(k)}}{\partial |V_{2}|} & \cdots & \frac{\partial P_{n}^{(k)}}{\partial |V_{n}|} \\ \frac{\partial Q_{2}^{(k)}}{\partial \delta_{2}} & \cdots & \frac{\partial Q_{2}^{(k)}}{\partial \delta_{n}} & \frac{\partial Q_{2}^{(k)}}{\partial |V_{2}|} & \cdots & \frac{\partial Q_{2}^{(k)}}{\partial |V_{n}|} \\ \vdots \\ \frac{\partial Q_{n}^{(k)}}{\partial \delta_{2}} & \cdots & \frac{\partial Q_{n}^{(k)}}{\partial \delta_{n}} & \frac{\partial Q_{n}^{(k)}}{\partial |V_{2}|} & \cdots & \frac{\partial Q_{n}^{(k)}}{\partial |V_{n}|} \end{bmatrix} \begin{bmatrix} \Delta \delta_{2}^{(k)} \\ \vdots \\ \Delta \delta_{n}^{(k)} \\ \Delta |V_{2}^{(k)}| \\ \vdots \\ \Delta |V_{n}^{(k)}| \end{bmatrix}$$
(2-18)

Disini diasumsikan bahwa bus 1 adalah *slack bus*. Matriks Jacobian memberikan perbandingan linier antara perubahan pada sudut tegangan $\Delta \delta_i^{(k)}$ dan besar tegangan $\Delta |V_i^{(k)}|$ dengan sedikit perubahan pada daya aktif $(\Delta P_i^{(k)})$ dan daya reaktif $(\Delta Q_i^{(k)})$. Sehingga dalam bentuk singkat dapat ditulis seperti pada persamaan dibawah ini: (Hadi Saadat, 1999: 233)

$$\begin{bmatrix} \Delta P \\ \Delta Q \end{bmatrix} = \begin{bmatrix} J_1 & J_2 \\ J_3 & J_4 \end{bmatrix} \begin{bmatrix} \Delta \delta \\ \Delta |V| \end{bmatrix}$$
(2-19)

Elemen untuk J_1 yaitu:

$$\frac{\partial P_i}{\partial \delta_i} = \sum_{j \neq i} |V_i| |V_j| |Y_{ij}| \sin \left(\theta_{ij} - \delta_i + \delta_j\right)$$
(2-20)

$$\frac{\partial P_i}{\partial \delta_j} = -|V_i| |V_j| |Y_{ij}| \sin(\theta_{ij} - \delta_i + \delta_j) \qquad , j \neq i$$
(2-21)

Elemen untuk J_2 yaitu:

$$\frac{\partial P_i}{\partial |V_i|} = 2|V_i||Y_{ii}|\cos(\theta_{ii}) + \sum_{j \neq i} |V_j||Y_{ij}|\cos(\theta_{ij} - \delta_i + \delta_j) \quad (2-22)$$

$$\frac{\partial P_i}{\partial |V_j|} = |V_j| |Y_{ij}| \cos(\theta_{ij} - \delta_i + \delta_j) \qquad , j \neq i \qquad (2-23)$$

Elemen untuk J_3 yaitu:

$$\frac{\partial Q_i}{\partial \delta_i} = \sum_{j \neq i} |V_i| |V_j| |Y_{ij}| \cos(\theta_{ij} - \delta_i + \delta_j)$$
(2-24)

$$\frac{\partial Q_i}{\partial \delta_j} = -|V_i| |V_j| |Y_{ij}| \cos\left(\theta_{ij} - \delta_i + \delta_j\right) \qquad j \neq i$$
(2-25)

Elemen untuk J_4 yaitu:

$$\frac{\partial Q_i}{\partial |V_i|} = -2|V_i||Y_{ii}|\sin(\theta_{ii}) + \sum_{j \neq i} |V_j||Y_{ij}|\sin(\theta_{ij} - \delta_i + \delta_j) \quad (2-26)$$
$$\frac{\partial Q_i}{\partial |V_j|} = -|V_j||Y_{ij}|\sin(\theta_{ij} - \delta_i + \delta_j) \qquad j \neq i \quad (2-27)$$

Pada penjelasan diatas diketahui bahwa nilai harga $\Delta P_i^{(k)}$ dan $\Delta Q_i^{(k)}$ berbeda antara yang terjadwal dengan nilai perhitungan, maka ini disebut dengan sisa daya (*power residuals*) yang diberikan dengan:

$$\Delta P_i^{(k)} = P_i^{sch} - P_i^{(k)}$$
(2-28)

$$\Delta Q_i^{(k)} = Q_i^{sch} - Q_i^{(k)}$$
(2-29)

Perhitungan baru untuk sudut fasa dan tegangan bus adalah:

$$\delta_i^{(k+1)} = \delta_i^{(k)} + \Delta \delta_i^{(k)} \tag{2-30}$$

$$\left|V_{i}^{(k+1)}\right| = \left|V_{i}^{(k)}\right| + \Delta |V_{i}^{(k)}|$$
 (2-31)

Proses iterasi akan selesai setelah

$$\left|\Delta P_{i}^{(k)}\right| \leq \epsilon$$

$$\left|\Delta Q_{i}^{(k)}\right| \leq \epsilon$$
(2-32)

2.4 Sistem Per Unit

Saluran transmisi tenaga dioperasikan pada tingkat tegangan dimana kilovolt merupakan unit yang sangat memudahkan untuk menyatakan tegangan. Karena besarnya daya yang harus disalurkan dengan satuan kilowatt atau megawatt dan kilovolt-ampere atau megavolt-ampere adalah istilah-istilah yang sudah biasa dipakai. Misalnya, jika sebagai tegangan dasar dipilih 120 kV, maka tegangan-tegangan sebesar 108, 120 dan 126 kV berturut-turut menjadi 0,90, 1,00 dan 1,05. Definisi nilai per unit untuk suatu kuantitas ialah perbandingan kuantitas tersebut terhadap nilai dasarnya yang dinyatakan dalam desimal (Stevenson, 1996: 31).

Apabila pada tegangan dan daya yang digunakan adalah tegangan dan daya 3 fasa, maka perhitungan nilai dasar menggunakan rumus-rumus berikut(Stevenson, 1996: 31):

Impedansi dasar =
$$\frac{(\text{tegangan dasar, } kV_{LL}/\sqrt{3})^2 \times 1000}{kVA_{3\emptyset}/3 \text{ dasar}} \qquad (2-33)$$

Impedansi dasar =
$$\frac{(\text{tegangan dasar, } kV_{LL})^2 x \ 1000}{kVA_{3\emptyset} \text{ dasar}}$$
(2 - 34)

Impedansi dasar =
$$\frac{(\text{tegangan dasar, } kV_{LL})^2}{MVA_{3\emptyset} \text{ dasar}}$$
 (2 - 35)

2.5 Stabilitas Sistem Daya

Stabilitas sistem daya didefinisikan sebagai sifat sistem yang memungkinkan generator bergerak sinkron dalam sistem dan bereaksi terhadap gangguan dalam keadaan kerja normal serta kembali ke kondisi kerja semula (keseimbangan) bila keadaan menjadi normal kembali (Prabha Kundur, 1994 : 17).

Kestabilan pada sistem tenaga listrik merupakan masalah yang sangat penting dalam penyediaan daya kepada konsumen. Biasanya masalah kestabilan yang sering terjadi adalah masalah beban lebih, berkurangnya pasokan daya reaktif sehingga akan mengakibatkan sistem berada pada kondisi *voltage collapse* dan akan terjadi kemungkinan terburuk yaitu terjadi *blackouts*.

Masalah kestabilan biasanya diklasifikasikan menjadi tiga tipe bergantung pada sifat dan besar gangguan, yaitu (Robert H.Miller & James H.Malinowski, 1994:213) :

- 1. Stabilitas steady state
- 2. Stabilitas transient
- 3. Stabilitas dinamis

2.5.1 Stabilitas Steady State

Kestabilan *Steady-State* merupakan keadaan dimana sistem tenaga mencapai kondisi stabil pada kondisi operasi baru yang sama atau identik dengan kondisi sebelum terjadi gangguan setelah sistem mengalami gangguan kecil. Analisis kestabilan *steady-state* menggunakan pendekatan model linier. Kestabilan *steady state* pada sistem tenaga dapat disebut kestabilan sinyal kecil (*small signal stability*). Stabilitas *steady-state* bergantung kepada kapasitas pembangkitan dan efektifitas perangkat kontrol automatis, terutama untuk regulasi tegangan automatis (AVR) pada generator (Robert H.Miller & James H.Malinowski, 1994:214).

2.5.2 Stabilitas Transient

Situasi yang lebih hebat akan terjadi bila pembangkitan atau beban besar hilang dari sistem atau terjadi gangguan pada saluran tranmisi. Pada kasus semacam itu stabilitas *transient* harus cukup kuat untuk mempertahankan diri terhadap kejutan (*shock*) atau perubahan beban yang relatif besar yang terjadi. Stabilitas transien adalah kemampuan sistem untuk tetap pada kondisi sinkron (sebelum terjadi aksi dari kontrol

governor) yang mengikuti gangguan pada sistem (Robert H.Miller & James H.Malinowski, 1994:215).

Sebagaimana pada stabilitas *steady-state*, kecepatan respon pada sistem eksitasi generator merupakan faktor yang penting dalam mempertahankan stabilitas *transient*. Gangguan pada sistem biasanya diikuti oleh perubahan tegangan yang cepat pada sistem, dan pemulihan kembali tegangan dengan cepat menuju ke kondisi normal merupakan hal yang penting dalam mempertahankan kestabilan.

Seperti yang telah disebutkan sebelumnya, bahwa stabilitas *transient* adalah kemampuan untuk tetap pada kondisi sinkron selama periode terjadinya gangguan dan sebelum adanya reaksi dari governor. Pada umumnya ayunan pertama pada rotor mesin akan terjadi selama satu detik setelah gangguan. Setelah periode ini, governor akan mulai bereaksi, biasanya sekitar 4 hingga 5 detik, dan stabilitas dinamis akan efektif.

2.5.3 Stabilitas Dinamis

Beberapa waktu setelah gangguan, governor pada prime mover akan bereaksi untuk menaikkan atau menurunkan energi input, sesuai kondisi yang terjadi, untuk mengembalikan keseimbangan antara energi input dan beban elektris yang ada. Hal ini biasanya terjadi sekitar satu hingga satu setengah detik setelah terjadi gangguan. Periode ketika governor mulai bereaksi dan waktu ketika kestabilan mencapai kondisi *steadystate* adalah periode ketika karakteristik kestabilan dinamik mulai efektif. Stabilitas dinamis adalah kemampuan sistem untuk tetap pada kondisi sinkron setelah ayunan pertama (periode stabilitas *transient*) hingga sistem mencapai kondisi *steady-state* yang baru (Robert H.Miller & James H.Malinowski, 1994:216).

Selama periode ini, governor akan membuka atau menutup katup sesuai dengan yang diperlukan untuk meningkatkan atau menurunkan energi input pada prime mover dan operasi kontroler saluran untuk mengembalikan aliran daya pada saluran ke kondisi normal. Biasanya bila generator peka terhadap *drop* kecepatan, generator akan beraksi untuk membuka katup dan memberikan uap lebih pada turbin uap atau air pada turbin air serta memberikan cukup energi untuk menahan penurunan kecepatan (frekuensi) dan mempercepat sistem hingga kembali ke keadaan normal.

2.6 Dinamika Rotor dan Persamaan Ayunan

2.6.1 Stabilitas Sudut Rotor

Stabilitas sudut rotor merupakan kemampuan mesin sinkron yang saling terinterkoneksi pada sistem untuk tetap sinkron pada operasi normal dan setelah mengalami gangguan (Grigsby,2007). Mekanisme mesin sinkron yang saling terinterkoneksi antara satu mesin dengan mesin yang lain adalah melalui kekuatan memulihkan torsi yang bertindak setiap kali ada torsi yang cenderung mempercepat atau mengurangi kecepatan. Ketika dalam kondisi mantab, ada keseimbangan antara torsi input mekanis dan torsi keluaran listrik dari setiap mesin dan kecepatan konstan. Jika sistem ini terganggu, maka keseimbanganpun juga akan terganggu. Ketika mesin sinkron kehilangan sinkronisme dengan seluruh sistem, rotor akan berjalan pada kecepatan yang lebih tinggi atau lebih rendah dari yang dibutuhkan untuk menghasilkan tegangan pada frekuensi sistem sehingga sistem proteksi akan mengisolasi mesin dari dari sistem.

Untuk kemudahan dalam analisis dan untuk mendapatkan manfaat tentang sifat masalah stabilitas, biasanya fenomena stabilitas sudut rotor dikarakteristikkan menjadi dua kategori berikut :(Prabha Kundur, 1994: 23)

- a. Stabilitas sinyal kecil (atau gangguan kecil) adalah kemampuan dari sistem daya untuk menjaga sinkronisasi dalam gangguan kecil. Gangguan tersebut terjadi terus menerus pada sistem karena variasi kecil dalam beban.
- b. Stabilitas peralihan merupakan kemampuan dari sistem daya untuk menjaga sinkronisasi ketika terjadi gangguan peralihan. Stabilitas tergantung pada keadaan operasi awal dari sistem dan tingkat gangguan. Gambar 2.3 memperlihatkan perilaku mesin sinkron dalam keadaan stabil dan tidak stabil.

Gambar 2.3 Respon sudut rotor pada saat terjadi gangguan Sumber: Prabha Kundur ,1994: 26

Gambar tersebut menunjukkan respon dari sudut rotor yang stabil dan untuk dua kasus tidak stabil. Dalam kasus yang stabil (*case 1*),sudut rotor meningkat hingga mencapai maksimum kemudian menurun dan berosilasi hingga mencapai kondisi mantab kembali. Dalam kasus 2 (*case 2*), sudut rotor terus meningkat hingga kehilangan sinkronisasi. Bentuk ketidakstabilan ini disebut sebagai ketidakstabilan ayunan pertama. Dalam kasus 3 (*case 3*), sistem stabil dalam ayunan pertama, tetapi menjadi tidak stabil akibat osilasi yang terus berkembang sehingga menyebabkan mesin kehilangan sinkronisasi. Bentuk ketidakstabilan ini biasanya adalah ketidakstabilan sinyal kecil dan tidak harus sebagai akibat dari gangguan peralihan.

2.6.2 Persamaan Ayunan

Dalam sebuah mesin sinkron, penggerak utama memberikan sebuah torsi mekanis Tm pada poros mesin dan mesin menghasilkan suatu torsi elektromagnetik Te. Jika, sebagai akibat dari gangguan, torsi mekanis lebih besar daripada torsi elektromagnetik, sebuah torsi percepatan Ta adalah (Grigsby, 2007 : 8.2):

$$Ta = Tm - Te$$

(2-36)

dimana:

- Ta : torsi percepatan
- *Tm* : torsi mekanis
- Te : torsi elektromagnetik

Dalam hal ini torsi lain yang disebabkan oleh gesekan, rugi-rugi inti, dan angin dalam mesin diabaikan. Ta memiliki efek mempercepat mesin, dengan inersia J (kg. m²) yang terdiri dari inersia dari generator dan penggerak utama dan oleh karena itu Persamaan (2-36) dinyatakan sebagai : (Grigsby, 2007 : 8.2)

$$J\frac{d\omega_m}{dt} = Ta = Tm - Te \tag{2-37}$$

dimana

- J : inersia mesin (kg.m²)
- t : waktu dalam detik dan
- ω_m : kecepatan sudut mekanik rotor mesin dalam rad/ s.

Hal ini secara umum dapat menunjukkan persamaan inersia mesin yang konstan. Jika ω_{0m} adalah rentang kecepatan sudut mekanik dalam rad/s, J dapat ditulis sebagai berikut : (Grigsby, 2007:8.2)

$$J = \frac{2H}{\omega_{0m}^2} V A_{dasar}$$
(2-38)

dimana

H : konstanta inersia mesin (MJ/MVA)

*VA*_{dasar} : daya dasar (MVA)

Sehingga,

$$\frac{2H}{\omega_{0m}^2} V A_{dasar} \frac{d\omega_m}{dt} = Tm - Te$$
(2-39)

Dan sekarang, jika ω_r menunjukkan kecepatan sudut rotor (rad/s) dan nilai ω_0 pada rentangnya, persamaan dapat ditulis sebagai : (Grigsby, 2007 : 8.2)

$$2H \frac{d\omega_r}{dt} = Tm - Te \tag{2-40}$$

Akhirnya dapat ditunjukkan bahwa:

$$\frac{d\omega_r}{dt} = \frac{d^2\delta}{\omega_0 dt^2} \tag{2-41}$$

di mana δ adalah posisi sudut dari rotor sehubungan dengan suatu putaran sinkron terhadap acuan.

Berdasarkan Persamaan (2-40) dan (2-41) akan diperoleh:

$$\frac{2H}{\omega_0}\frac{d^2\delta}{dt^2} = Tm - Te \tag{2-42}$$

Dengan mengingat bahwa daya adalah hasil kali momen putar dengan kecepatan sudutnya, sehingga diperoleh:

$$\frac{2H}{\omega_0}\frac{d\omega}{dt} = Pm - Pe \tag{2-43}$$

dan dapat diperoleh pula suatu pesamaan dengan pertimbangan kecepatan sinkron ω_s :

$$\frac{d\delta}{dt} = \frac{d\theta}{dt} - \omega_s$$
(2-44)
$$\frac{d\delta}{dt} = \omega - \omega_s$$
(2-45)

Pada sistem yang stabil selama gangguan, sudut rotor (dijelaskan oleh persamaan ayunan) akan berosilasi di sekitar titik kesetimbangan. Ketika terjadi gangguan atau penambahan beban secara tiba-tiba dalam jumlah besar, maka daya keluar elektris generator akan jauh melampaui daya masuk mekanis. Kekurangan ini akan disuplai dengan berkurangnya energi kinetis generator. Jadi generator akan berputar lebih lambat sehingga sudut daya generator bertambah besar dan daya masuk generator juga bertambah. Jika sudut rotor meningkat tanpa batas, mesin dikatakan tidak stabil selama mesin terus mempercepat dan tidak mencapai keadaan keseimbangan baru. Dalam sistem multimesin, mesin akan melepas sinkronisasi dengan mesin lainnya.

2.6.3 Hubungan Sudut Daya

Karakteristik penting yang memiliki pengaruh pada stabilitas sistem daya adalah hubungan antara perubahan daya dan posisi sudut dari rotor mesin sinkron. Hubungan ini merupakan hubungan nonlinier. Gambar 2.4(a) menunjukkan sebuah sistem sederhanan, dimana dalam sistem ini terdapat 2 mesin sinkron yang terhubung melalui saluran transmisi. Diasumsikan jika mesin 1 direpresentasikan sebagai generator yang menyuplai daya ke sebuah motor yang direpresentasikan sebagai mesin 2. (Prabha Kundur, 1994: 20).

Gambar 2.4 Model sistem sederhana (a) diagram segaris sistem, dan (b) rangkaian ekivalen sistem Sumber: Prabha Kundur ,1994: 21

Gambar 2.4(b) menunjukkan rangkaian ekivalen sistem yang dapat digunakan dalam studi hubungan sudut daya. Besar daya yang disalurkan dari generator sesuai dengan persamaan (2-46).

$$P_e = \frac{E_G E_M}{X_T} \sin \delta \tag{2-46}$$

dimana

$$X_T = X_G + X_L + X_M \tag{2-47}$$

Gambar 2.5 menunujukkan hubungan sudut daya. Dalam kurva tersebut terlihat jika peningkatan daya pada nilai awal δ meningkat hingga mencapai 90° ketika P_e mencapai maksimum. Di atas $\delta = 90$ °, daya menurun sampai pada $\delta = 180$ °, P_e = 0. Ini adalah hubungan daya-sudut yang disebutkan di atas dan menggambarkan energi listrik ditransmisikan sebagai fungsi dari sudut rotor.

Gambar 2.5 Hubungan sudut daya antara dua mesin sistem Sumber: Prabha Kundur ,1994: 26

2.7 Stabilitas Tegangan

Stabilitas tegangan merupakan kemampuan suatu sistem tenaga untuk menjaga tegangan tetap stabil di semua bus dalam suatu sistem pada saat kondisi operasi normal dan setelah terjadi suatu gangguan (Prabha Kundur, 1994: 27). Suatu sistem memasuki daerah ketidakstabilan tegangan ketika suatu gangguan menyebabkan kondisi sistem tersebut mengalami drop tegangan yang tidak dapat dikendalikan. Faktor utama yang menjadi penyebab ketidakstabilan ialah ketidakmampuan sistem tenaga dalam menyediakan daya reaktif. Sebuah kriteria untuk stabilitas tegangan adalah bahwa pada kondisi operasi yang diberikan untuk setiap bus dalam sistem dimana tegangan bus akan meningkat sesuai dengan injeksi daya reaktif pada bus yang sama juga meningkat. Fenomena ketidakstabilan tegangan dapat berlangsung cepat (jangka pendek) atau lambat (jangka panjang) (IEEE-CIGRE, 2004). Tegangan dalam sistem dikatakan stabil apabila drop tegangan yang terjadi dalam sistem tidak melebihi dari 500 milidetik dan tegangan sistem kembali ke keadaan steady state (IEEE-Std, 1995). Masalah stabilitas tegangan jangka pendek biasanya terkait dengan kecepatan tanggapan dari pengatur tegangan (misalnya, AVR) dan konverter daya elektronik. Dalam kasus pengatur tegangan, ketidakstabilan tegangan biasanya terkait dengan ketidaksesuaian teraan pada

sistem pengaturan. Masalah - masalah stabilitas tegangan yang berlangsung cepat telah dipelajari dengan menggunakan berbagai analisis teknik dan peralatan yang sesuai dengan model dan mensimulasikan tanggapan dinamik dari pengontrol tegangan dan konverter yang diteliti, seperti program stabilitas.

Untuk tujuan analisis, klasifikasi gangguan dalam studi stabilitas tegangan terdapat dua jenis gangguan, yaitu : (Prabha Kundur, 1994:32)

a. Gangguan besar pada stabilitas tegangan berkaitan dengan kemampuan sistem untuk mengontrol tegangan saat terjadi gangguan, misalnya saat terjadi gangguan sistem, hilangnya pembangkit atau sirkuit. Kemampuan ini ditentukan oleh karakteristik beban dan sistem serta interaksi antara sistem proteksi dan kontrol. Adapun gangguan-gangguan hubung singkat pada sistem tiga fasa dapat ditunjukkan pada Gambar 2.6 :

Gangguan hubung singkat dapat digolongkan menjadi dua kelompok yaitu gangguan hubung singkat simetri dan gangguan hubung singkat tak simetri (asimetris). Gangguan ini akan mengakibatkan arus lebih pada fasa yang terganggu dan juga akan mengakibatkan kenaikan tegangan pada fasa yang tidak terganggu. Periode studi mungkin membutuhkan waktu dari beberapa detik sampai beberapa menit. Oleh sebab itu simulasi dinamis jangka panjang diperlukan dalam proses analisis ini. Sebuah kriteria untuk stabilitas tegangan gangguan besar adalah dengan memberikan gangguan dan mengikuti aksi dari

sistem kontrol sehingga tegangan pada semua bus dalam sistem dapat mencapai tingkat *steady state* yang dapat diterima.

b. Gangguan kecil pada stabilitas tegangan berkaitan dengan kemampuan sistem dalam mengendalikan besar tegangan mengikuti perubahan gangguan kecil misalnya perubahan pada sistem beban. Ketidakstabilan tegangan gangguan kecil pada dasarnya alami terjadi pada keadaan *steady state*. Oleh karena itu, analisis statis dapat secara efektif digunakan untuk menentukan margin stabilitas, mengidentifikasi faktor-faktor yang mempengaruhi stabilitas dan memeriksa berbagai kondisi sistem.

2.8 Persamaan Dalam Studi Stabilitas

2.8.1 Persamaan Keadaan Mantab (Steady State)

Gambar 2.7 menunjukkan diagram fasor fluksi dan tegangan untuk mesin sinkron rotor silindris dimana efek kejenuhan diabaikan. Fluksi F_f sebanding dengan arus medan I_f dan ditunjukan pada sumbu *direct* pada mesin. Tegangan terminal stator untuk rangkaian hubung-buka E_i sebanding dengan F_f yang berada pada sumbu *quadrature*. Tegangan E_i juga sebanding dengan tegangan medan E_f .

Ketika mesin sikron dibebani, fluksi F sebanding dan sefasa dengan arus stator yang dihasilkan yang mana penjumlahan secara vektor fluksi F_f memberikan sebuah nilai fluksi efektif F_e . Tegangan efektif stator E_l memiliki hubungan dengan F_e dan tertinggal sebesar 90⁰. Tegangan terminal V diperoleh dari tegangan E_l melalui pertimbangan jatuh tegangan karena adanya reaktansi X_l dan resistansi jangkar R_a . Perbedaan antara E_f dan E_l adalah pada fasa dengan jatuh tegangan pada |X| dan sebanding dengan I. oleh karena itu, perbedaan tegangan dapat dikatakan sebagai jatuh tegangan pada reaktansi jangkar X_a . Jumlah antara X_l dan X_a disebut reaktansi sinkron (Arrilaga, 1990 : 159-160):

$$X_d = X_l + X_{a_d} \tag{2-48}$$

$$X_q = X_l + X_{a_q} \tag{2-49}$$

$$E_i - V_q = R_a I_q - X_d I_d \tag{2-50}$$

$$-V_d = R_a I_d + X_d I_d \tag{2-51}$$

dimana : X_d : reaktansi sumbu *direct*

 X_q : reaktansi sumbu quadrature

 I_d : arus jangkar sumbu *direct*

I_q : arus jangkar sumbu quadrature

Gambar 2.7 Diagram fasor mesin sinkron rotor silindris pada keadaan mantap Sumber: Arrillaga ,1990 : 159

2.8.2 Persamaan Peralihan (Transient)

Untuk perubahan yang lebih cepat pada kondisi eksternal mesin sinkron, model di atas tidak lagi sesuai. Karena perubahan inersia gandengan fluks tidak tercermin di dalam model tersebut. Oleh karena itu, diperlukan suatu tegangan peralihan yang baru yaitu E'_d dan E'_q yang mewakili gandengan fluks pada kumparan rotor. Tegangan peralihan ini dapat ditunjukkan melalui adanya reaktansi peralihan generator sinkron yaitu X'_d dan X'_q (Arrilaga, 1990 : 160):

$$E_{q}^{'} - V_{q} = R_{a}I_{q} - X_{d}^{'}I_{d}$$

$$E_{d}^{'} - V_{d} = R_{a}I_{d} + X_{q}^{'}I_{q}$$
(2-52)
(2-53)

dimana : E'_d : tegangan peralihan sumbu *direct*

- E'_q : tegangan peralihan sumbu *quadrature*
- X'_d : reaktansi peralihan sumbu *direct*
- X'_q : reaktansi peralihan sumbu *quadrature*

Sekarang tegangan E_i harus dianggap sebagai jumlah dari dua tegangan E_d dan E_q dan merupakan tegangan di belakang reaktansi sinkron. Pada bagian sebelumnya, dimana untuk keadaan mantap, arus mengalir hanya dalam kumparan medan sehingga dalam kasus tersebut $E_d = 0$ dan $E_q = E_i$ Diagram fasor untuk operasi mesin pada kondisi peralihan ditunjukkan pada gambar 2.7 berikut:

Gambar 2.8 Diagram fasor mesin sinkron pada keadaan peralihan Sumber: Arrillaga, 1990 : 161

2.8.3 Persamaan Sub-peralihan (Subtransient)

Dalam kondisi sub-peralihan generator, kasus kumparan peredam (*damper windings*) ataupun rangkaian lain yang terdapat dalam rotor, diperlukan jika pemodelan yang lebih tepat diperlukan. Reaktansi dan konstanta waktu yang dilibatkan kecil dan sering kali diabaikan. Dalam hal ini, diperlukan suatu tegangan sub-peralihan yang baru yaitu E''_d dan E''_q . Tegangan peralihan ini dapat ditunjukkan melalui adanya reaktansi sub-peralihan generator sinkron yaitu X''_d dan X''_q . Jika diperlukan, pengembangan dari persamaan ini identik dengan suatu kondisi sub-peralihan generator sinkron dan menghasilkan (Arrilaga, 1990 : 161):

$E_q'' - V_q =$	$R_a I_q - X_d^{''} I_d$		(2-54)
$E_d'' - V_d =$	$R_a I_d + X_q^{"} I_q$	ા સ્ક્ર	(2-55)
dimana :	E''_d : tegangan sub-peralihan sur	nbu <i>direct</i>	

 E''_q : tegangan sub-peralihan sumbu quadrature

- X''_d : reaktansi sub-peralihan sumbu *direct*
- X''_q : reaktansi sub-peralihan sumbu *quadrature*

Persamaan tersebut dikembangkan dengan sebuah asumsi bahwa konstanta waktu peralihan lebih besar jika dibandingkan dengan konstanta waktu sub-peralihan. Diagram fasor dari mesin sinkron pada kondisi sub-peralihan ditunjukkan pada Gambar 2.8. Perlu dicatat bahwa Persamaan (2-54) dan (2-55) benar hanya pada kondisi operasi kedaaan mantap.

21

Gambar 2.9 Diagram fasor mesin sinkron pada keadaan sub-peralihan Sumber: Arrillaga ,1990 : 162

2.9 Unit Pembangkit

2.9.1 Generator Sinkron

Generator sinkron diklasifikasikan sebagai generator berkecepatan tinggi dan digerakkan oleh uap atau turbin gas, atau generator berkecepatan rendah yang digerakkan oleh turbin air. Biasanya generator berkecepatan tinggi terdiri dari dua atau empat kutub sehingga di sistem 50 Hz generator akan digerakkan pada kecepatan 3000 atau 1500 rpm. Sebaliknya, generator kecepatan rendah biasanya beroperasi pada 500 rpm dan di bawahnya, memiliki jumlah kutub yang cukup besar (Jan Machowski, 2008 : 10).

Kedua bagian utama sebuah mesin serempak adalah susunan ferromagnetik. bagian yang diam, yang pada dasarnya adalah sebuah silinder kosong dinamakan stator atau jangkar (*armature*) dan mempunyai parit-parit (*slots*) yang didalamnya terdapat lilitan kumparan stator. Lilitan ini membawa arus yang diberikan pada suatu beban listrik atau sistem oleh sebuah generator. Rotor adalah bagian yang dari mesin yang dipasang poros dan berputar di dalam stator yang kosong. Lilitan pada rotor dinamakan lilitan medan (*field winding*) dan dicatu dengan arus DC (Stevenson, 1996 : 122).

Belitan eksitasi diberikan arus DC untuk menghasilkan fluks magnetik dengan daya yang sebanding dengan arus eksitasi. Fluks magnet berputar kemudian menginduksi pada setiap kumparan fasa stator yang menghasilkan gaya gerak listrik (ggl) pada kumparan tiga fasa yang mengakibatkan arus AC mengalir menuju ke sistem daya yang dalam keadaan berbeban. (Jan Machowski, 2008 : 10).

Pengubahan penguatan atau eksitasi mesin serempak adalah faktor yang penting dalam pengaturan aliran daya. Apabila sebuah generator yang terminalnya dihubungkan ke suatu sistem daya yang besar sehingga tegangan Vg pada terminal generator tersebut tidak akan berubah karena adanya perubahan eksitasi generator. Apabila masukan daya generator dipertahankan, maka suatu nilai Eg (ggl) generator dapat diubah-ubah dengan merubah besar eksitasi medan DC. Maka untuk suatu nilai Eg, diagram fasor generator diperlihatkan oleh gambar 2.10.

Gambar 2.10 Diagram fasor generator yang terlalu diperkuat (*overexcited*) Sumber: Stevenson, 1996 : 130

Sudut δ dinamakan dengan sudut sudut momen (*torque angle*) atau sudut daya (*power angle*) dari mesin itu. Generator yang terlalu diperkuat (*overexcited*) mencatu arus tertinggal ke sistem.

2.9.2 Exciters dan Automatic Voltage Regulators

Sistem eksitasi generator terdiri dari sebuah *exciter* dan sebuah *automatic voltage regulator* (AVR) dan mensuplai generator dengan arus DC. Rating daya dari sebuah exciter biasanya 0,2-0,8% dari rating daya (MW) generator. *AVR* berfungsi untuk mengatur tegangan terminal generator melalui arus yang disalurkan menuju kumparan medan generator oleh *exciter*. Blok diagram secara umum dari subsistem *AVR* dtunjukkan dalam Gambar 2.11. Elemen pengukuran mengindra arus, daya, tegangan terminal dan frekuensi generator. Tegangan terminal generator V_g yang diukur dikompensasikan dengan arus beban dan dibandingkan dengan tegangan referensi V_{ref} untuk mendapatkan *error* tegangan ΔV . *Error* ini selanjutnya akan digunakan untuk mengubah keluaran *exciter* dan mempengaruhi arus medan generator sehingga *error* tegangan dapat dieliminasi. Proses regulasi menggunakan umpan balik negatif yang diambil secara langsung melalui *exciter* (Jan Machowski, 2008 : 11).

Gambar 2.11 Diagram blok sistem eksitasi dan AVR Sumber : Jan Machowski, 2008 : 13

2.9.3 Turbin Gas

Pada turbin gas, energi panas bahan bakar diubah menjadi energi mekanik menggunakan panas gas buang pada turbin. Udara biasanya digunakan sebagai fluida dengan bahan bakar menjadi gas. Sistem yang paling populer untuk turbin gas adalah siklus regeneratif terbuka yang ditunjukkan pada gambar 2.12. Siklus ini terdiri dari kompresor (C), ruang pembakaran (CH), dan turbin (T). Bahan bakar yang dipasok melalui katub (*valve*) governor digunakan untuk pembakaran pada ruang pembakaran (CH) dengan udara yang dipasok oleh kompresor (C). Udara panas yang bertekanan kemudian diarahkan ke turbin (T) dan digunakan untuk menggerakkan turbin. Sisa gas kemudian digunakan untuk memanaskan udara yang dikirim oleh kompresor.

Gambar 2.12 Siklus regeneratif terbuka pada turbin gas. Sumber : Jan Machowski, 2008 : 16

2.10 Komputer Digital untuk Analisis Sistem Daya

Program komputer saat ini dikembangkan untuk membantu manusia dalam mensimulasikan berbagai hal, misalnya adalah simulasi aliran beban dan studi stabilitas pada sistem daya. Hal ini akan memudahkan manusia dalam mengembangkan atau merencanakan suatu sistem daya di masa akan mendatang. Sebelum komputer digital besar dikembangkan, studi aliran beban dilakukan pada papan hitung a.c yang memberikan model berfasa tunggal dalam skala kecil dari sistem yang sebenarnya, yaitu dengan saling menghubungkan beberapa elemen rangkaian dan sumber tegangan. Pekerjaan melaksanakan hubungan, pengaturannya serta pembacaan data-data yang didapat sangat melelahkan dan memerlukan banyak waktu. Pada masa kini komputer digital dapat dengan cepat memberikan jawaban atas studi aliran beban untuk sistem yang kompleks sekalipun. Misalnya, suatu program komputer dapat dengan mudah menangani lebih dari 1500 buah rel, 2500 saluran transmisi dan 500 buah transformator. Hasil-hasil yang lengkap dicetak dengan cepat dan ekonomis (Stevenson, 1996 :6).

Begitu pula dengan program komputer digital untuk studi stabilitas. Program komputer tersebut telah berkembang dari dua kebutuhan dasar, yaitu keperluan untuk mempelajari sistem yang sangat besar yang saling berhubungan dengan jumlah mesin yang sangat banyak dan kebutuhan untuk melukiskan mesin dan sistem pengaturannya berkaitan dengan model yang lebih terperinci. Representasi mesin secara klasik memang sesuai untuk banyak studi. Tetapi, model yang lebih lengkap dan terperinci mungkin diperlukan untuk mewakili alternator turbo modern dengan karakteristik dinamis yang ditentukan oleh berbagai kemajuan teknologi dalam rancangan mesin dan sistem pengaturannya. Dalam studi sistem yang besar, banyak generator yang saling dihubungkan dengan pusat beban yang tersebar luas oleh sistem transmisi yang luas pula, yang perilakunya juga harus dinyatakan oleh sejumlah besar persamaan aljabar.

Dalam melakukan analisis terhadap stabilitas terdapat suatu tipe waktu simulasi yang dapat ditunjukkan pada gambar 2.13 berikut :

BAB III METODE PENELITIAN

Metode penelitian memberikan gambaran urutan langkah-langkah yang dilaksanakan untuk mencapai tujuan penelitian. Adapun urutan langkah-langkah penelitian ini adalah sebagai berikut:

Gambar 3.1 Diagram alir penelitian

3.1 Studi literatur

Studi literatur dilakukan guna mengetahui dasar teori yang digunakan untuk menganalisis kestabilan sistem daya pada PT.Ajinomoto Indonesia dan PT.Ajinex Internasional *Mojokerto Factory* pada saat sebelum maupun sesudah interkoneksi. Studi ini berupa kajian tentang analisis aliran daya, analisis stabilitas sistem daya serta studi perangkat lunak *PSSE*.

3.2 Pengambilan Data

Data-data yang digunakan dalam kajian ini terdiri dari data primer dan data data sekunder.

1. Data Primer

Data primer merupakan data yang didapat dari hasil pengamatan dan survei lapangan. Data primer yang diperoleh meliputi data parameter – parameter sistem daya meliputi diagram segaris sistem (generator, tranformator, saluran dan beban).

2. Data Sekunder

Data-data yang diperlukan dalam kajian ini terdiri dari data sekunder yang bersumber dari buku referensi, jurnal, skripsi, dan internet.

3.3 Pemodelan

Pemodelan pada sistem tenaga di PT.Ajinomoto Indonesia dan PT.Ajinex Internasional *Mojokerto Factory* dilakukan menggunakan perangkat lunak *PSSE* (*Power System Simulator for Engineering*) yang berfungsi untuk memodelkan kondisi sistem daya dan mensimulasikan. Pemodelan dimulai ketika sumber daya PT.Ajinomoto Indonesia dan sumber daya PT.Ajinex Internasional *Mojokerto Factory* tidak dinterkoneksi. Kemudian sistem dimodelkan saat kedua sumber daya tersebut diinterkoneksi.

3.4 Simulasi

Langkah simulasi dan pengerjakan analisis kestabilan sistem daya digambarkan sesuai dengan diagram alir berikut:

Gambar 3.2 Diagram alir simulasi sebelum interkoneksi

Gambar 3.3 Diagram alir simulasi setelah interkoneksi

Perangkat lunak yang digunakan adalah PSSE (Power Sistem Simulator for Engineering), langkah-langkah pembuatannya adalah sebagai berikut:

- 1. Membuat *file* baru pada perangkat lunak dan menentukan besar nilai dasar yang digunakan.
- 2. Menggambar dan memodelkan desain awal sistem daya.
- 3. Memberikan nilai tiap komponen sesuai data.
- 4. Melakukan simulasi aliran daya pada model awal sistem.
- 5. Mencatat data aliran daya sebagai bahan evaluasi studi stabilitas.
- 6. Memberikan gangguan pada salah satu bus.
- 7. Melakukan simulasi stabilitas.
- 8. Melakukan analisis terhadap hasil simulasi.
- 9. Melakukan interkoneksi pada sistem daya di PT. Ajinomoto Indonesia dan PT.Ajinex Internasional *Mojokerto Factory*.
- 10. Melakukan langkah 4 sampai 8 pada kondisi interkoneksi.

3.5 Hasil Simulasi dan Analisis

Data-data yang telah terkumpul selanjutnya diolah melalui perhitungan, simulasi komputer digital dan analisis sehingga diperoleh data stabilitas sistem tenaga listrik di PT.Ajinomoto Indonesia dan PT.Ajinex Internasional *Mojokerto Factory* sesuai dengan rumusan masalah yang meliputi analisis stabilitas sistem daya pada PT.Ajinomoto Indonesia dan PT.Ajinex Internasional *Mojokerto Factory* ketika terjadi gangguan sebelum interkoneksi dan sesudah interkoneksi. Perhitungan, simulasi dan analisis data dimulai pada saat kondisi sebelum interkoneksi. Analisis tersebut akan terfokus pada kestabilan tegangan dan sudut rotor pada sistem saat salah satu bus diberi gangguan. Gangguan akan diberikan pada salah satu bus sistem, kemudian akan dianalisis dampak gangguan terhadap stabilitas sistem daya di PT. Ajinomoto Indonesia dan PT.Ajinex Internasional *Mojokerto Factory*.

3.6 Kesimpulan dan Saran

Pada tahapan ini dilakukan pengambilan kesimpulan berdasarkan teori, hasil perhitungan serta analisis. Selain kesimpulan, akan dicantumkan saran-saran kepada pembaca yang akan melakukan studi terkait dengan skripsi ini. Meliputi hal-hal yang

menjadi kendala dalam penelitian ataupun hal-hal yang masih memerlukan kajian lebih dalam lagi.

BRAWIUAL

NERSITAS

BAB IV

SIMULASI DAN PEMBAHASAN HASIL

Pada bab ini akan dibahas mengenai stabilitas sistem daya di PT.Ajinomoto Indonesia dan PT.Ajinex Internasional *Mojokerto Factory*. Permasalahan stabilitas sistem daya yang akan dibahas adalah stabilitas sistem daya pada kondisi awal dan pada saat interkoneksi dua sumber daya dilakukan. Dalam analisisnya akan disajikan grafik tegangan dan sudut rotor sebagai fungsi waktu.

4.1 Kondisi Kelistrikan di PT.Ajinomoto Indonesia dan PT.Ajinex Internasional Mojokerto Factory

4.1.1 Sistem Pembangkitan

Sistem pembangkitan energi listrik di PT.Ajinomoto Indonesia *Mojokerto Factory* menggunakan 1 buah generator dengan daya yang dibangkitkan sebesar 8,5 MVA yang diinterkoneksi dengan 1 buah transformator dengan rating daya sebesar 18 MVA. Transformator tersebut tersambung dengan saluran PLN 72 kV yang kemudian diturunkan menjadi 3,45 kV sesuai dengan kebutuhan industri. Data generator dan data transformator dapat dilihat pada lampiran 1.

Sistem pembangkitan pada PT.Ajinex Internasional tidak jauh berbeda dengan sistem pembangkitan pada PT.Ajinomoto. Pembangkit energi listrik di PT.Ajinex Internasional juga menggunakan 1 buah generator dan 1 buah tranformator yang diinterkoneksi. Perbedaaan tersebut terletak pada kapasitas pembangkitan. Generator pada PT.Ajinex Internasional membangkitkan daya sebesar 7,5 MVA dan rating transformator sebesar 12 MVA. Data generator dan data transformator dapat dilihat pada lampiran 2.

4.1.2 Sistem Distribusi Daya

Sesuai dengan pembahasan sebelumnya jika PT.Ajinomoto Indonesia dan PT.Ajinex Internasional memiliki 1 buah generator dan 1 buah transformator yang diinterkoneksi untuk menyuplai sejumlah beban industri. Generator PT.Ajinomoto Indonesia menyuplai beban pada *feeder 4F*, *feeder 7F* dan *feeder 8F* sedangkan sumber pembangkit dari PLN menyuplai beban pada *feeder 1F*, *feeder 2F*, *feeder 3F* dan *feeder 5F* berupa sejumlah motor listrik, transformator dan peralatan industry lainnya.

repository.ub.ac.i

Distribusi aliran daya pada PT.Ajinomoto Indonesia Mojokerto Factory dapat dilihat pada lampiran.

Pada PT.Ajinex Internasional, generator menyuplai sejumlah beban industri pada *feeder 2F, feeder 4F* dan *feeder 6F*. Sedangkan sumber dari PLN menyuplai beban pada *feeder 1F, feeder 3F* dan *feeder 5F*. Setiap *feeder* memiliki konsumsi daya yang berbeda-beda. Distribusi aliran daya pada PT.Ajinex Internasional dapat dilihat pada lampiran.

4.2 Pemodelan Sistem dan Pengolahan Data

4.2.1 Pemodelan Sistem

1. Sistem daya PT. Ajinomoto Indonesia Mojokerto Factory

Berdasarkan data pada lampiran, diagram segaris sistem daya akan dimodelkan secara sederhana dan disesuaikan dengan keperluan analisis dan simulasi stabilitas sistem daya pada PT.Ajinomoto Indonesia. Diagram segaris sistem daya ditunjukkan pada Gambar 4.1:

Gambar 4.1 Diagram segaris sistem daya PT.Ajinomoto Indonesia Sumber : PT.Ajinomoto Indonesia *Mojokerto Factory*

2. Sistem daya PT. Ajinex Internasional

Pemodelan sistem daya pada PT.Ajinex Internasional berdasarkan data pada lampiran akan dimodelkan secara sederhana sesuai dengan kebutuhan simulasi dan analisis kestabilan sistem daya. Diagram segaris sistem daya pada PT.Ajinex Internasional ditunjukkan pada Gambar 4.2:

Gambar 4.2 Diagram segaris sistem daya PT.Ajinex Internasional Sumber : PT.Ajinomoto Indonesia *Mojokerto Factory*

3. Interkoneksi sistem daya PT. Ajinomoto Indonesia *Mojokerto Factory* dengan PT. Ajinex Internasional.

Proses interkoneksi akan dilakukan dengan melibatkan dua sumber daya pada dua perusahaan. Dari dua sistem daya tersebut, proses interkoneksi dilakukan, yaitu dengan menghubungkan bus PLN NE (sumber daya PLN PT.Ajinomoto Indonesia) dengan bus PLN NEX (sumber daya PLN PT.Ajinex Internasional) dan bus Gen NE (sumber daya generator PT.Ajinex Internasional) dengan bus Gen NEX (sumber daya generator PT.Ajinex Internasional) dengan menggunakan tipe konduktor N2XSY 6 kV / 12 kV sesuai dengan standar konduktor yang digunakan oleh kedua perusahaan tersebut. Diagram segaris interkoneksi dapat dilihat pada Gambar 4.3. Dalam pemodelan interkoneksi dua perusahaan, terdapat 4 sumber daya energi listrik meliputi dua generator dan dua sumber daya dari PLN, dua transformator penurun tegangan dan 46 bus beban. Dari keempat bus generator, ditentukan bus Gen PLN NEX sebagai *slack bus* sedangkan bus Gen NE, bus Gen NEX dan bus Gen PLN NEX sebagai *PV bus*.

Gambar 4.3 Diagram segaris interkoneksi sistem daya dua perusahaan Sumber : Hasil pemodelan

4.2.2 Data Generator

Dalam melakukan perhitungan mengenai parameter-parameter sistem daya dalam satuan p.u, maka dalam perhitungan akan digunakan teraan nilai dasar 18 MVA sebagai daya dasar dan tegangan 3,45 kV sebagai tegangan dasar. Data-data yang diperlukan dalam melakukan analisis stabilitas meliputi daya, tegangan dan data dinamik generator seperti yang terdapat dalam lampiran. Nilai reaktansi generator dalam satuan p.u dapat diperoleh dengan mengkonversi satuan menggunakan persamaan 4-1.

$$X_{p.u\,(baru)} = X_{p.u\,(lama)} \left[\frac{KV_{lama} dasar}{KV_{baru} dasar} \right]^2 \cdot \left[\frac{MVA_{baru} dasar}{MVA_{lama} dasar} \right]$$
(4-1)

Dengan menggunakan persamaan 4-1 maka nilai reaktansi dari generator dapat diketahui. Data generator setelah proses konversi ditunjukkan pada tabel 4.1 berikut:

No	Parameter	Generator PT. Ajinomoto	Generator PT. Ajinex	Satuan
1	S	8,5000	7,50000	p.u.
2	R	0,0010	0,00100	p.u.
3	Xd	1,9000	1,6765	p.u.
4	X'd	0,2800	0,2471	p.u.
5	X''d	0,1150	0,1015	p.u.
6	Xq	1,8000	1,5882	p.u.
7	X'q	0,4100	0,3618	p.u.
8	X''q	0,1150	0,1015	p.u.
9	Xl	0,0950	0,0838	p.u.
10	Td'o	4,8000	4,8000	S
11	Td"o	0,0350	0,0350	S
12	Tq'o	0,4500	0,4500	S
13	Tq"o	0,0600	0,0600	S
14	Н	6,0000	6,0000	kJ/kVA
15	D	0,0000	0,0000	
16	V	3,4500	3,4500	kV

Tabel 4.1 Data parameter dina	mik generator
-------------------------------	---------------

Sumber : Hasil perhitungan

Saluran sistem daya PT.Ajinomoto Indonesia dan PT.Ajinex Internasional memiliki data-data dalam lampiran yang ditunjukkan pada tabel 4.2 berikut:

	PT. A	jinomoto		PT. Ajinex			
NO	Saluran	R (p.u.)	X (p.u.)	Saluran	R (p.u.)	X (p.u.)	
1.	PLN – GEN	0.0429	0.1030	PLN – GEN	0.0423	0.1017	
2.	PLN - 1F NE	0.0213	0.0353	PLN - 1F NEX	0.0428	0.0463	
3.	1F NE- Load 1	0.0114	0.0123	1F NEX- Load 1	0.0798	0.0864	
4.	1F NE- Load 2	0.0200	0.0216	1F NEX- Load 2	0.0570	0.0617	
5.	1F NE- Load 3	0.0143	0.0154	1F NEX- Load 3	0.0627	0.0679	
6.	PLN - 2F NE	0.0213	0.0353	PLN - 3F NEX	0.0399	0.0432	
7.	2F NE- Load 1	0.0228	0.0247	PLN - 5F NEX	0.0599	0.0648	
8.	2F NE- Load 2	0.0191	0.0207	5F NEX- Load 1	0.1049	0.1136	
9.	2F NE- Load 3	0.0160	0.0173	5F NEX- Load 2	0.0798	0.0864	
10.	2F NE- Load 4	0.0143	0.0154	PLN - 8F NEX	0.0011	0.0012	
11.	2F NE- Load 5	0.0160	0.0173	GEN - 2F NEX	0.0029	0.0031	
12.	PLN - 3F NE	0.0213	0.0353	2F NEX- Load 1	0.0114	0.0123	
13.	3F NE- Load 1	0.0257	0.0278	2F NEX- Load 2	0.0057	0.0062	
14.	3F NE- Load 2	0.0171	0.0185	GEN - 4F NEX	0.0399	0.0432	
15.	3F NE- Load 3	0.0248	0.0269	4F NEX- Load 1	0.0684	0.0741	
16.	3F NE- Load 4	0.0120	0.0130	4F NEX- Load 2	0.0627	0.0679	
17.	PLN - 5F NE	0.0071	0.0118	4F NEX- Load 3	0.0513	0.0556	
18.	PLN - 6F NE	0.0011	0.0012	4F NEX- Load 4	0.0718	0.0778	
19.	GEN - 4F NE	0.0370	0.0741	4F NEX- Load 5	0.0570	0.0617	
20.	GEN - 7F NE	0.0127	0.0253	GEN - 6F NEX	0.0057	0.0062	
21.	7F NE- Load 1	0.0114	0.0123	6F NEX- Load 1	0.0103	0.0111	
22.	7F NE- Load 2	0.0108	0.0117	6F NEX- Load 2	0.0137	0.0148	
23.	7F NE- Load 3	0.0114	0.0123	INATUE	120	STA	
24.	GEN - 8F NE	0.0123	0.0247	AUTIN	HT.		

Tabel 4.2 Data saluran

Sumber : Hasil perhitungan

4.2.4 Data beban

Nilai pembebanan pada PT.Ajinomoto Indonesia *Mojokerto Factory* dan PT.Ajinex Internasional sesuai dengan pemodelan sistem daya pada gambar 4.1 dan gambar 4.2 ditunjukkan pada tabel 4.3 berikut:

PT. <i>A</i>	Ajinomoto		PT. Ajinex				
Pembebanan	P (MW)	Q (Mvar)	Pembebanan	P (MW)	Q (Mvar)		
Bus 1F NE	3,2768	1,5870	Bus 1F NEX	2,42535	1,17465		
1F NE – Load 1	0,7928	0,3840	1F NEX– Load 1	0,74520	0,36092		
1F NE– Load 2	1,2420	0,6015	1F NEX– Load 2	1,39725	0,67672		
1F NE– Load 3	1,2420	0,6015	1F NEX– Load 3	0,28290	0,13701		
Bus 2F NE	6,2031	3,0043	Bus 2F NEX	1,26477	0,61256		
2F NE– Load 1	0,4140	0,2005	2F NEX– Load 1	0,65067	0,31513		
2F NE– Load 2	2,3736	1,1496	2F NEX– Load 2	0,61410	0,29742		
2F NE– Load 3	1,2420	0,6015	Bus 3F NEX	1,32480	0,64163		
2F NE– Load 4	0,9315	0,4511	Bus 4F NEX	3,29130	1,59405		
2F NE– Load 5	1,2420	0,6015	4F NEX-Load 1	0,18630	0,09023		
Bus 3F NE	4,4874	2,1734	4F NEX-Load 2	0,62100	0,30076		
3F NE– Load 1	2,6244	1,2711	4F NEX– Load 3	0,62100	0,30076		
3F NE– Load 2	0,6210	0,3008	4F NEX– Load 4	0,62100	0,30076		
3F NE– Load 3	0,6210	0,3008	4F NEX– Load 5	1,24200	0,60153		
3F NE– Load 4	0,6210	0,3008	Bus 5F NEX	0,55614	0,26935		
Bus 4F NE	0,7763	0,3760	5F NEX– Load 1	0,27324	0,13234		
Bus 5F NE	1,2420	0,6015	5F NEX– Load 2	0,28290	0,13701		
Bus 6F NE	0,00000	0,00000	Bus 6F NEX	1,02534	0,49659		
Bus 7F NE	3,0406	1,4726	6F NEX– Load 1	0,62100	0,30076		
7F NE– Load 1	1,7078	0,8271	6F NEX– Load 2	0,40434	0,19583		
7F NE– Load 2	1,1507	0,5573	Bus 8F NEX	0,00000	0,00000		
7F NE– Load 3	0,1822	0,0882	UNIXIT	3.84	SLA		
Bus 8F NE	1,5842	0,7673	UZAYA	NHT			

Tabel 4.3 Data pembebanan 2 perusahaan

Sumber : PT.Ajinomoto Indonesia Mojokerto Factory

4.3 Simulasi Aliran Daya

Simulasi aliran daya dilakukan untuk mengetahui kondisi awal sistem sebelum dilakukan analisis stabilitas sistem daya. Proses simulasi aliran daya ini berdasarkan atas diagram segaris sistem dan data-data yang telah dibahas sebelumnya meliputi data pembangkit, saluran dan beban. Simulasi akan terbagi menjadi dua keadaan, yaitu keadaan saat sebelum dan setelah interkoneksi dua perusahaan dilakukan.

4.3.1 Simulasi Aliran Daya PT.Ajinomoto Indonesia Mojokerto Factory

Dalam melakukan simulasi aliran daya pada PT.Ajinomoto Indonesia *Mojokerto Factory*, akan ditetapkan bus Gen PLN NE sebagai *slack bus* dan bus Gen NE sebagai *PV bus*. Sedangkan bus yang lain ditentukan sebagai *PQ bus*. Data pembangkit, saluran dan pembebanan sesuai dengan pembahasan sebelumnya. Dari hasil simulasi aliran daya di PT.Ajinomoto Indonesia diperoleh hasil seperti yang ditunjukkan pada tabel 4.4 berikut:

No	Nama Bus	Voltage (pu)	Sudut (°)	Pgen (MW)	Qgen (Mvar)	Pbeban (MW)	Qbeban (Mvar)
1.	GEN PLN NE	1,0000	0,00	13,1960	7,73965	0,0000	0,0000
2.	PLN NE	0,9593	-3,88	0,00000	0,00000	_0,0000	0,0000
3.	GEN NE	0,9653	-3,57	7,65000	3,70506	0,0000	0,0000
4.	1F NE	0,9519	-4,17	0,00000	0,00000	3,2768	1,5870
5.	1F NE LOAD 1	0,9511	-4,19	0,00000	0,00000	0,7928	0,3840
6.	1F NE LOAD 2	0,9497	-4,22	0,00000	0,00000	1,2420	0,6015
7.	1F NE LOAD 3	0,9503	-4,20	0,00000	0,00000	1,2420	0,6015
8.	2F NE	0,9452	-4,43	0,00000	0,00000	6,2031	3,0043
9.	2F NE LOAD 1	0,9443	-4,45	0,00000	0,00000	0,4140	0,2005
10.	2F NE LOAD 2	0,9411	-4,52	0,00000	0,00000	2,3736	1,1496
11.	2F NE LOAD 3	0,9434	-4,47	0,00000	0,00000	1,2420	0,6015
12.	2F NE LOAD 4	0,9440	-4,46	0,00000	0,00000	0,9315	0,4511
13.	2F NE LOAD 5	0,9434	-4,47	0,00000	0,00000	1,2420	0,6015
14.	3F NE	0,9491	-4,27	0,00000	0,00000	4,4874	2,1734
15.	3F NE LOAD 1	0,9430	-4,42	0,00000	0,00000	2,6244	1,2711
16.	3F NE LOAD 2	0,9481	-4,30	0,00000	0,00000	0,6210	0,3008
17.	3F NE LOAD 3	0,9477	-4,31	0,00000	0,00000	0,6210	0,3008
18.	3F NE LOAD 4	0,9484	-4,29	0,00000	0,00000	0,6210	0,3008
19.	4F NE	0,9619	-3,71	0,00000	0,00000	0,7763	0,3760

Tabel 4.4 Data aliran daya PT.Ajinomoto Indonesia Mojokerto Factory

20.	5F NE	0,9583	-3,92	0,00000	0,00000	1,2420	0,6015
21.	6F NE	0,9593	-3,88	0,00000	0,00000	0,0000	0,0000
22.	7F NE	0,9608	-3,76	0,00000	0,00000	3,0406	1,4726
23.	7F NE LOAD 1	0,9590	-3,81	0,00000	0,00000	1,7078	0,8271
24.	7F NE LOAD 2	0,9597	-3,79	0,00000	0,00000	1,1507	0,5573
25.	7F NE LOAD 3	0,9606	-3,77	0,00000	0,00000	0,1822	0,0882
26.	8F NE	0,9629	-3,67	0,00000	0,00000	1,5842	0,7673

rset. Berdasarkan data hasil simulasi aliran daya tersebut diperoleh data sebagai berikut:

Total pembangkitan	P:20,846	MW
	Q : 11,445	MVar
Total beban	P:20,6105	MW
	Q:9,9821	MVar
Total rugi daya	P:0,2355	MW
	Q:1,4629	MVar

4.3.2 Simulasi Aliran Daya PT.Ajinex Internasional Mojokerto Factory

Simulasi aliran daya di PT.Ajinex Internasional dilakukan dengan menetapkan bus Gen PLN NEX sebagai slack bus, bus Gen NEX sebagai PV bus, sedangkan bus yang lain akan ditetapkan sebagai bus beban dengan konsumsi daya sesuai dengan data pada tabel 4.3 dan data saluran sesuai dengan tabel 4.2. Data hasil simulasi aliran daya pada PT.Ajinex Internasional ditunjukkan pada tabel 4.5 berikut:

Na	Name Bus	Voltage	Sudut	Pgen	Qgen	Pbeban	Qbeban
NO.	Nama Bus	(pu)	(°)	(MW)	(Mvar)	(MW)	(Mvar)
1.	GEN PLN NEX	1,0000	0,00	5,4806	1,7708	0,00000	0,00000
2.	PLN NEX	0,9905	-1,49	0,00000	0,00000	0,00000	0,00000
3.	GEN NEX	0,9906	-1,71	4,50000	3,2692	0,00000	0,00000
4.	1F NEX	0,9815	-1,69	0,00000	0,00000	2,42535	1,17465
5.	1F NEX LOAD 1	0,9795	-1,73	0,00000	0,00000	0,74520	0,36092
6.	1F NEX LOAD 2	0,9778	-1,77	0,00000	0,00000	1,39725	0,67672
7.	1F NEX LOAD 3	0,9738	-1,86	0,00000	0,00000	0,28290	0,13701

Tabel 4.5 Data aliran daya PT.Ajinex Internasional Mojokerto Factory

8.	2F NEX	0,9903	-1,71	0,00000	0,00000	1,26477	0,61256
9.	2F NEX LOAD 1	0,9897	-1,73	0,00000	0,00000	0,65067	0,31513
10.	2F NEX LOAD 2	0,9900	-1,72	0,00000	0,00000	0,61410	0,29742
11.	3F NEX	0,9859	-1,59	0,00000	0,00000	1,32480	0,64163
12.	4F NEX	0,9792	-1,97	0,00000	0,00000	3,29130	1,59405
13.	4F NEX LOAD 1	0,9781	-1,99	0,00000	0,00000	0,18630	0,09023
14.	4F NEX LOAD 2	0,9758	-2,04	0,00000	0,00000	0,62100	0,30076
15.	4F NEX LOAD 3	0,9764	-2,03	0,00000	0,00000	0,62100	0,30076
16.	4F NEX LOAD 4	0,9753	-2,05	0,00000	0,00000	0,62100	0,30076
17.	4F NEX LOAD 5	0,9730	-2,11	0,00000	0,00000	1,24200	0,60153
18.	5F NEX	0,9876	-1,55	0,00000	0,00000	0,55614	0,26935
19.	5F NEX LOAD 1	0,9852	-1,61	0,00000	0,00000	0,27324	0,13234
20.	5F NEX LOAD 2	0,9857	-1,60	0,00000	0,00000	0,28290	0,13701
21.	6F NEX	0,9901	-1,72	0,00000	0,00000	1,02534	0,49659
22.	6F NEX LOAD 1	0,9896	-1,73	0,00000	0,00000	0,62100	0,30076
23.	6F NEX LOAD 2	0,9896	-1,73	0,00000	0,00000	0,40434	0,19583
24.	8F NEX	0,9905	-1,49	0,00000	0,00000	0,00000	0,00000

Berdasarkan data hasil simulasi aliran daya tersebut diperoleh data sebagai berikut:

Total pembangkitan	P:9,9806 MW
Y State	Q : 5,0400 MVar
Total beban	P:9,8877 MW
	Q : 4,7888 MVar
Total rugi daya	P:0,0929 MW
	Q : 0,2512 MVar

4.3.3 Simulasi Aliran Daya pada Sistem Interkoneksi

Simulasi aliran daya pada sistem interkoneksi dilakukan dengan menghubungkan bus Gen PLN NE dengan bus Gen PLN NEX dan bus Gen NE dengan bus Gen NEX sesuai dengan gambar 4.3. Penetapan jenis bus, yaitu *slack bus*, *PV bus* dan *PQ bus* pada sistem daya interkoneksi telah dibahas pada pembahasan sebelumnya. Hasil simulasi aliran daya pada sistem interkoneksi ditunjukkan pada tabel 4.6 berikut:

27		Voltag	Sudut	Pgen	Qgen	Pbeban	Qbeban
No.	Nama Bus	e (pu)	(°)	(MW)	(Mvar)	(MW)	(Mvar)
1.	GEN PLN NE	1,0000	0,00	8,3814	4,5573	0,0000	0,0000
2.	PLN NE	0,9754	-2,37	0,0000	0,0000	0,0000	0,0000
3.	GEN NE	0,9801	-2,20	6,8000	3,7050	0,0000	0,0000
4.	GEN PLN NEX	1,0000	-0,33	9,6000	4,4592	0,0000	0,0000
5.	PLN NEX	0,9773	-2,27	0,0000	0,0000	0,0000	0,0000
6.	GEN NEX	0,9800	-2,21	6,0000	3,2692	0,0000	0,0000
7.	1F NE	0,9682	-2,65	0,0000	0,0000	3,2768	1,5870
8.	1F NE LOAD 1	0,9674	-2,66	0,0000	0,0000	0,7928	0,3840
9.	1F NE LOAD 2	0,9660	-2,70	0,0000	0,0000	1,2420	0,6015
10.	1F NE LOAD 3	0,9666	-2,68	0,0000	0,0000	1,2420	0,6015
11.	2F NE	0,9616	-2,90	0,0000	0,0000	6,2031	3,0043
12.	2F NE LOAD 1	0,9608	-2,92	0,0000	0,0000	0,4140	0,2005
13.	2F NE LOAD 2	0,9576	-2,99	0,0000	0,0000	2,3736	1,1496
14.	2F NE LOAD 3	0,9598	-2,94	0,0000	0,0000	1,2420	0,6015
15.	2F NE LOAD 4	0,9604	-2,92	0,0000	0,0000	0,9315	0,4511
16.	2F NE LOAD 5	0,9598	-2,94	0,0000	0,0000	1,2420	0,6015
17.	3F NE	0,9654	-2,75	0,0000	0,0000	4,4874	2,1734
18.	3F NE LOAD 1	0,9595	-2,89	0,0000	0,0000	2,6244	1,2711
19.	3F NE LOAD 2	0,9645	-2,77	0,0000	0,0000	0,6210	0,3008
20.	3F NE LOAD 3	0,9641	-2,78	0,0000	0,0000	0,6210	0,3008
21.	3F NE LOAD 4	0,9648	-2,77	0,0000	0,0000	0,6210	0,3008
22.	4F NE	0,9778	-2,26	0,0000	0,0000	0,7763	0,3760
23.	5F NE	0,9745	-2,41	0,0000	0,0000	1,2420	0,6015
24.	6F NE	0,9754	-2,37	0,0000	0,0000	0,0000	0,0000
25.	7F NE	0,9770	-2,27	0,0000	0,0000	3,0406	1,4726
26.	7F NE LOAD 1	0,9753	-2,31	0,0000	0,0000	1,7078	0,8271
27.	7F NE LOAD 2	0,9759	-2,30	0,0000	0,0000	1,1507	0,5573
28.	7F NE LOAD 3	0,9768	-2,28	0,0000	0,0000	0,1822	0,0882
29.	8F NE	0,9785	-2,07	0,0000	0,0000	1,5842	0,7673
30.	1F NEX	0,9681	-2,47	0,0000	0,0000	2,4254	1,1747
31.	1F NEX LOAD 1	0,9662	-2,52	0,0000	0,0000	0,7452	0,3609
32.	1F NEX LOAD 2	0,9644	-2,56	0,0000	0,0000	1,3973	0,6767
33.	1F NEX LOAD 3	0,9604	-2,65	0,0000	0,0000	0,2829	0,1370

Tabel 4.6 Data aliran daya pada sistem interkoneksi

34.	2F NEX	0,9797	-2,21	0,0000	0,0000	1,2648	0,6126
35.	2F NEX LOAD 1	0,9791	-2,23	0,0000	0,0000	0,6507	0,3151
36.	2F NEX LOAD 2	0,9794	-2,22	0,0000	0,0000	0,6141	0,2974
37.	3F NEX	0,9727	-2,37	0,0000	0,0000	1,3248	0,6416
38.	4F NEX	0,9685	-2,47	0,0000	0,0000	3,2913	1,5941
39.	4F NEX LOAD 1	0,9674	-2,50	0,0000	0,0000	0,1863	0,0902
40.	4F NEX LOAD 2	0,9651	-2,55	0,0000	0,0000	0,6210	0,3008
41.	4F NEX LOAD 3	0,9657	-2,53	0,0000	0,0000	0,6210	0,3008
42.	4F NEX LOAD 4	0,9646	-2,56	0,0000	0,0000	0,6210	0,3008
43.	4F NEX LOAD 5	0,9622	-2,61	0,0000	0,0000	1,2420	0,6015
44.	5F NEX	0,9744	-2,33	0,0000	0,0000	0,5561	0,2694
45.	5F NEX LOAD 1	0,9719	-2,39	0,0000	0,0000	0,2732	0,1323
46.	5F NEX LOAD 2	0,9724	-2,38	0,0000	0,0000	0,2829	0,1370
47.	6F NEX	0,9795	-2,22	0,0000	0,0000	1,0253	0,4966
48.	6F NEX LOAD 1	0,9790	C-2,23	0,0000	0,0000	0,6210	0,3008
49.	6F NEX LOAD 2	0,9790	-2,23	0,0000	0,0000	0,4043	0,1958
50.	8F NEX	0,9773	-2,27	0,0000	0,0000	0,0000	0,0000

Berdasarkan data hasil simulasi aliran daya tersebut diperoleh data sebagai berikut:

Total pembangkitan	P:30,8223 MW
	Q : 16,4971 MVar
Total beban	P:30,4981 MW
	Q : 14,7709 MVar
Total rugi daya	P: 0,3242 MW
	Q:1,7262 MVar

Dari data hasil analisis juga diperoleh data mengenai aliran daya pada saluran interkoneksi sesuai dengan tabel 4.7 sebagai berikut:

Dari	Ke	P (MW)	Q (MVar)
Bus PLN NE	Bus Gen NE	-2,6	-1,7
Bus PLN NE	Bus PLN NEX	-4,5	-2,3
Bus PLN NEX	Bus Gen NEX	0,8	0,0
Bus Gen NEX	Bus Gen NE	1,2	0,6
Sumber : Hasil simulasi			

Tabel 4.7 Aliran daya pada saluran interkoneksi

Dengan mengubah diagram segaris sistem daya saat interkoneksi pada gambar 4.3 menjadi bentuk yang lebih sederhana seperti yang ditujukkan pada gambar 4.4, maka dapat diamati aliran daya pada saluran interkoneksi. Dalam gambar tersebut terlihat jika aliran daya terbesar ialah aliran daya dari bus PLN NEX (sumber PLN PT.Ajinex Internasional) ke bus PLN NE (sumber PLN PT.Ajinomoto Indonesia) sebesar 4,5 MW.

Gambar 4.4 Diagram aliran daya pada saluran interkoneksi Sumber : Hasil pemodelan

4.3.4 Pemilihan Konduktor Interkoneksi

Pemilihan tipe kabel pada saluran interkoneksi didasarkan atas standart konduktor saluran interkoneksi antara sumber PLN dengan sumber generator dari kedua perusahan tersebut yaitu kabel dengan tipe N2XSY. Terlihat pada hasil simulasi jika aliran daya terbesar yang disalurkan pada saluran interkoneksi ialah sebesar 4.5 MW. Daya ini mengalir dari bus PLN NEX ke bus PLN NE dengan besar arus yang mengalir sebesar 853 A. Sehingga luas penampang konduktor pada saluran interkoneksi dari bus PLN NEX ke bus PLN NE dengan besar arus yang dapat di saluran adalah sebesar 901 A. Sedangkan besar arus yang mengalir dari bus Gen NEX ke bus Gen NE ialah sebesar 222 A, sehingga luas penampang konduktor yang digunakan ialah 70mm² dengan rating arus kabel sebesar 345 A.

4.4 Rangkaian Ekivalen Sistem

Rangkaian ekivalen sistem daya pada PT.Ajinomoto Indonesia *Mojokerto Factory* berdasarkan gambar 4.1 ditunjukkan pada gambar 4.5. Dalam gambar tersebut nilai impedansinya merupakan impedansi dalam satuan per unit. Gambar rangkaian ekivalen sistem daya digunakan untuk perhitungan matriks impedansi rel dalam perhitungan gangguan.

Gambar 4.5 Rangkaian ekivalen sistem daya PT.Ajinomoto Indonesia Sumber : Hasil perhitungan

Impedansi	Nilai	Impedansi	Nilai
Z ₁₀	0,001490 + j0,100670	Z ₃₁₃	0,014253 + j0,015433
Z ₁₂	0,042896 + j0,103044	Z ₅₁₄	0,022805 + j0,024693
Z ₁₃	0,021323 + j0,035329	Z ₅₁₅	0,019099 + j0,020680
Z ₁₄	0,001140 + j0,001235	Z ₅₁₆	0,015964 + j0,017285
Z ₁₅	0,021323 + j0,035329	Z ₅₁₇	0,014253 + j0,015433
Z ₁₆	0,021323 + j0,035329	Z ₅₁₈	0,015964 + j0,017285
Z ₁₇	0,007108 + j0,001177	Z ₆₁₉	0,025656 + j0,027779
Z ₂₀	0,001000 + j0,190000	Z ₆₂₀	0,017104 + j0,018519
Z_{28}	0,034208 + j0,037039	Z ₆₂₁	0,024801 + j0,026853
Z ₂₉	0,011688 + j0,012655	Z ₆₂₂	0,011973 + j0,012964
Z ₂₁₀	0,011403 + j0,012346	Z ₉₂₃	0,011403 + j0,012346
Z ₃₁₁	0,011403 + j0,012346	Z ₉₂₄	0,010833 + j0,011729
Z ₃₁₂	0,019955 + j0,021606	Z ₉₂₅	0,011403 + j0,012346

Tabel 4.8 Impedansi rangkaian ekivalen PT.Ajinomoto Indonesia

Berdasarkan gambar rangkaian ekivalen sistem, kemudian impedansi dirubah menjadi admitansi. Hal ini dilakukan untuk mendapatkan matriks admitansi sistem. Matriks impedansi selama gangguan dapat diperoleh dengan menginvers matriks admitansi sistem. Untuk memudahkan dalam perhitungan, akan digunakan perangkat lunak *MATLAB*. *Listing program* untuk impedansi rel dalam perhitungan gangguan dan hasil perhitungan sesuai dengan penjelasan dalam lampiran.

Berdasarkan hasil perhitungan, maka dapat dianalisis besar tegangan saat terjadi gangguan 3 fasa pada sistem. Gangguan akan diberikan pada bus beban 2F NE (bus 5). Sehingga besar arus gangguan dalam gangguan 3 fasa pada pada bus 2F NE yaitu :

$$I_f = \frac{V_f}{Z_{55}}$$

dimana besar nilai Vf diasumsikan 1,0 p.u. sehingga besar arus gangguan ialah

$$l_f = \frac{1.0}{0.02811 + j0.10071}$$

= 2.5712 - j9.2118 p. u.

Pada bus 1 tegangannya adalah

$$V_1 = V_f - I_f \cdot Z_{51}$$

= 1,0 - (2.5712 - j9.2118).(0.0067866 + 0.065381i)

= 0,38027 - j0,10559 p.u.

Apabila gangguan terjadi pada bus 7F NE (bus 9) maka besarnya arus gangguan adalah:

$$I_{f} = \frac{V_{f}}{Z_{99}}$$

$$I_{f} = \frac{1.0}{0.018611 + j0.086071}$$

$$= 2.4 - j11099 \text{ p. u.}$$

Maka tegangan pada bus 2 adalah

$$V_2 = V_f - I_f \cdot Z_{92}$$

= 1,0 - (2,4 - *j*11099).(0.0069228 + *j*0.073416)
= 0,16851 - *j*0,09936 p.u.

4.5 Simulasi Stabilitas Tegangan dan Sudut Rotor Sebelum Interkoneksi

Simulasi stabilitas ini dilakukan pada saat sumber daya dua perusahaan belum diinterkoneksi. Dimana setiap perusahaan yaitu PT.Ajinomoto Indonesia *Mojokerto Factory* dan PT.Ajinex Internasional memiliki dua sumber energi listrik meliputi sumber energi listrik dari generator dan PLN sesuai dengan pembahasan sebelumnya. Dalam analisis stabilitas ini akan ditentukan daya dasar sebesar 18 MVA dan 3,45 kV sebagai tegangan dasar, waktu gangguan pada detik ke-1 dan waktu gangguan selama 0,15 detik. Gangguan yang digunakan pada simulasi ini adalah gangguan 3 fasa.

4.5.1 Simulasi Stabilitas Tegangan dan Sudut Rotor pada Sistem Daya PT.Ajinomoto Indonesia *Mojokerto Factory*

Dalam melakukan simulasi stabilitas tegangan dan sudut rotor ini, akan dilakukan beberapa skenario gangguan pada sistem daya sesuai dengan tabel 4.9 berikut:

Skenario ke	Letak gangguan
1a	Bus PLN NE
2a	Bus Gen NE
3a	Bus 2F NE
4a	Bus 7F NE

Tabel 4.9 Skenario gangguan pada PT.Ajinomoto Indonesia

Data yang ditampilkan berupa data grafik ketika sebelum, saat dan setelah gangguan terjadi sesuai dengan skenario gangguan pada tabel 4.9. Hasil simulasi pada sistem daya di PT.Ajinomoto Indonesia sesuai dengan pembahasan berikut:

BRAWIJAYA

- Skenario 1a

Hasil simulasi stabilitas tegangan skenario gangguan 1a ditunjukkan pada gambar 4.6 dan tabel 4.10.

Gambar 4.6 Grafik tegangan = f(t) pada bus PLN NE dan bus Gen NE saat gangguan skenario 1a Sumber : Hasil simulasi

Tabel 4.10	Simulasi	stabilitas	tegangan	pada	skenario	1a

Bus	V _{awal} (p.u.)	V _{drop} (p.u.)	t _{drop} (milidetik)
PLN NE	0,9593	9,61x10 ⁻⁸	150
Gen NE	0,9652	0,0403	150

Sumber : Hasil simulasi

Pada data tersebut terlihat bahwa penurunan tegangan pada bus PLN NE jauh lebih besar dibandingkan dengan penurunan tegangan pada bus Gen NE. Hal ini terjadi karena gangguan berada tepat di bus PLN NE. Tabel 4.10 menunjukkan jika grafik tegangan kedua bus tersebut mengalami penurunan selama 150 milidetik dan dapat kembali ke operasi normal setelah mengalami osilasi, sehingga tegangan sistem masih dalam kondisi stabil.

Gambar 4.7 Grafik sudut rotor = f(t) pada gen PLN NE dan Gen NE saat gangguan skenario 1a Sumber : Hasil simulasi

Genera	ator M	δ_{awal} (⁰)	$\delta_{selama \ gangguan}$	t _{pemulihan} (detik)
DI NI NIE	Maks	17 5971	-15,1609	7 4901
PLN NE	Min	-17,3871	-22,0169	7,4801
Con NE	Maks	17 5071	22,0169	7 4901
Gen NE	Min	17,5871	15,1609	7,4801

Tabel 4.11 Simulasi stabilitas sudut rotor pada skenario 1a

Dari hasil simulasi untuk sudut rotor pada gambar 4.7 dan data pada tabel 4.11, terlihat jika terjadi perubahan sudut rotor ketika gangguan terjadi dan stelah gangguan terjadi sebelum mencapai *steady state* kembali. Tabel 4.11 memperlihatkan kondisi sudut rotor sebelum gangguan terjadi adalah -17,5871 pada gen PLN NE dan 17,5871 pada bus Gen NE. Kenaikan maksimum sudut rotor pada gen PLN NE ialah sebesar -15,1609⁰ dan penurunan sudut sebesar - 22,0169⁰. Sehingga diperoleh selisih kenaikan sudut sebesar 2,4262 dan penurunan sudut sebesar 4,4298. Sedangkan kenaikan maksimum sudut rotor pada Gen NE ialah sebesar 22,0169⁰ dan penurunan sebesar 15,1609⁰. Namun kedua mesin membutuhkan waktu yang sama untuk mencapai keadaan *steady state* kembali, yaitu 7,4801 detik setelah gangguan terjadi.

BRAWIJAYA

- Skenario 2a

Gambar 4.8 Grafik tegangan = f(t) pada bus PLN NE dan bus Gen NE saat gangguan skenario 2a Sumber : Hasil simulasi

Bus	V _{awal} (p.u.)	V _{drop} (p.u.)	t _{drop} (milidetik)
PLN NE	0,9593	0,3266	150
Gen NE	0,9652	5,83x10 ⁻⁸	150

Tabel 4.12 Simulasi stabilitas tegangan pada skenario 2a

Sumber : Hasil simulasi

Pada hasil simulasi tersebut menunjukkan tegangan pada bus PLN NE sebelum terjadi gangguan adalah sebesar 0,9593 p.u, kemudian tegangan menurun hingga mencapai 0,3266 p.u. saat terjadi gangguan pada detik ke-1. Tegangan kembali mencapai operasi normal setelah mengalami osilasi. Penurunan tegangan yang lebih besar terjadi pada bus Gen NE. Dimana tegangan pada saat operasi awal sebesar 0,9652 p.u. Ketika gangguan terjadi pada detik ke-1, tegangan pada bus Gen NE mengalami penurunan hingga mencapai 5,83x10⁻⁸ p.u. Setelah gangguan hilang dari sistem, tegangan mulai kembali ke operasi normal dengan sebelumnya mengalami osilasi. Kedua grafik tegangan mengalami penurunan selama 150 milidetik sehingga tegangan sistem masih dalam kondisi stabil.

Gambar 4.9 Grafik sudut rotor = f(t) pada gen PLN NE dan Gen NE saat gangguan skenario 2a Sumber : Hasil simulasi

Genera	ator	$\delta_{\text{awal}} (^{0})$	$\delta_{\text{selama gangguan}} $	t _{pemulihan} (detik)
DI N NE	Maks	-17,5871	-5,9913	11 5802
FLIN INE	Min		-39,5393	11,3002
Con NE	Maks	17 5912	39,5393	11 5902
Gen NE	Min	17,3812	5,9913	11,3802
C 1 TT '1 '				

Tabel 4.13 Simulasi stabilitas sudut rotor pada skenario 2a

Hasil simulasi stablitas sudut rotor menunjukkan jika terjadi perubahan sudut saat terjadi gangguan hingga gangguan hilang dari sistem. Waktu yang dibutuhkan kedua mesin untuk mencapai kondisi *steady state* kembali adalah 11,5802 detik setelah gangguan terjadi. Pada gen PLN, selisih kenaikan sudut sebesar 11,9820⁰ dan penurunan sudut sebesar 21,9522⁰. Sebaliknya, pada Gen NE terjadi kenaikan sudut sebesar 21,9522⁰ dan penurunan sudut sebesar 11,9820⁰.

- Skenario 3a

Gangguan pada skenario ini terjadi di bus beban, yaitu bus 2F NE dengan konsumsi daya sebesar 6,2031 MW dan terhubung pada bus PLN NE. Gambar hasil simulasi ditunjukkan pada gambar 4.10 dan tabel 4.14.

Bus	V _{awal} (p.u.)	V _{drop} (p.u.)	t _{drop} (milidetik)
PLN NE	0,9593	0,2883	150
Gen NE	0,9652	0,2991	150

Dalam hasil tersebut nampak jika tegangan bus PLN NE sebelum gangguan ialah 0,9593 p.u dan bus Gen NE sebesar 0,9652 p.u. Pada saat terjadi gangguan pada detik ke-1, tegangan bus PLN NE menurun hingga mencapai 0,2883 p.u sedangkan tegangan bus Gen NE menurun hingga 0,2991 p.u. Setelah gangguan dihilangkan dari sistem, tegangan mulai kembali ke operasi normal setelah sebelumnya mengalami osilasi. Dalam tabel 4.14 menunjukkan jika tegangan mengalami penurunan selama 150 milidetik dan tegangan dapat kembali ke operasi normal sehingga sistem masih dalam kondisi stabil.

Gambar 4.11 Grafik sudut rotor = f(t) pada gen PLN NE dan Gen NE saat gangguan skenario 3a Sumber : Hasil simulasi

Genera	ator	$\delta_{awal} (^{0})$	$\delta_{\text{selama gangguan}} \begin{pmatrix} 0 \\ 0 \end{pmatrix}$	t _{pemulihan} (detik)
DI NI NIE	Maks	-17,5871	-7,5901	10 6501
PLN NE	Min		-36,6062	10,0301
Con NE	Maks	17.5910	36,6062	10 6501
Gen NE	Min	17,3812	7,5901	10,0301

Tabel 4.15 Simulasi stabilitas sudut rotor pada skenario	3	ia
--	---	----

Dari hasil simulasi untuk sudut rotor pada gambar 4.11 dan data pada tabel 4.15, terlihat jika terjadi perubahan sudut ketika dan setelah terjadi gangguan pada sistem. Selisih kenaikan sudut rotor pada gen PLN NE ialah sebesar 9,997⁰ dan penurunan sudut sebesar 19,0191⁰. Sedangkan selisih kenaikan sudut rotor pada Gen NE ialah sebesar 19,0191⁰ dan penurunan sebesar 9,997⁰. Namun kedua mesin membutuhkan waktu yang sama untuk mencapai keadaan *steady state* kembali, yaitu 10,6501 detik setelah gangguan terjadi.

- Skenario 4a

Gangguan pada skenario 4a terjadi pada bus beban 7F NE dengan konsumsi daya sebesar 3,04 MW dan terhubung pada bus Gen NE. Hasil simulasi pada skenario 4a ditunjukkan pada gambar 4.12 dan tabel 4.16.

Gambar 4.12 Grafik tegangan = f(t) pada bus PLN NE dan bus Gen NE saat gangguan skenario 4a Sumber : Hasil simulasi

Bus	V _{awal} (p.u.)	V _{drop} (p.u.)	t _{drop} (milidetik)
PLN NE	0,9593	0,3889	150
Gen NE	0,9652	0,0997	150

Dalam simulasi tersebut terlihat jika penurunan tegangan pada bus Gen NE lebih besar daripada penurunan tegangan pada bus PLN NE. Penurunan tegangan pada bus PLN NE hingga mencapai 0,3889 p.u namun penurunan tegangan pada bus Gen NEX jauh lebih besar lagi, yaitu 0,0997 p.u. Selisih penurun tegangan kedua bus cukup besar yaitu 0,2892 p.u. Dalam hasil simulasi tersebut terlihat jika kedua grafik tegangan menurun selama 150 milidetik dan tegangan dapat kembali ke operasi normal sehingga sistem masih dalam kondisi stabil.

Gambar 4.13 Grafik sudut rotor = f(t) pada gen PLN NE dan Gen NE saat gangguan skenario 4a Sumber : Hasil simulasi

Gener	ator	δ_{awal} (⁰)	$\delta_{\text{selama gangguan}} \begin{pmatrix} 0 \\ 0 \end{pmatrix}$	t _{pemulihan} (detik)
DI NI NIT	Maks 17.5971	-17,5871	-4,4526	11 7602
PLN NE	Min		-43,7862	11,7002
Gen NE	Maks	17,5812	43,7862	11 7602
	Min		4,4526	11,7002
Sumber - Hegil simulasi				

Tabel 4.1 / Simulasi stabilitas sudut rotor pada skenario 4

Dari hasil simulasi untuk sudut rotor pada gambar 4.13 dan data pada tabel 4.17, terlihat jika terjadi perubahan sudut ketika dan setelah terjadi gangguan pada sistem. Pada skenario ini, selisih kenaikan sudut rotor pada gen PLN NE ialah sebesar 13,1345[°] dan penurunan sudut sebesar 26,1991[°]. Sedangkan selisih kenaikan sudut rotor pada Gen NE ialah sebesar 26,1991[°] dan penurunan sebesar 13,1345[°]. Namun kedua mesin membutuhkan waktu yang sama untuk mencapai keadaan steady state kembali, yaitu 11,7602 detik setelah gangguan terjadi.

4.5.2 Simulasi Stabilitas Tegangan dan Sudut Rotor pada Sistem Daya PT.Ajinex Internasional

Dalam melakukan simulasi stabilitas tegangan dan sudut rotor ini, akan dilakukan beberapa skenario gangguan pada sistem daya sesuai dengan tabel 4.18 berikut:

Skenario ke	Letak gangguan
1b	Bus PLN NEX
2b	Bus Gen NEX
3b	Bus 1F NEX
4b	Bus 4F NEX

Tabel 4.18 Skenario gangguan pada PT.Ajinex Internasional

Dalam simulasi ini akan ditampilkan grafik tegangan dan sudut rotor terhadap fungsi waktu sesuai dengan skenario gangguan pada tabel 4.18. Kemudian akan dianalisis dampak gangguan terhadap stabilitas tegangan dan sudut rotor pada sistem daya di PT.Ajinex Internasional. Hasil simulasi dalam berbagai skenario gangguan sesuai dengan pembahasan berikut:

- Skenario 1b

Pada skenario ini gangguan terletak pada bus PLN NEX. Hasil simulasi tegangan skenario gangguan 1b ditunjukkan pada gambar 4.14 dan tabel 4.19.

Gambar 4.14 Grafik tegangan = f(t) pada bus PLN NEX dan bus Gen NEX saat gangguan skenario 1b Sumber : Hasil simulasi

Bus	V _{awal} (p.u.)	V _{drop} (p.u.)	t _{drop} (milidetik)
PLN NEX	0,9904	1,03x10 ⁻⁷	150
Gen NEX	0,9906	0,0363	150

Tabel 4.19 Simulasi stabilitas tegangan pada skenario 1b

Sumber : Hasil simulasi

repository.ub.ac.

Dalam hasil simulasi tersebut terlihat jika kedua grafik tegangan, yaitu tegangan pada bus PLN NEX dan tegangan pada bus Gen NEX dapat kembali ke operasi normal setelah terjadi gangguan. Durasi penurunan tegangan ketika terjadi gangguan ialah 150 milidetik, sehingga sistem masih dalam kondisi stabil. Penurunan tegangan pada bus PLN NEX jauh lebih besar dibandingkan penurunan tegangan pada bus Gen NEX karena letak gangguan tepat berada di bus PLN NEX dan bus Gen NEX berada pada jarak beberapa meter dari bus PLN NEX.

Gambar 4.15 Grafik sudut rotor = f(t) pada gen PLN NEX dan Gen NEX saat gangguan skenario 1b Sumber : Hasil simulasi

Genera	ator	$\delta_{\text{awal}} (^{0})$	$\delta_{selama gangguan}$	t _{pemulihan} (detik)
PLN NEX	Maks	11,7473	-3,2083	19 7604
	Min		-25,8449	18,7004
Con NEV	Maks	- 11,7473	25,8449	19.7604
Gen NEX	Min		3,2083	18,7004

Tabel 4.20 Simulasi stabilitas sudut rotor pada skenario 1b

Sumber : Hasil simulasi

Dari hasil simulasi stabilitas sudut rotor, terlihat jika terjadi osilasi selama hampir periode simulasi dilakukan. Waktu yang dibutuhkan untuk mencapai kondisi *steady state* ialah 18,7604 detik setelah gangguan atau terjadi pada detik

57
ke 19,9106 dengan nilai sudut rotor baru sebesar -13,4468⁰ pada gen PLN NEX dan 13,4468⁰ pada Gen NEX.

- Skenario 2b

Sama halnya dengan skenario 1b, pada skenario 2b ini akan dianalisis kestabilan tegangan sistem namun letak gangguan berada pada bus Gen NEX. Hasil simulasi stablitas tegangan ditunjukkan pada gambar 4.16 dan tabel 4.21.

Gambar 4.16 Grafik tegangan = f(t) pada bus PLN NEX dan bus Gen NEX saat gangguan skenario 2b Sumber : Hasil simulasi

Bus	V _{awal} (p.u.)	V _{drop} (p.u.)	t _{drop} (milidetik)
PLN NEX	0,9904	0,3696	150
Gen NEX	0,9906	6,64x10 ⁻⁸	150

Tabel 4.21 Simulasi stabilitas tegangan pada skenario 2b

Sumber : Hasil simulasi

Tegangan pada bus PLN NEX pada saat sebelum terjadi gangguan ialah 0,9904 p.u. Namun pada saat gangguan tegangan menurun hingga mencapai 0,3696 p.u. Setelah gangguan hilang dari sistem, tegangan mulai kembali ke operasi normal dengan mengalami sedikit osilasi di sekitar titik Sedangkan pada bus Gen NEX, tegangan sebelum gangguan adalah sebesar 0,9906 p.u. kemudian menurun hingga mencapai 6,64x10⁻⁸ p.u. Tegangan mulai kembali ke operasi norma setelah mengalami sedikit. Sehingga dapat disimpulkan jika penuruan

tegangan pada bus PLN NEX jauh lebih besar dibandingkan penurunan tegangan pada bus Gen NEX. Namun kedua grafik tegangan mengalami penurunan selama 150 milidetik dan dapat kembali ke operasi normal sehingga sistem masih dalam kondisi stabil.

Gambar 4.17 Grafik sudut rotor = f(t) pada gen PLN NEX dan Gen NEX saat gangguan skenario 2b Sumber : Hasil simulasi

Genera	ator	δ_{awal} (⁰)	$\delta_{selama gangguan}$	t _{pemulihan} (detik)
DI N NEV	Maks	11 7472	5,9834	19 9202
PLN NEX	Min	-11,7473	-39,8832	10,0303
Con NEV	Maks or	11 7 4 7 2	39,8832	19 9202
UCHI INEA	Min	11,7475	-5,9834	18,8305

Tabel 4.22 Simulasi stabilitas sudut rotor pada skenario 2b

Sumber : Hasil simulasi

Dari hasil simulasi sudut rotor terlihat jika pada saat dan setalah gangguan, terjadi osilasi selama hampir periode simulasi dilakukan. Kedua mesin dapat mencapai kondisi *steady state* kembali setelah 18,8303 detik setelah gangguan terjadi dengan nilai sudut rotor baru yaitu -13,48⁰ pada gen PLN NEX dan 13,48⁰ pada Gen NEX.

Gangguan pada skenario ini terjadi di bus beban, yaitu bus 1F NEX dengan konsumsi daya sebesar 2,4254 MW dan terhubung pada bus PLN NEX. Gambar hasil simulasi ditunjukkan pada gambar 4.18 dan tabel 4.23.

Gambar 4.18 Grafik tegangan = f(t) pada bus PLN NEX dan bus Gen NEX saat gangguan skenario 3b Sumber : Hasil simulasi

Bus	V _{awal} (p.u.)	V _{drop} (p.u.)	t _{drop} (milidetik)
PLN NEX	0,9904	0,4202	150
Gen NEX	0,9906	0,4217	150

Tabel 4.23 Simulasi stabilitas tegangan pada skenario 3b

Sumber : Hasil simulasi

Dalam hasil simulasi tersebut terlihat jika kedua grafik tegangan, yaitu tegangan pada bus PLN NEX dan tegangan pada bus Gen NEX dapat kembali ke operasi normal setelah terjadi gangguan. Durasi penurunan tegangan ketika terjadi gangguan ialah 150 milidetik, sehingga sistem masih dalam kondisi stabil. Hasil simulasi menunjukkan jika penurunan tegangan pada kedua bus relatif sama, yaitu 0,42 p.u. Selisih penurunan tegangan pada bus PLN NEX dengan penurunan tegangan pada bus Gen NEX saat gangguan skenario 3b ini sangat kecil yaitu 0,0015 p.u

BRAWIJAYA

Gambar 4.19 Grafik sudut rotor = f(t) pada gen PLN NEX dan Gen NEX saat gangguan skenario 3b Sumber : Hasil simulasi

Genera	ator A	$\delta_{\text{awal}} (^{0})$	$\delta_{ m selama\ gangguan} \stackrel{0}{(^0)}$	t _{pemulihan} (detik)	
DI NINEV	Maks	117472	11,1717	19 9402	
PLN NEA	Min	-11,7475	-54,0773	18,8405	
Con NEV	Maks	11 7472	54,0773	19 9402	
Gen NEX	Min	11,7473	-11,1717	18,8405	

Tabel 4.24 Simulasi stabilitas sudut rotor pada skenario 3b

Dari hasil simulasi sudut rotor terlihat jika pada saat dan setalah gangguan, terjadi osilasi selama hampir periode simulasi dilakukan. Kedua mesin dapat mencapai kondisi *steady state* kembali setelah 18,8403 detik setelah gangguan terjadi dengan nilai sudut rotor baru yaitu -13,50⁰ pada gen PLN NEX dan 13,50⁰ pada Gen NEX.

- Skenario 4b

Gangguan pada skenario ini terjadi di bus beban, yaitu bus 4F NEX dengan konsumsi daya sebesar 3,2913 MW dan terhubung pada bus Gen NEX. Gambar hasil simulasi ditunjukkan pada gambar 4.20 dan tabel 4.25

Gambar 4.20 Grafik tegangan = f(t) pada bus PLN NEX dan bus Gen NEX saat gangguan skenario 4b Sumber : Hasil simulasi

Bus	V _{awal} (p.u.)	V _{drop} (p.u.)	t _{drop} (milidetik)
PLN NEX	0,9904	0,5615	150
Gen NEX	0,9906	0,3040	150

Tabel 4.25 Simulasi stabilitas tegangan pada skenario 4b

Dalam hasil simulasi tersebut terlihat jika kedua grafik tegangan, yaitu tegangan pada bus PLN NEX dan tegangan pada bus Gen NEX dapat kembali ke operasi normal setelah terjadi gangguan. Durasi penurunan tegangan ketika terjadi gangguan ialah 150 milidetik, sehingga sistem masih dalam kondisi stabil. Selisih penurunan tegangan pada bus Gen NEX dengan penurunan tegangan pada bus PLN NEX saat gangguan skenario 4b ini cukup besar yaitu 0,2575 p.u.

Sedangkan hasil simulasi stabilitas sudut rotor pada skenario ini ditunjukkan pada gambar 4.21 dan tabel 4.26.

Gambar 4.21 Grafik sudut rotor = f(t) pada gen PLN NEX dan Gen NEX saat gangguan skenario 4b Sumber : Hasil simulasi

Gener	ator	δ_{awal} (⁰)	$\delta_{\text{selama gangguan}} $	t _{pemulihan} (detik)	
Maks		11 7472	7,6655	19.9504	
PLN NEX	Min	-11,7475	-45,3365	18,8304	
Con NEV	Maks	11 7472	45,3365	10.0504	
Gell NEA	Min	11,7475	-7,6655	18,8504	
Sumber · Ha	eil eimulaei				

Tabel 4.26 Simulasi	stabilitas	sudut rotor	pada skenario	4b

Dari hasil simulasi sudut rotor terlihat jika pada saat dan setalah gangguan, terjadi osilasi selama hampir periode simulasi dilakukan. Kedua mesin dapat mencapai kondisi steady state kembali setelah 18,8504 detik setelah gangguan terjadi dengan nilai sudut rotor baru yaitu $-13,50^{\circ}$ pada gen PLN NEX dan $13,50^{\circ}$ pada Gen NEX.

4.6 Simulasi Stabilitas Tegangan dan Sudut Rotor Setelah Interkoneksi

Simulasi stabilitas tegangan dan sudut rotor sistem daya pada kondisi setelah interkoneksi ini akan menampilkan stabilitas tegangan dan sudut rotor sistem daya pada saat dua sumber daya, yaitu sumber daya dari PT.Ajinomoto Indonesia Mojokerto Factory dan PT. Ajinex Internasional telah terhubung melalui saluran interkoneksi dari bus PLN NE ke bus PLN NEX dan dari bus Gen NE ke bus Gen NEX sesuai dengan gambar 4.3. Sebelum melakukan simulasi pada sistem setelah interkoneksi, perlu adanya pengaturan nilai dasar pada perangkat lunak yang digunakan meliputi daya dasar 18 MVA, tegangan dasar 3,45 kV, waktu gangguan dimulai pada detik ke-1 dan waktu gangguan 0,15 detik. Skenario letak gangguan pada sistem daya setelah interkoneksi sesuai dengan tabel 4.27 berikut:

Skenario ke	Letak gangguan
lc	Bus PLN NE
2c	Bus Gen NE
3c	Bus PLN NEX
4c	Bus Gen NEX
5c	Bus 2F NE
6c 5	Bus 7F NE
7c	Bus 1F NEX
8c	Bus 4F NEX
9c	Saluran interkoneksi bus PLN NE ke bus PLN NEX
10c	Saluran interkoneksi bus Gen NE ke bus Gen NEX

Tabel 4 27	Skenario	ganggijan	sistem	dava	setelah	interkonek	si
1 auer 4.27	SKEIIallo	gangguan	SISTELLI	uaya	seleran	IIIICIKUIICK	21

Dalam simulasi ini akan ditampilkan grafik tegangan terhadap fungsi waktu sesuai dengan skenario gangguan sesuai dengan tabel 4.27. Kemudian akan dianalisis dampak gangguan terhadap stabilitas tegangan dan sudut rotor pada sistem daya setelah interkoneksi. Hasil simulasi stabilitas dalam berbagai skenario gangguan sesuai dengan pembahasan berikut:

- Skenario 1c

Hasil simulasi stabilitas tegangan pada skenario ini ditunjukkan pada gambar 4.22 dan tabel 4.28 berikut:

Gambar 4.22 Grafik tegangan = f(t) setelah interkoneksi saat gangguan skenario 1c Sumber : Hasil simulasi

Bus	V _{awal} (p.u.)	V _{drop} (p.u.)	t _{drop} (milidetik)
PLN NE	0,9744	1,89x10 ⁻⁷	150
Gen NE	0,9769	0,0648	150
PLN NEX	0,9759	0,0717	150
Gen NEX	0,9768	0,0634	150

Tabel 4.28 Simulasi stabilitas tegangan pada skenario 1c

Sumber : Hasil simulasi

Dalam skenario ini, gangguan diberikan di bus PLN NE dan kemudian dianalisis dampak gangguan terhadap sistem setelah interkoneksi. Dari hasil simulasi pada sistem interkoneksi saat skenario 1c, terlihat jika penurunan tegangan terbesar berada di bus PLN NE dimana gangguan berada. Sedangkan penurunan tegangan pada bus PLN NEX, bus Gen NE dan bus Gen NEX relatif sama. Keempat grafik tegangan dapat kembali ke operasi normal setelah terjadi gangguan. Durasi penurunan tegangan ketika terjadi gangguan ialah 150 milidetik, sehingga sistem masih dalam kondisi stabil. Sedangkan hasil simulasi stabilitas sudut rotor pada skenario gangguan ini ditunjukkan pada gambar 4.23 dan tabel 4.29 berikut:

Gambar 4.23 Grafik sudut rotor = f(t) setelah interkoneksi saat gangguan skenario 1c Sumber : Hasil simulasi

Genera	ator	$\delta_{\text{awal}} (^{0})$	$\delta_{\text{selama gangguan}} $	t _{pemulihan} (detik)
DI N NE	Maks	11.0122	-3,7857	11 9702
FLIN INE	Min	-11,9132	-25,7241	11,8702
Gen NE	Maks	11 5265	21,6762	19 1402
	Min	11,5205	9,4169	16,1402
PLN NEX	Maks	14.2140	-7,0899	11 2901
	Min	-14,2140	-25,8198	11,2801
Can NEV	Maks	14 6006	21,0575	19.0102
Gell NEX	Min	14,0000	8,0749	18,0103

Tabel 4.29 Simulasi stabilitas sudut rotor pada skenario 1c

Dari hasil simulasi sudut rotor terlihat jika gangguan menyebabkan terjadinya osilasi. Stelah gangguan terjadi, sudut rotor pada gen PLN mengalami peningkatan menjadi -12,36⁰ setelah mencapai kondisi *stedy state* kembali. Begitu pula dengan ketiga lainnya, dimana sudut rotor Gen NE naik menjadi 12,91⁰, sudut rotor PLN NEX menjadi 14,66⁰ dan sudut rotor Gen NEX menjadi 14,10⁰.

22

- Skenario 2c

Hasil simulasi stabilitas tegangan pada skenario ini ditunjukkan pada gambar 4.24 serta tabel 4.30. Dalam skenario ini gangguan diberikan pada bus

Gen NE yaitu bus yang ada dalam kawasan PT.Ajinomoto Indonesia sesuai gambar 4.3 kemudian dianalisis dampak gangguan terhadap sistem setelah interkoneksi. Gambar 4.24 menunjukkan kondisi tegangan di PT.Ajinomoto Indonesia dan PT.Ajinex Internasional saat skenario ini dilakukan.

Gambar 4.24 Grafik tegangan = f(t) setelah interkoneksi saat gangguan skenario 2c Sumber : Hasil simulasi

Tuber 1.50 Simulasi stabilitas tegangan pada skenario ze				
Bus	V _{awal} (p.u.)	V _{drop} (p.u.)	t _{drop} (milidetik)	
PLN NE	0,9744	0,3595	150	
Gen NE	-0,9769	$1,22 \times 10^{-7}$	150	
PLN NEX	0,9759	0,3662	150	
Gen NEX	0,9768	0,0458	150	
Sumber : Hasil simulasi				

Tabel 4 30 Simulasi stabilitas tegangan pada skenario 2c

Pada gambar 4.24 dan tabel 4.30 terlihat jika terjadi penurunan tegangan yang sangat besar terjadi pada bus Gen NE dan bus Gen NEX jika dibandingkan dengan penurunan tegangan pada bus PLN NE dan bus PLN NEX. Tetapi penurunan tegangan terbesar diantara keempat bus tersebut adalah penurunan tegangan pada bus Gen NE dimana gangguan terjadi. Durasi penurunan tegangan keempat bus ketika terjadi gangguan ialah 150 milidetik, sehingga sistem masih dalam kondisi stabil. Sedangkan hasil simulasi stabilitas sudut rotor pada skenario gangguan ini ditunjukkan pada gambar 4.25 dan tabel 4.31 berikut:

Gambar 4.25 Grafik sudut rotor = f(t) setelah interkoneksi saat gangguan skenario 2c Sumber : Hasil simulasi

Genera	ator	δ_{awal} (⁰)	$\delta_{\text{selama gangguan}}$	t _{pemulihan} (detik)
DINNE	Maks		2,2319	10,0002
PLIN INE	Min	-11,9132	-36,9686	10,9002
Gen NE	Maks	11,5265	36,5501	18,1103
	Min		4,1739	
DI N NEV	Maks	-14,2140	-34,6618	10 0002
PLN NEX	Min		-3,4407	10,9902
Gen NEX	Maks	14 6006	34,5582	10 7104
	Min	14,0000	-2,6465	10,7104

Tabel 4.31 Simulasi stabilitas sudut rotor pada skenario 2c

Dari hasil simulasi sudut rotor terlihat jika gangguan menyebabkan terjadinya osilasi. Stelah gangguan terjadi, sudut rotor pada gen PLN mengalami peningkatan menjadi $-12,36^{0}$ setelah mencapai kondisi *stedy state* kembali. Begitu pula dengan ketiga lainnya, dimana sudut rotor Gen NE naik menjadi $12,90^{0}$, sudut rotor PLN NEX menjadi $14,67^{0}$ dan sudut rotor Gen NEX menjadi $14,06^{0}$.

- Skenario 3c

Hasil simulasi stabilitas tegangan pada skenario ini ditunjukkan pada gambar 4.26. Dalam skenario ini, gangguan diberikan di bus PLN NEX dan kemudian dianalisis dampak gangguan terhadap sistem setelah interkoneksi.

Gambar 4.26 menunjukkan kondisi tegangan di PT.Ajinomoto Indonesia dan PT.Ajinex Internasional saat skenario 3c.

Gambar 4.26 Grafik tegangan = f(t) setelah interkoneksi saat gangguan skenario 3c Sumber : Hasil simulasi

Bus	V _{awal} (p.u.)	V _{drop} (p.u.)	t _{drop} (milidetik)
PLN NE	0,9744	0,0645	150
Gen NE	0,9769	0,0664	150
PLN NEX	0,9759	1,89x10 ⁻⁷	150
Gen NEX	0,9768	0,0629	150

Tabel 4.32 Simulasi stabilitas tegangan pada skenario 3c

Sumber : Hasil simulasi

Dari hasil simulasi dapat diketahui jika penurunan tegangan terbesar berada pada bus PLN NEX. Dimana tegangan turun hingga mencapai 1,89x10-⁷ p.u. Ketiga grafik tegangan yang lain menurun hingga kurang dari 1 p.u. Namun penurunan tegangan keempat bus terjadi selama 150 milidetik dan dapat kembali ke operasi normalnya setelah gangguan dihilangkan dari sistem sehingga tegangan sistem masih dalam kondisi stabil. Sedangkan hasil simulasi stabilitas sudut rotor pada skenario gangguan ini ditunjukkan pada gambar 4.27 dan tabel 4.33 berikut:

Gambar 4.27 Grafik sudut rotor = f(t) setelah interkoneksi saat gangguan skenario 3c Sumber : Hasil simulasi

Genera	ator	$\delta_{\text{awal}} (^{0})$	$\delta_{\text{selama gangguan}}$	t _{pemulihan} (detik)
	Maks	110100	-6,3825	11.9402
PLIN INE	Min 🧕	-11,9132	-22,2372	11,8402
C NE	Maks	11,5265	21,4213	18,4504
Gell NE	Min		9,5271	
PLN NEX	Maks	-14,2140	-9,6761	10.0702
	Min		-22,4463	10,9702
Gen NEX	Maks	14 6006	21,0108	19 0102
	Min	14,0000	8,3574	18,0103

Tabel 4.33	Simulasi	stabilitas	sudut	rotor	pada	skenario	3c

Dari hasil simulasi sudut rotor terlihat jika gangguan menyebabkan terjadinya osilasi. Stelah gangguan terjadi, sudut rotor pada gen PLN mengalami peningkatan menjadi $-12,36^{0}$ setelah mencapai kondisi *stedy state* kembali. Begitu pula dengan ketiga lainnya, dimana sudut rotor Gen NE naik menjadi $12,93^{0}$, sudut rotor PLN NEX menjadi $14,66^{0}$ dan sudut rotor Gen NEX menjadi $14,10^{0}$.

- Skenario 4c

Hasil simulasi stabilitas tegangan pada skenario ini ditunjukkan pada gambar 4.28 dan tabel 4.34. Dalam skenario ini, gangguan diberikan di bus Gen

NEX dan kemudian dianalisis dampak gangguan terhadap sistem setelah interkoneksi.

Gambar 4.28 Grafik tegangan = f(t) setelah interkoneksi saat gangguan skenario 4c Sumber : Hasil simulasi

Bus	V _{awal} (p.u.)	V _{drop} (p.u.)	t _{drop} (milidetik)
PLN NE	0,9744	0,3616	150
Gen NE	0,9769	0,0451	150
PLN NEX	0,9759	0,3631	150
Gen NEX	0,9768	1,21x10 ⁻⁷	150

Tabel 4.34 Simulasi stabilitas tegangan pada skenario 4c

Sumber : Hasil simulasi

Dari data hasil analisis menunjukkan jika tegangan dimana letak gangguan terjadi mengalami penurunan tegangan yang sangat besar, yaitu tegangan pada bus Gen NEX. Gangguan ini menyebabkan penurunan tegangan pada ketiga bus yang lain. Namun penurunan tegangan keempat bus terjadi selama 150 milidetik sehingga sistem masih dalam kondisi stabil. Sedangkan hasil simulasi stabilitas sudut rotor pada skenario ini ditunjukkan pada gambar 4.29 dan tabel 4.35 berikut:

Gambar 4.29 Grafik sudut rotor = f(t) setelah interkoneksi saat gangguan skenario 4c Sumber : Hasil simulasi

Generator		$\delta_{\text{awal}} (^{0})$	$\delta_{\text{selama gangguan}}$	t _{pemulihan} (detik)
	Maks	11,0120	2,2252	11.9500
PLIN INE	Min	-11,9132	-36,9272	11,8302
Gen NE	Maks	11,5265	35,3103	17,3203
	Min		3,9083	
PLN NEX	Maks 🕓	-14,2140	-3,3689	11 5802
	Min		-34,7344	11,3802
Gen NEX	Maks	14,6006	35,7945	17 9102
	Min	14,0000	-2,4115	17,8105

Tabel 4.35 Simulasi stabilitas sudut rotor pada skenario 4c

Dari hasil simulasi sudut rotor terlihat jika gangguan menyebabkan terjadinya osilasi. Stelah gangguan terjadi, sudut rotor pada gen PLN mengalami peningkatan menjadi $-12,36^{\circ}$ setelah mencapai kondisi *stedy state* kembali. Begitu pula dengan ketiga lainnya, dimana sudut rotor Gen NE naik menjadi $12,98^{\circ}$, sudut rotor PLN NEX menjadi $-14,65^{\circ}$ dan sudut rotor Gen NEX menjadi $14,08^{\circ}$.

Hasil simulasi stabilitas tegangan sistem pada skenario gangguan 5c sesuai dengan gambar 4.30. Gangguan pada skenario ini terjadi di bus beban, yaitu bus 2F NE dengan konsumsi daya sebesar 6,2031 MW dan terhubung pada bus PLN NE. Dari data hasil simulasi menunjukkan bahwa penurunan tegangan pada keempat bus relatif sama yaitu tegangan saat terjadi gangguan ialah sekitar 0,4 p.u. Namun penurunan tegangan terbesar berada pada pada bus PLN NE dimana bus tersebut terhubung langsung dengan bus yang terganggu. Namun keempat tegangan mengalami penurunan tegangan selama 150 milidetik, sehingga sistem masih dalam kondisi stabil.

Bus	V _{awal} (p.u.)	V _{drop} (p.u.)	t _{drop} (milidetik)
PLN NE	0,9744	0,4471	150
Gen NE	0,9769	0,4676	150
PLN NEX	0,9759	0,4848	150
Gen NEX	0,9768	0,4695	150

	Fabel 4.36 Si	mulasi stabi	litas tegang	an pada	skenario 5c
--	---------------	--------------	--------------	---------	-------------

Sumber : Hasil simulasi

Sedangkan hasil simulasi stabilitas sudut rotor pada skenario ini ditunjukkan pada gambar 4.31 dan tabel 4.37 berikut:

Gambar 4.31 Grafik sudut rotor = f(t) setelah interkoneksi saat gangguan skenario 5c Sumber : Hasil simulasi

Gener	ator	$\delta_{awal} (^{0})$	δ _{selama gangguan}	t _{pemulihan} (detik)
DI NINE	Maks	11.0122	2,7357	11 4702
PLN NE	Min	-11,9132	-38,1758	11,4702
Gen NE	Maks	11,5265	37,5590	17 2002
	Min		3,9221	17,3903
PLN NEX	Maks	-14,2140	-2,8572	11.0202
	Min		-36,1458	11,8302
Gen NEX	Maks	14,500,5	36,3001	17 2002
	Min	14,0000	-3,4389	17,8902
Sumber : He	il simulasi			

Dari hasil simulasi sudut rotor terlihat jika gangguan menyebabkan terjadinya osilasi pada sudut rotor. Setelah gangguan terjadi, sudut rotor pada gen PLN mengalami peningkatan menjadi -12,36⁰ setelah mencapai kondisi *stedy state* kembali. Begitu pula dengan ketiga lainnya, dimana sudut rotor Gen NE naik menjadi 12,98⁰, sudut rotor PLN NEX menjadi 14,65⁰ dan sudut rotor Gen NEX menjadi 14,11⁰.

Hasil simulasi stabilitas tegangan sistem pada skenario gangguan 6c sesuai dengan gambar 4.32. Gangguan pada skenario ini terjadi pada bus 7F NE yang terhubung langsung ke bus Gen NE dengan konsumsi daya sebesar 3,04 MW. Tabel 4.38 menjelaskan grafik tegangan pada gambar 4.32 dimana *drop* tegangan terjadi pada keempat tegangan saat terjadi gangguan. Pada data hasil simulasi terlihat jika penurunan tegangan terbesar terjadi pada bus Gen NE yang terhubung langsung ke bus 7F NE. Penurunan tegangan pada keempat bus terjadi dalam durasi 150 milidetik sehingga tegangan sistem masih dalam kondisi stabil.

Gambar 4.32 Grafik tegangan = f(t) setelah interkoneksi saat gangguan skenario 6c Sumber : Hasil simulasi

Bus	V _{awal} (p.u.)	V _{drop} (p.u.)	t _{drop} (milidetik)
PLN NE	0,9744	0,4733	150
Gen NE	0,9769	0,1853	150
PLN NEX	0,9759	0,4794	150
Gen NEX	0,9768	0,2193	150

Tabel 4.38 Simulasi stabilitas tegangan pada skenario 6c

Sumber : Hasil simulasi

Sedangkan hasil simulasi stabilitas sudut rotor pada skenario ini ditunjukkan pada gambar 4.33 dan tabel 4.39 berikut:

Gambar 4.33 Grafik sudut rotor = f(t) setelah interkoneksi saat gangguan skenario 6c Sumber : Hasil simulasi

Gener	ator	$\delta_{awal} (^{0})$	$\delta_{\text{selama gangguan}} $	t _{pemulihan} (detik)
DINNE	Maks	11 0122	4,6440	10,5000
PLN NE	Min	-11,9132	-41,9181	12,5202
Gen NE	Maks	11,5265	42,0861	19 6602
	Min		2,0861	18,0005
DINNEY	Maks	-14,2140	-1,0573	12,8702
PLN NEX	Min		-39,8865	
Gen NEX	Maks	14 6006	40,0284	10 2002
	Min	14,0000	-5.7569	18,2803
Course have a LLo	.:1			

Tabel 4.39	Simulasi	stabilitas	sudut	rotor	pada	skenario	6c

Dari hasil simulasi sudut rotor terlihat jika gangguan menyebabkan terjadinya osilasi pada sudut rotor. Setelah gangguan terjadi, sudut rotor pada gen PLN mengalami peningkatan menjadi $-12,36^{0}$ setelah mencapai kondisi *stedy state* kembali. Begitu pula dengan ketiga lainnya, dimana sudut rotor Gen NE naik menjadi $12,97^{0}$, sudut rotor PLN NEX menjadi $14,66^{0}$ dan sudut rotor Gen NEX menjadi $14,10^{0}$.

- Skenario 7c

Hasil simulasi stabilitas tegangan sistem pada skenario gangguan 7c sesuai dengan gambar 4.34. Gangguan pada skenario ini terjadi di bus beban, yaitu bus 1F NEX dengan konsumsi daya sebesar 2,4254 MW dan terhubung pada bus PLN NEX. Pada saat terjadi gangguan pada sistem, tegangan pada keempat bus turun hingga mencapai sekitar 0,5 p.u. sesuai dengan penjelasan pada tabel 4.40. Penurunan tegangan ini terjadi selama durasi 150 milidetik sehingga tegangan sistem masih dalam kondisi stabil.

Gambar 4.34 Grafik tegangan = f(t) setelah interkoneksi saat gangguan skenario 7c Sumber : Hasil simulasi

Bus	V _{awal} (p.u.)	V _{drop} (p.u.)	t _{drop} (milidetik)
PLN NE	0,9744	0,5766	150
Gen NE	0,9769	0,5624	150
PLN NEX	0,9759	0,5541	150
Gen NEX	0,9768	0,5606	150

Tabel 4.40 Simulasi stabilitas tegangan pada skenario 7c

Sumber : Hasil simulasi

Sedangkan hasil simulasi stabilitas sudut rotor pada skenario ini ditunjukkan pada gambar 4.35 dan tabel 4.41 berikut:

Gambar 4.35 Grafik sudut rotor = f(t) setelah interkoneksi saat gangguan skenario 7c Sumber : Hasil simulasi

Gener	ator	$\delta_{awal} (^{0})$	$\delta_{\text{selama gangguan}} $	t _{pemulihan} (detik)
DI NINE	Maks	11.0122	6,6872	12 4902
PLN NE	Min	-11,9132	-47,5315	12,4802
Gen NE	Maks	11 5265	47,4644	19 6202
	Min	11,5205	0,8733	18,0303
DI NINEV	Maks	14 2140	1,4684	12 7202
PLN NEX	Min	-14,2140	-45,1510	12,7202
Gen NEX	Maks	14 (00)	45,3785	10 4102
	Min	14,0000	-8,8942	16,4103
Sumber : He	il simulasi			

Dari hasil simulasi sudut rotor terlihat jika gangguan menyebabkan terjadinya osilasi pada sudut rotor. Setelah gangguan terjadi, sudut rotor pada gen PLN mengalami peningkatan menjadi $-12,36^{0}$ setelah mencapai kondisi *stedy state* kembali. Begitu pula dengan ketiga lainnya, dimana sudut rotor Gen NE naik menjadi $13,04^{0}$, sudut rotor PLN NEX menjadi $14,65^{0}$ dan sudut rotor Gen NEX menjadi $14,01^{0}$.

Hasil simulasi stabilitas tegangan sistem pada skenario gangguan 8c sesuai dengan gambar 4.36 dann tabel 4.42. Gangguan pada skenario ini terjadi di bus beban, yaitu bus 4F NEX dengan konsumsi daya sebesar 3,2913 MW dan terhubung pada bus Gen NEX. Dari data hasil simulasi, terlihat jika penurunan tegangan pada kedua bus yaitu bus Gen NE dan bus Gen NEX lebih besar dibandingkan dengan penurunan tegangan pada kedua bus yang lain. Namun, penurunan tegangan terjadi selama 150 milidetik sehingga tegangan sistem masih stabil.

Gambar 4.36 Grafik tegangan = f(t) setelah interkoneksi saat gangguan skenario 8c Sumber : Hasil simulasi

Tabel 4.42 Simulasi st	abilitas tegangan	n pada skenario 8	с
------------------------	-------------------	-------------------	---

Bus	V _{awal} (p.u.)	V _{drop} (p.u.)	t _{drop} (milidetik)
PLN NE	0,9744	0,6346	150
Gen NE	0,9769	0,4594	150
PLN NEX	0,9759	0,6366	150
Gen NEX	0,9768	0,4366	150

Sumber : Hasil simulasi

Sedangkan hasil simulasi stabilitas sudut rotor pada skenario ini ditunjukkan pada gambar 4.37 dan tabel 4.43 berikut:

Gambar 4.37 Grafik sudut rotor = f(t) setelah interkoneksi saat gangguan skenario 8c Sumber : Hasil simulasi

Gener	ator	$\delta_{\text{awal}} (^{0})$	$\delta_{\text{selama gangguan}} $	t _{pemulihan} (detik)
DI NI NIE	Maks	11.0122	3,9733	12 4002
PLN NE	Min	-11,9132	-41,1210	12,4902
Gen NE	Maks		41,0578	19 2202
	Min	11,3203	2,3156	16,3303
DINNEY	Maks	14 2140	-0,9186	12 7002
PLN NEX	Min	-14,2140	-39,9736	12,7902
Gen NEX	Maks	14 (00)	40,1208	19 2502
	Min	14,0000	-5,4482	16,2303
Sumbar : Ha	oil cimulaci			

Tabel 4.43	Simulasi	stabilitas	sudut	rotor	pada	skenario	8c

Dari hasil simulasi sudut rotor terlihat jika gangguan menyebabkan terjadinya osilasi pada sudut rotor. Setelah gangguan terjadi, sudut rotor pada gen PLN mengalami peningkatan menjadi $-12,36^{0}$ setelah mencapai kondisi *stedy state* kembali. Begitu pula dengan ketiga lainnya, dimana sudut rotor Gen NE naik menjadi $12,92^{0}$, sudut rotor PLN NEX menjadi $14,65^{0}$ dan sudut rotor Gen NEX menjadi $14,01^{0}$.

- Skenario 9c

Simulasi ini akan menampilkan dampak gangguan pada saluran interkoneksi dari bus PLN NE ke bus PLN NEX terhadap stabilitas tegangan sistem setelah interkoneksi. Grafik stabilitas tegangan pada sistem saat skenario 9c ditunjukkan pada gambar 4.38 dan tabel 4.44. Dari data hasil simulasi terlihat jika penurunan tegangan pada keempat bus sangat besar bahkan tegangan pada bus PLN NE hampir mendekati 0 p.u karena letak gangguan yang berdekatan dengan bus PLN NE.

Bus	V _{awal} (p.u.)	V _{drop} (p.u.)	t _{drop} (milidetik)
PLN NE	0,9744	1,89x10 ⁻⁷	150
Gen NE	0,9769	0,0648	150
PLN NEX	0,9759	0,0718	150
Gen NEX	0,9768	0,0689	150

Tabel 4.44 Simulasi stabilitas tegangan pada skenario 9c

Sumber : Hasil simulasi

Sedangkan hasil simulasi stabilitas sudut rotor pada skenario ini ditunjukkan pada gambar 4.39 dan tabel 4.45 berikut:

81

Gambar 4.39 Grafik sudut rotor = f(t) setelah interkoneksi saat gangguan skenario 9c Sumber : Hasil simulasi

Genera	ator	δ_{awal} (⁰)	$\delta_{\text{selama gangguan}} $	t _{pemulihan} (detik)	
DI NI NIE	Maks	11 0122	-3,7856	11 0000	
PLN NE	Min	-11,9152	-25,7241	11,0002	
Gen NE	Maks	11 5265	21,6761	10 0102	
	Min 🤗	11,5205	9,4313	18,2103	
PLN NEX	Maks	14 2140	-7,0768	12 6402	
	Min 🍣	-14,2140	-25,8990	12,0402	
Gen NEX	Maks	14 6006	21,0624	19 1002	
	Min	14,0000	8,0749	16,1005	

Tabel 4.45 Simulasi stabilitas sudut rotor pada skenario 9c

Sumber : Hasil simulasi

Dari hasil simulasi sudut rotor terlihat jika gangguan menyebabkan terjadinya osilasi pada sudut rotor. Setelah gangguan terjadi, sudut rotor pada gen PLN mengalami peningkatan menjadi $-12,36^{0}$ setelah mencapai kondisi *stedy state* kembali. Begitu pula dengan ketiga lainnya, dimana sudut rotor Gen NE naik menjadi $12,92^{0}$, sudut rotor PLN NEX menjadi $14,65^{0}$ dan sudut rotor Gen NEX menjadi $14,01^{0}$.

Sama halnya dengan gangguan pada skenario 9c, pada skenario ini gangguan juga terletak pada saluran interkoneksi namun saluran yang diberi gangguan adalah saluran interkoneksi dari bus Gen NE ke bus Gen NEX. Sehingga gangguan berada didekat bus Gen NE. Dampak gangguan pada skenario ini terlihat pada tabel 4.40 dan tabel 4.46. Dimana tegangan pada bus Gen NE mengalami penurunan yang sangat besar yaitu hampir mendekati 0 p.u. Namun penurunan tegangan pada keempat bus terjadi selama 150 milidetik sehingga tegangan sistem masih dalam kondisi stabil.

Gambar 4.40 Grafik tegangan = f(t) pada setelah interkoneksi saat gangguan skenario 10c Sumber : Hasil simulasi

Bus	V _{awal} (p.u.)	V _{drop} (p.u.)	t _{drop} (milidetik)
PLN NE	0,9744	0,3601	150
Gen NE	0,9769	1,21x10 ⁻⁷	150
PLN NEX	0,9759	0,3665	150
Gen NEX	0,9768	0,0457	150

Sumber : Hasil simulasi

Sedangkan hasil simulasi stabilitas sudut rotor pada skenario ini ditunjukkan pada gambar 4.41 dan tabel 4.47 berikut:

Gambar 4.41 Grafik sudut rotor = f(t) pada setelah interkoneksi saat gangguan skenario 10c Sumber : Hasil simulasi

Generator		$\delta_{\text{awal}} (^{0})$	$\delta_{\text{selama gangguan}} $	t _{pemulihan} (detik)
DI NINE	Maks	11.0122	2,2319	10 4200
PLN NE	Min	-11,9132	-36,9686	12,4502
Gen NE	Maks	11 5265	36,5509	10 /002
	Min	11,3203	4,1739	16,4605
PLN NEX	Maks	14 2140	-3,4230	12 7402
	Min	-14,2140	-34,6950	12,7402
Con NEV	Maks	14 6006	34,5581	19 7202
Gell NEA	Min	14,0000	-2,6465	16,7505
Sumbar IIa	ail aimulaai			

Tabel 4.47	Simulasi	stabilitas	sudut	rotor	pada	skenario	10c
			A Lines				

Dari hasil simulasi sudut rotor terlihat jika gangguan menyebabkan terjadinya osilasi pada sudut rotor. Setelah gangguan terjadi, sudut rotor pada gen PLN mengalami peningkatan menjadi -12,36⁰ setelah mencapai kondisi *stedy state* kembali. Begitu pula dengan ketiga lainnya, dimana sudut rotor Gen NE naik menjadi 12,92⁰, sudut rotor PLN NEX menjadi 14,65⁰ dan sudut rotor Gen NEX menjadi 14,05⁰.

Berdasarkan uraian mengenai stabilitas tegangan di PT.Ajinomoto Indonesia Mojokerto Factory dan PT.Ajinex Internasional pada kondisi sebelum dan setelah interkoneksi dapat diperoleh gambaran secara umum tentang stabilitas tegangan pada kedua perusahaan tersebut melalui tabel 4.48 berikut:

Letak		Sebelum	interkoneksi	Setelah interkoneksi		
gangguan (bus)	Bus	V _{drop} (p.u.)	t _{drop} (milidetik)	V _{drop} (p.u.)	t _{drop} (milidetik)	
DI NI NIE	PLN NE	9,61x10 ⁻⁸	S 150	1,89x10 ⁻⁷	150	
PLN NE	Gen NE	0,0403	150	0,0648	150	
Can NE	PLN NE	0,3266	150	0,3595	150	
Gen NE	Gen NE	5,83x10 ⁻⁸	150	1,22x10 ⁻⁷	150	
	PLN NE	0,2883	150	0,4471	150	
2r ne	Gen NE	0,2991	150	0,4676	150	
7F NE	PLN NE	0,3889	150	0,4733	150	
	Gen NE	0,0997	150	0,1853	150	
PLN NEX	PLN NEX	1,03x10 ⁻⁷	150	1,89x10 ⁻⁷	150	
	Gen NEX	0,0363	150	0,0629	150	
Gen NEX	PLN NEX	0,3696	150	0,3631	150	
	Gen NEX	6,64x10 ⁻⁸	150	1,21x10 ⁻⁷	150	
	PLN NEX	0,4202	150	0,5541	150	
IF NEX	Gen NEX	0,4217	150	0,5606	150	
4F NEX	PLN NEX	0,5615	150	0,6366	150	
	Gen NEX	0,3040	150	0,4366	150	

Tabel 4.48 Perbandingan stabilitas tegangan dalam berbagai letak gangguan

Sumber : Hasil simulasi

Dari data pada tabel 4.48 terlihat perbedaan antara penurunan tegangan ketika sistem diinterkoneksi dan sebelum diinterkoneksi pada saat terjadi gangguan. Penurunan tegangan pada saat sebelum diinterkoneksi lebih besar dibandingkan dengan penurunan tegangan pada saat sistem telah diinterkoneksi. Gangguan yang mengakibatkan penurunan tegangan terbesar ialah gangguan yang terjadi pada salah satu bus yang bersumber dari PLN dimana sumber ini memiliki kapasitas pembangkit yang jauh lebih besar jika dibandingkan dengan kapasitas pembangkit dari generator. Gangguan yang terjadi pada salah satu bus tersebut, mengakibatkan tegangan bus menurun hingga mencapai kurang dari 0,1 p.u. selama gangguan terjadi.

Durasi gangguan baik pada saat sebelum dan setelah interkoneksi ialah selama 150 milidetik dan tegangan dapat kembali ke operasi normal setelah gangguan dihilangkan dari sistem. Sehingga tegangan sistem baik setelah dan sebelum interkoneksi dengan berbagai letak gangguan masih dalam kondisi yang stabil.

4.7 Simulasi Pengaruh *TG* dan *AVR* terhadap Stabilitas Sistem Daya Interkoneksi

Pada pembahasan ini akan dilakukan simulasi pengaruh penggunaan dari *TG* (*Turbine Gorvernor*) dan *AVR* (*Automatic Voltage Regulator*) terhadap stabilitas sudut rotor pada sistem interkoneksi. Simulasi ini dilakukan dengan melepas *TG* dan atau *AVR* pada salah satu generator. Kemudian dianalisis pengaruh *TG* dan *AVR* pada sistem yang menggunakan *TG* dan atau *AVR* dengan sistem yang tidak menggunakannya. Hal ini dimaksudkan untuk mengetahui stabilitas sudut rotor apabila *TG* dan atau *AVR* tidak bekerja. Simulasi ini dilakukan dengan letak gangguan ada di bus PLN NE dengan objek pembahasan sdut rotor pada bus Gen NE dan bus Gen NEX

BRAWIJAYA

Gambar 4.42 menunjukkan grafik sudut rotor pada generator PT.Ajinomoto Indonesia. Sedangkan gambar 4.43 menunjukkan grafik sudut rotor pada generator PT.Ajinex Internasional. Terlihat pada kedua gambar jika generator yang dilengkapi dengan *TG* dan *AVR* maupun yang dilengkapi dengan *TG* saja membutuhkan waktu yang relatif lebih cepat jika dibandingkan dengan generator yang tidak menggunakan *TG*. Berdasarkan uraian dari kedua gambar tersebut, dijelaskan bahwa *TG* sangat berpengaruh pada pengaturan generator setelah terjadi gangguan,sedangkan *AVR* tidak berpengaruh terhadap stabilitas sudut rotor generator.

4.8 Waktu Pemutus Kritis

Untuk mengetahui waktu pemutus kritis pada sistem daya di PT.Ajinomoto Indonesia dan PT.Ajinex Internasional *Mojokerto Factory* sebelum dan setelah interkoneksi, dapat dilakukan dengan cara *trial and error* dengan mengubah – ubah nilai waktu gangguan. Dalam hal ini akan dilakukan simulasi stabilitas dengan durasi 0,15 : 0,2 ; dan waktu gangguan ketika sudut rotor generator mengalami lepas sinkron.

Gambar 4.44 Grafik sudut rotor = f(t) pada gen PLN NE dan Gen NE sebelum interkoneksi Sumber : Hasil simulasi

Gambar 4.45 Grafik sudut rotor = f(t) pada gen PLN NEX dan Gen NEX sebelum interkoneksi Sumber : Hasil simulasi

Pada gambar 4.33 menunjukkan bahwa generator PT.Ajinomoto akan mengalami lepas sinkron pada gangguan yang berlangsung selama 0,243 detik. Sedangkan generator PT.Ajinex Internasional sesuai gambar 4.45 mengalami lepas sinkron pada gangguan yang berlangsung selama 0,251 detik sesuai dengan gambar 4.45.

BRAWIJAYA

Kemudian akan disimulasikan waktu pemutus kritis pada saat sistem telah diinterkoneksi. Hasil simulasi ditunjukkan pada gambar 4.46 dan gambar 4.47.

Gambar 4.46 Grafik sudut rotor = f(t) pada gen PLN NE dan Gen NE setelah interkoneksi Sumber : Hasil simulasi

Gambar 4.47 Grafik sudut rotor = f(t) pada gen PLN NEX dan Gen NEX setelah interkoneksi Sumber : Hasil simulasi

Dari hasil simulasi pemutus kritis pada PT.Ajinomoto Indonesia setelah interkoneksi sesuai dengan gambar 4.46, terlihat jika generator PT.Ajinomoto akan mengalami lepas sinkron pada gangguan selama 0,261 detik dan generator PT.Ajinex Internasional mengalami lepas sinkron saat terjadi gangguan selama 0,271 detik sesuai dengan gambar 4.47.

Berdasarkan data grafik diatas, terlihat jika sudut pemutus kritis pada sistem yang telah diinterkoneksi memiliki waktu yang lebih lama jika dibandingkan dengan waktu pemutus kritis pada sistem yang belum diinterkoneksi.

-

NERS

BRAWIJA

BAB V PENUTUP

5.1 Kesimpulan

Berdasarkan permasalahan yang dibahas serta mengacu pada hasil simulasi dan analisis, maka dapat diambil beberapa kesimpulan, yaitu:

- 1. Pada saat kondisi sebelum interkoneksi, baik sistem daya di PT.Ajinomoto Indonesia maupun sistem daya di PT.Ajinex Internasional *Mojokerto Factory* menunjukkan sistem masih dalam kondisi stabil dengan berbagai skenario letak gangguan. Hal tersebut terlihat dari kondisi tegangan dan sudut rotor yang dapat kembali ke operasi normalnya setelah sistem mengalami gangguan.
- 2. Pada saat sistem dalam kondisi interkoneksi, *drop* tegangan pada saat terjadi gangguan lebih kecil jika dibandingkan dengan *drop* tegangan pada saat sistem masih dalam kondisi belum diinterkoneksi. Sistem setelah interkoneksi menunjukkan kondisi tegangan dan sudut rotor dapat kembali ke operasi normalnya setelah mengalami gangguan.
- 3. Generator yang dilengkapi dengan *turbine governor* dapat kembali ke kondisi sinkron lebih cepat jika dibandingkan dengan generator yang tidak dilengkapi dengan *turbine governor*.
- 4. Waktu pemutus kritis generator pada sistem yang telah diinterkoneksi lebih lama jika dibandingkan dengan waktu pemutus kritis pada sistem sebelum diinterkoneksi. Pada saat kondisi sebelum interkoneksi, generator pada PT.Ajinomoto Indonesia akan mengalami lepas sinkron pada gangguan yang terjadi selama 0,243 detik sedangkan generator PT.Ajinex Internasional mengalami lepas sinkron pada gangguan yang berlangsung selama 0,251 detik. Sedangkan pada kondisi interkoneksi, generator akan lepas sinkron pada gangguan selama 0,261 detik.

5.2 Saran

Dengan diketahuinya analisis stabilitas sistem daya di PT.Ajinomoto Indonesia dan PT.Ajinex Internasional *Mojokerto Factory* pada saat sebelum dan setelah interkoneksi, maka perlu dilakukan kajian lebih mendalam mengenai penerapan interkoneksi sistem daya oleh perusahaan. Perlu dilakukan kajian terhadapa sistem proteksi apabila dilakukan interkoneksi pada sistem daya tersebut.

92

DAFTAR PUSTAKA

- Arrillaga, J. & Arnold, C.P. 1990. *Computer Analysis of Power Systems*. Chichester : John Wiley & Sons Ltd.
- Cekdin, Cekmas. 2010. Sistem Tenaga Listrik-Contoh Soal dan Penyelesaian Menggunakan Matlab. Yogyakarta : Andi.
- Grainger, John J. & Stevenson, William D. 1994. Power System Analysis. Singapore : McGraw-Hill.
- Grigsby, Leonard L. 2007. *Power System Stability and Control.* New York : Taylor & Francis Group, LLC.
- IEEE-CIGRE Joint Task Force on Stability Terms and Definitions (Kundur, P., Paserba, J., Ajjarapu, V., Andersson, G., Bose, A., Can⁻izares, C., Hatziargyriou, N., Hill, D., Stankovic, A., Taylor, C., Van Cutsem, T., and Vittal, V.). 2004. *Definition* and Classification of Power System Stability. IEEE Transactions on Power Systems.
- IEEE Std 446.1995. Nichols, Neil dkk. *IEEE Recommended Practice for Emergency* and Standby Power Systems for Industrial and Commercial Applications. New York : The Institute of Electrical and Electronics Engineers, Inc.
- Kundur, P. 1994. Power System Stability and Control. New York : McGraw-Hill.
- Natarajan, Ramasamy. 2002. Computer-Aided Power System Analysis. New York : Marcel Dekker, Inc.
- Robert, H.Milner & James, H.Malinowski. 1994. *Power System Operation*. New York : McGraw-Hill.
- Rotbi, Risqi. 2011. Analisis Stabilitas Interkoneksi Sistem Daya Terminal Santan Chevron Kalimantan Operation. Jurusan Teknik Elektro, Fakultas Teknik, Universitas Brawijaya, Malang.

Saadat, Hadi. 1999. Power System Analysis. New York : McGraw-Hill.

Sheldrake, Alan. L. 2003. *Handbook of Electrical Engineering (For Practitioners in the Oil, Gas, and Petrochemical Industry)*. Chichester : John Wiley & Sons Ltd.

LAMPIRAN

Lampiran 1

1

	Data	generator	di PT.	Aiinomoto	Indonesia	Mo	iokerto	Factor	·v
•	Data	Souch	WI I I I I	I III OIII OCO	maomobia	1110	10100100	I werer	

0	5	
S	8500	kVA
V	3450	V
BI	1423	A
n	1500	Rpm
F	50	Hz
p.f	0,8	Lagging
Phase	251-3	DRA
Poles	4	

Sumber : PT. Ajinomoto Indonesia Mojokerto Factory

2. Data transformator di PT.Ajinomoto Indonesia Mojokerto Factory

Ratings	Trafo PT. Ajinomoto Indonesia				
primary voltage	72	kV			
secondary voltage		kV			
Rated Freq.	50	Hz			
Number of phase					
Capacity	18000	kVA			
Standart	(C) IEC - 76				
Impedance	9,16	%			
Cooling method	ONAN				
	ONAF in Future				
Connection	Primary winding – Delta				
	Secondary winding - Wye with neutral				

Sumber : PT. Ajinomoto Indonesia Mojokerto Factory
Lampiran 2

1. Data generator di	PT. Ajinex Internasion	al
S	7500	kVA
V	3450	V
I	1256	A
n	1500	Rpm
F	50	Hz
p.f	0,8	Lagging
Phase	3	
Poles		Rb.

Sumber : PT. Ajinomoto Indonesia Mojokerto Factory

2. Data transformator di PT.Ajinex Internasional

Ratings	5	Trafo PT. Ajinomoto Indonesia	
primary voltage	M I	72	kV
secondary voltage		3,45	kV
Rated Freq.		50	Hz
Number of phase		3	
Capacity	F F 5	12000	kVA
Standart	\mathcal{J}	IEC – 76	
Impedance		8,6	%
Cooling method		ONAN	
	Y	ONAF in Future	
Connection	Primary winding – Delta		
		Secondary winding - Wye with neu	ıtral

4

OD

Sumber : PT. Ajinomoto Indonesia Mojokerto Factory

PT. Ajino	moto	PT. Ajinex			
BUS	Panjang (m)	BUS	Panjang (m)		
PLN – Gen NE	775	PLN – Gen NEX	765		
PLN – 1F NE	600	PLN – 1F NEX	750		
1F NE– Load 1	200	1F NEX– Load 1	700		
1F NE– Load 2	350	1F NEX– Load 2	500		
1F NE– Load 3	250	1F NEX– Load 3	550		
PLN – 2F NE	600	PLN – 3F NEX	700		
2F NE– Load 1	400	PLN – 5F NEX	1050		
2F NE– Load 2	335	5F NEX– Load 1	920		
2F NE– Load 3	280	5F NEX– Load 2	700		
2F NE– Load 4	250	Gen NEX – 2F NEX	50		
2F NE– Load 5	280	2F NEX– Load 1	100		
PLN – 3F NE	600	2F NEX-Load 2	50		
3F NE– Load 1	450	Gen NEX – 4F NEX	700		
3F NE– Load 2	300	4F NEX– Load 1	600		
3F NE– Load 3	435	4F NEX– Load 2	550		
3F NE– Load 4	210	4F NEX-Load 3	450		
PLN – 5F NE	200	4F NEX– Load 4	630		
Gen NE – 4F NE	600	4F NEX– Load 5	500		
Gen NE – 6F NE	20 20	Gen NEX – 6F NEX	100		
Gen NE – 7F NE	205	6F NEX– Load 1	90		
7F NE– Load 1	200	6F NEX– Load 2	120		
7F NE– Load 2	190	Gen NEX – 8F	20		
7F NE– Load 3	200				
Gen NE – 8F NE	200				

Lampiran 3 Data panjang saluran PT. Ajinomoto dan PT. Ajinex

Sumber : PT. Ajinomoto Indonesia Mojokerto Factory

Luas Per (m	nampang m ²)	Resistansi (ohr	Konduktor n/km)	Indul (mH	ktansi /km)	Arus Ma	iksimum A)
Single core	Three core	Single core	Three core	Single core	Three core	Single core	Three core
25	25	0,727	0,727	0,43	0,346	191	135
35	35	0,524	0,524	0,408	0,331	231	175
50	50	0,268	0,387	0,39	0,319	277	208
70	70	0,193	0,268	0,367	0,303	345	259
95	95	0,153	0,193	0,349	0,291	418	316
120	120	0,193	0,153	0,337	0,283	481	363
150	150	0,124	0,124	0,331	0,277	537	414
185	185	0,0991	0,0991	0,318	0,269	612	474
240	240	0,0754	0,0754	0,306	0,26	716	558
300	300	0,0601	0,0601	0,296	0,254	811	634
400	400	0,047	0,047	0,288	0,248	901	766
500	ŀ	0,0366		0,28	<u>}</u> -	1006	
630		0,0283		0,28	1.A	1088	
800	-	0,0221		0,272	\Box	1210	-

Lampiran 4 Karakteristik kabel

Sumber : IEC 502-2 dan IEC 60502

Lampiran 5. Data dinamik generator

TIPICAL		GEN NE	GEN NEX
MVA	8,5	8,5	7,5
KV	3,4500	3,45	3,45
н	6,0000	6,0000	6,0000
D	0,0000	0,0000	0,0000
Xd	1,9000	1,9000	1,6765
Xq	1,8000	1,8000	1,5882
Xd'	0,2800	0,2800	0,2471
Xq'	0,4100	0,4100	0,3618
Xd''	0,1150	0,1150	0,1015
Xq''	0,1150	0,1150	0,1015
Tdo'	4,8000	4,8000	4,8000
Tdo''	0,0350	0,0350	0,0350
Tqo'	0,4500	0,4500	0,4500
Тqo''	0,0600	0,0600	0,0600
XI	0,0950	0,0950	0,0838

Lampiran 6 Diagram segaris PT Ajinomoto Indonesia

repo

	(ASA)	Panjang	D-A	R	L					R
Dari	Ke	(m)	A (mm2)	(ohm/Km)	(mH/Km)	R (ohm)	L (mH)	XL (ohm)	R (pu)	X(pu)
PLN	PLTGU	775	500	0,0366	0,28	0,028365	0,217	0,068138	0,042896	0,103044
PLN	1 <mark>F</mark> NE	600	400	0,047	0,248	0,0282	0,1488	0,0467232	0,021323	0,035329
PLN	2F NE	600	400	0,047	0,248	0,0282	0,1488	0,0467232	0,021323	0,035329
PLN	<mark>3F</mark> NE	600	400	0,047	0,248	0,0282	0,1488	0,0467232	0,021323	0,035329
PLN	<mark>5F</mark> NE	200	400	0,047	0,248	0,0094	0,0496	0,0155744	0,007108	0,011776
PLTGU	4F NE	600	240	0,0754	0,26	0,04524	0,156	0,048984	0,034208	0,037039
PLTGU	6F NE	20	240	0,0754	0,26	0,001508	0,0052	0,0016328	0,001140	0,001235
PLTGU	7F NE	205	240	0,0754	0,26	0,015457	0,0533	0,0167362	0,011688	0,012655
PLTGU	8F NE	200	240	0,0754	0,26	0,01508	0,052	0,016328	0,011403	0,012346
	Load 1	200	240	0,0754	0,26	0,01508	0,052	0,016328	0,011403	0,012346
1F NE	Load 2	350	240	0,0754	0,26	0,02639	0,091	0,028574	0,019955	0,021606
	Load 3	250	240	0,0754	0,26	0,01885	0,065	0,02041	0,014253	0,015433
	Load 1	400	240	0,0754	0,26	0,03016	0,104	0,032656	0,022805	0,024693
	Load 2	335	240	0,0754	0,26	0,025259	0,0871	0,0273494	0,019099	0,020680
2F NE	Load 3	280	240	0,0754	-0,26	0,021112	0,0728	0,0228592	0,015964	0,017285
	Load 4	250	240	0,0754	0,26	0,01885	0,065	0,02041	0,014253	0,015433
	Load 5	280	240	0,0754	0,26	0,021112	0,0728	0,0228592	0,015964	0,017285
	Load 1	450	240	0,0754	0,26	0,03393	0,117	0,036738	0,025656	0,027779
3F NE	Load 2	300	240	0,0754	0,26	0,02262	0,078	0,024492	0,017104	0,018519
	Load 3	435	240	0,0754	0,26	0,032799	0,1131	0,0355134	0,024801	0,026853
	Load 4	210	240	0,0754	0,26	0,015834	0,0546	0,0171444	0,011973	0,012964
	Load 1	200	240	0,0754	0,26	0,01508	0,052	0,016328	0,011403	0,012346
7F NE	Load 2	190	240	0,0754	0,26	0,014326	0,0494	0,0155116	0,010833	0,011729
	Load 3	200	240	0,0754	0,26	0,01508	0,052	0,016328	0,011403	0,012346

Lampiran 8 Perhitungan impedansi saluran PT.Ajinomoto Indonesia *Mojokerto Factory*

repo

	1225	Panjang		R	L					
Dari	<mark>Ke</mark>	(m)	A (mm ²)	(ohm/Km)	(mH/Km)	R (ohm)	L (mH)	XL (ohm)	R (pu)	X(pu)
PLN	PLTGU	765	500	0,0366	0,28	0,027999	0,2142	0,0672588	0,042343	0,101715
PLN	1F NEX	750	240	0,0754	0,26	0,05655	0,195	0,06123	0,042760	0,046299
PLN	<mark>3F</mark> NEX	700	240	0,0754	0,26	0,05278	0,182	0,057148	0,039909	0,043212
PLN	5F NEX	1050	240	0,0754	0,26	0,07917	0,273	0,085722	0,059864	0,064818
PLTGU	<mark>2F</mark> NEX	50	240	0,0754	0,26	0,00377	0,013	0,004082	0,002851	0,003087
PLTGU	<mark>4F</mark> NEX	700	240	0,0754	0,26	0,05278	0,182	0,057148	0,039909	0,043212
PLTGU	6F NEX	100	240	0,0754	0,26	0,00754	0,026	0,008164	0,005701	0,006173
PLTGU	8F NEX	20	240	0,0754	0,26	0,001508	0,0052	0,0016328	0,001140	0,001235
	Load 1	700	240	0,0754	0,26	0,05278	0,182	0,057148	0,079819	0,086424
1F NEX	Load 2	500	240	0,0754	0,26	0,0377	0,13	0,04082	0,057013	0,061732
	Load 3	550	240	0,0754	0,26	0,04147	0,143	0,044902	0,062715	0,067905
5F NEX	Load 1	920	240	0,0754	0,26	0,069368	0,2392	0,0751088	0,104904	0,113586
	Load 2	700	240	0,0754	0,26	0,05278	0,182	0,057148	0,079819	0,086424
2F NEX	Load 1	100	240	0,0754	0,26	0,00754	0,026	0,008164	0,011403	0,012346
	Load 2	50	240	0,0754	0,26	0,00377	0,013	0,004082	0,005701	0,006173
	Load 1	600	240	0,0754	0,26	0,04524	0,156	0,048984	0,068416	0,074078
	Load 2	550	240	0,0754	0,26	0,04147	0,143	0,044902	0,062715	0,067905
4F NEX	Load 3	450	240	0,0754	0,26	0,03393	0,117	0,036738	0,051312	0,055558
	Load 4	630	240	0,0754	0,26	0,047502	0,1638	0,0514332	0,071837	0,077782
	Load 5	500	240	0,0754	0,26	0,0377	0,13	0,04082	0,057013	0,061732
6F NEX	Load 1	90	240	0,0754	0,26	0,006786	0,0234	0,0073476	0,010262	0,011112
	Load 2	120	240	0,0754	0,26	0,009048	0,0312	0,0097968	0,013683	0,014816

101

Lampiran 9 Perhitungan impedansi saluran PT.Ajinex Internasional

Lampiran 10

%Data pada bus gen zg2=0.001+j*0.115;

%Data impedansi saluran PLN-PLTGU
zs=0.042896+j*0.103044;

%Data pada bus 1F NE z1=0.021323+j*0.035329; z111=0.011403+j*0.012346; z112=0.019955+j*0.021606; z113=0.014253+j*0.015433;

%Data pada bus 2F NE z2=0.021323+j*0.035329; z211=0.022805+j*0.024693; z212=0.019099+j*0.020680; z213=0.015964+j*0.017285; z214=0.014253+j*0.015433; z215=0.015964+j*0.017285;

%Data pada bus 3F NE z3=0.021323+j*0.035329; z3l1=0.025656+j*0.027779; z3l2=0.017104+j*0.018519; z3l3=0.024801+j*0.026853; z3l4=0.011973+j*0.012964;

%Data pada bus 5F NE z5=0.007108+j*0.011776;

%Data pada bus 4F NE z4=0.034208+j*0.037039;

%Data pada bus 6F NE z6=0.001140+j*0.001235;

%Data pada bus 7F NE z7=0.011688+j*0.012655; z711=0.011403+j*0.012346; z712=0.010833+j*0.011729; z713=0.011403+j*0.012346;

%Data pada bus 8F NE z8=0.011403+j*0.012346;

%Admitansi bersama = y12=-1/zs; y13=-1/z1; RAWIUAL

y14 = -1/z6;y15=-1/z2; y16=-1/z3; y17 = -1/z5;y21=y12; $y^{28}=-1/z4;$ y29 = -1/z7;y210=-1/z8; y31=y13; y311=-1/z111; y312=-1/z112; y313=-1/z113; y41=y14; y51=y15; y514=-1/z211; y515=-1/z212; y516=-1/z213; y517=-1/z214; y518=-1/z215; y61=y16; y619=-1/z311; y620=-1/z312; y621=-1/z313; y622=-1/z314; y71=y17; y82=y28; y92=y29; y923=-1/z711; y924=-1/z712; y925=-1/z713; y102=y210; y113=y311; y123=y312; y133=y313; y145=y514; y155=y515; y165=y516; y175=y517; y185=y518; y196=y619; y206=y620; y216=y621; y226=y622; y239=y923; v249=v924; y259=y925;

%Admitansi sendiri y11=1/zg+1/zs+1/z1+1/z6+1/z2+1/z3+1/z5; y22=1/zg2+1/zs+1/z4+1/z7+1/z8; y33=1/z1+1/z111+1/z112+1/z113; y44=1/z6; y55=1/z2+1/z211+1/z212+1/z213+1/z214+1/z215; y66=1/z3+1/z311+1/z312+1/z313+1/z314; y77=1/z5; y88=1/z4; y99=1/z7+1/z711+1/z712+1/z713; y1010=1/z8; y1111=1/z111; y1212=1/z112; y1313=1/z113;

AS BRAWIU

2. Hasil perhitungan impedansi rel dalam perhitungan gangguan

Matriks impedansi rel sistem

zrel =

Columns 1 through 3

0.0067866 +	0.065381i	-0.0029374 + 0.03386i	0.0067866 + 0.065381i
-0.0029374 +	0.03386i	0.0069228 + 0.073416i	-0.0029374 + 0.03386i

0.0067866 + 0.065381i	-0.0029374 + 0.03386i	0.02811 + 0.10071i
0.0067866 + 0.065381i	-0.0029374 + 0.03386i	0.0067866 + 0.065381i
0.0067866 + 0.065381i	-0.0029374 + 0.03386i	0.0067866 + 0.065381i
0.0067866 + 0.065381i	-0.0029374 + 0.03386i	0.0067866 + 0.065381i
0.0067866 + 0.065381i	-0.0029374 + 0.03386i	0.0067866 + 0.065381i
-0.0029374 + 0.03386i	0.0069228 + 0.073416i	-0.0029374 + 0.03386i
-0.0029374 + 0.03386i	0.0069228 + 0.073416i	-0.0029374 + 0.03386i
-0.0029374 + 0.03386i	0.0069228 + 0.073416i	-0.0029374 + 0.03386i
0.0067866 + 0.065381i	-0.0029374 + 0.03386i	0.02811 + 0.10071i
0.0067866 + 0.065381i	-0.0029374 + 0.03386i	0.02811 + 0.10071i
0.0067866 + 0.065381i	-0.0029374 + 0.03386i	0.02811 + 0.10071i
0.0067866 + 0.065381i	-0.0029374 + 0.03386i	0.0067866 + 0.065381i
0.0067866 + 0.065381i	-0.0029374 + 0.03386i	0.0067866 + 0.065381i
0.0067866 + 0.065381i	-0.0029374 + 0.03386i	0.0067866 + 0.065381i
0.0067866 + 0.065381i	-0.0029374 + 0.03386i	0.0067866 + 0.065381i
0.0067866 + 0.065381i	-0.0029374 + 0.03386i	0.0067866 + 0.065381i
0.0067866 + 0.065381i	-0.0029374 + 0.03386i	0.0067866 + 0.065381i
0.0067866 + 0.065381i	-0.0029374 + 0.03386i	0.0067866 + 0.065381i
0.0067866 + 0.065381i	-0.0029374 + 0.03386i	0.0067866 + 0.065381i
0.0067866 + 0.065381i	-0.0029374 + 0.03386i	0.0067866 + 0.065381i
-0.0029374 + 0.03386i	0.0069228 + 0.073416i	-0.0029374 + 0.03386i
-0.0029374 + 0.03386i	0.0069228 + 0.073416i	-0.0029374 + 0.03386i
-0.0029374 + 0.03386i	0.0069228 + 0.073416i	-0.0029374 + 0.03386i
Columns 4 through 6		
$0.0067866 \pm 0.065381i$	0.0067866 + 0.065381i	0.0067866 + 0.065381i

С

0.0067866 +	0.065381i
-0.0029374 +	0.03386i
0.0067866 +	0.065381i
0.0079266 +	0.066616i
0.0067866 +	0.065381i
0.0067866 +	0.065381i
0.0067866 +	0.065381i
-0.0029374 +	0.03386i
-0.0029374 +	0.03386i
-0.0029374 +	0.03386i
0.0067866 +	0.065381i

0.0067866 + 0.065381i
-0.0029374 + 0.03386i
0.0067866 + 0.065381i
0.0067866 + 0.065381i
0.02811 + 0.10071i
0.0067866 + 0.065381i
0.0067866 + 0.065381i
0.0029374 + 0.03386i
0.0029374 + 0.03386i
0.0029374 + 0.03386i
0.0067866 + 0.065381i

0.0067866 +	0.065381i
-0.0029374 +	0.03386i
0.0067866 +	0.065381i
0.0067866 +	0.065381i
0.0067866 +	0.065381i
0.02811 + 0.	10071i
0.0067866 +	0.065381i
-0.0029374 +	0.03386i
-0.0029374 +	0.03386i
-0.0029374 +	0.03386i
0.0067866 +	0.065381i

0.0067866 +	0.065381i	0.0067866 + 0.065381i	0.0067866 + 0.065381i
0.0067866 +	0.065381i	0.0067866 + 0.065381i	0.0067866 + 0.065381i
0.0067866 +	0.065381i	0.02811 + 0.10071i	0.0067866 + 0.065381i
0.0067866 +	0.065381i	0.02811 + 0.10071i	0.0067866 + 0.065381i
0.0067866 +	0.065381i	0.02811 + 0.10071i	0.0067866 + 0.065381i
0.0067866 +	0.065381i	0.02811 + 0.10071i	0.0067866 + 0.065381i
0.0067866 +	0.065381i	0.02811 + 0.10071i	0.0067866 + 0.065381i
0.0067866 +	0.065381i	0.0067866 + 0.065381i	0.02811 + 0.10071i
0.0067866 +	0.065381i	0.0067866 + 0.065381i	0.02811 + 0.10071i
0.0067866 +	0.065381i	0.0067866 + 0.065381i	0.02811 + 0.10071i
0.0067866 +	0.065381i	0.0067866 + 0.065381i	0.02811 + 0.10071i
-0.0029374 +	0.03386i	-0.0029374 + 0.03386i	-0.0029374 + 0.03386i
-0.0029374 +	0.03386i	-0.0029374 + 0.03386i	-0.0029374 + 0.03386i
-0.0029374 +	0.03386i	-0.0029374 + 0.03386i	-0.0029374 + 0.03386i

0.0067866 +	0.065381i	-0.0029374 +	0.03386i	-0.0029374 +	0.03386i
-0.0029374 +	0.03386i	0.0069228 +	0.073416i	0.0069228 + 0	0.073416i
0.0067866 +	0.065381i	-0.0029374 +	0.03386i	-0.0029374 +	0.03386i
0.0067866 +	0.065381i	-0.0029374 +	0.03386i	-0.0029374 +	0.03386i
0.0067866 +	0.065381i	-0.0029374 +	0.03386i	-0.0029374 +	0.03386i
0.0067866 +	0.065381i	-0.0029374 +	0.03386i	-0.0029374 +	0.03386i
0.013895 +	0.077157i	-0.0029374 +	0.03386i	-0.0029374 +	0.03386i
-0.0029374 +	0.03386i	0.041131 + 0	0.11046i	0.0069228 + 0	0.073416i
-0.0029374 +	0.03386i	0.0069228 +	0.073416i	0.018611 + 0.	.086071i
-0.0029374 +	0.03386i	0.0069228 +	0.073416i	0.0069228 + 0	0.073416i
0.0067866 +	0.065381i	-0.0029374 +	0.03386i	-0.0029374 +	0.03386i
0.0067866 +	0.065381i	-0.0029374 +	0.03386i	-0.0029374 +	0.03386i
0.0067866 +	0.065381i	-0.0029374 +	0.03386i	-0.0029374 +	0.03386i
0.0067866 +	0.065381i	-0.0029374 +	0.03386i	-0.0029374 +	0.03386i
0.0067866 +	0.065381i	-0.0029374 +	0.03386i	-0.0029374 +	0.03386i
0.0067866 +	0.065381i	-0.0029374 +	0.03386i	-0.0029374 +	0.03386i
0.0067866 +	0.065381i	-0.0029374 +	0.03386i	-0.0029374 +	0.03386i
0.0067866 +	0.065381i	-0.0029374 +	0.03386i	-0.0029374 +	0.03386i
0.0067866 +	0.065381i	-0.0029374 +	0.03386i	-0.0029374 +	0.03386i

BRAWIJAYA

0.0067866 +	0.065381i	-0.0029374 + 0.0338	36i -0.0029374 +	- 0.03386i
0.0067866 +	0.065381i	-0.0029374 + 0.0338	36i -0.0029374 +	- 0.03386i
0.0067866 +	0.065381i	-0.0029374 + 0.0338	36i -0.0029374 +	- 0.03386i
-0.0029374 +	0.03386i	0.0069228 + 0.07341	l6i 0.018611 +	0.086071i
-0.0029374 +	0.03386i	0.0069228 + 0.07341	l 6i 0.018611 +	0.086071i
-0.0029374 +	0.03386i	0.0069228 + 0.07341	l 6i 0.018611 +	0.086071i

Columns 10 through 12

-0.0029374 + 0.03386i	0.0067866 + 0.065381i	0.0067866 + 0.065381i
0.0069228 + 0.073416i	-0.0029374 + 0.03386i	-0.0029374 + 0.03386i
-0.0029374 + 0.03386i	0.02811 + 0.10071i	0.02811 + 0.10071i
-0.0029374 + 0.03386i	0.0067866 + 0.065381i	0.0067866 + 0.065381i
-0.0029374 + 0.03386i	0.0067866 + 0.065381i	0.0067866 + 0.065381i
-0.0029374 + 0.03386i	0.0067866 + 0.065381i	0.0067866 + 0.065381i
-0.0029374 + 0.03386i	0.0067866 + 0.065381i	0.0067866 + 0.065381i
0.0069228 + 0.073416i	-0.0029374 + 0.03386i	-0.0029374 + 0.03386i
0.0069228 + 0.073416i	-0.0029374 + 0.03386i	-0.0029374 + 0.03386i
0.018326 + 0.085762i	-0.0029374 + 0.03386i	-0.0029374 + 0.03386i
-0.0029374 + 0.03386i	0.039513 + 0.11306i	0.02811 + 0.10071i
-0.0029374 + 0.03386i	0.02811 + 0.10071i	0.048065 + 0.12232i
-0.0029374 + 0.03386i	0.02811 + 0.10071i	0.02811 + 0.10071i
-0.0029374 + 0.03386i	0.0067866 + 0.065381i	0.0067866 + 0.065381i
-0.0029374 + 0.03386i	0.0067866 + 0.065381i	0.0067866 + 0.065381i
-0.0029374 + 0.03386i	0.0067866 + 0.065381i	0.0067866 + 0.065381i
-0.0029374 + 0.03386i	0.0067866 + 0.065381i	0.0067866 + 0.065381i
-0.0029374 + 0.03386i	0.0067866 + 0.065381i	0.0067866 + 0.065381i
-0.0029374 + 0.03386i	0.0067866 + 0.065381i	0.0067866 + 0.065381i
-0.0029374 + 0.03386i	0.0067866 + 0.065381i	0.0067866 + 0.065381i
-0.0029374 + 0.03386i	0.0067866 + 0.065381i	0.0067866 + 0.065381i
-0.0029374 + 0.03386i	0.0067866 + 0.065381i	0.0067866 + 0.065381i
0.0069228 + 0.073416i	-0.0029374 + 0.03386i	-0.0029374 + 0.03386i
0.0069228 + 0.073416i	-0.0029374 + 0.03386i	-0.0029374 + 0.03386i
0.0069228 + 0.073416i	-0.0029374 + 0.03386i	-0.0029374 + 0.03386i

BRAWIJAYA

Columns 13 through 15

0.0067866 + 0.065381i	0.0067866 + 0.065381i	0.0067866 + 0.065381i
-0.0029374 + 0.03386i	-0.0029374 + 0.03386i	-0.0029374 + 0.03386i
0.02811 + 0.10071i	0.0067866 + 0.065381i	0.0067866 + 0.065381i
0.0067866 + 0.065381i	0.0067866 + 0.065381i	0.0067866 + 0.065381i
0.0067866 + 0.065381i	0.02811 + 0.10071i	0.02811 + 0.10071i
0.0067866 + 0.065381i	0.0067866 + 0.065381i	0.0067866 + 0.065381i
0.0067866 + 0.065381i	0.0067866 + 0.065381i	0.0067866 + 0.065381i
-0.0029374 + 0.03386i	-0.0029374 + 0.03386i	-0.0029374 + 0.03386i
-0.0029374 + 0.03386i	-0.0029374 + 0.03386i	-0.0029374 + 0.03386i
-0.0029374 + 0.03386i	-0.0029374 + 0.03386i	-0.0029374 + 0.03386i
0.02811 + 0.10071i	0.0067866 + 0.065381i	0.0067866 + 0.065381i
0.02811 + 0.10071i	0.0067866 + 0.065381i	0.0067866 + 0.065381i
0.042363 + 0.11614i	0.0067866 + 0.065381i	0.0067866 + 0.065381i
0.0067866 + 0.065381i	0.050915 + 0.1254i	0.02811 + 0.10071i
0.0067866 + 0.065381i	0.02811 + 0.10071i	0.047209 + 0.12139i
0.0067866 + 0.065381i	0.02811 + 0.10071i	0.02811 + 0.10071i
0.0067866 + 0.065381i	0.02811 + 0.10071i	0.02811 + 0.10071i
0.0067866 + 0.065381i	0.02811 + 0.10071i	0.02811 + 0.10071i
0.0067866 + 0.065381i	0.0067866 + 0.065381i	0.0067866 + 0.065381i
0.0067866 + 0.065381i	0.0067866 + 0.065381i	0.0067866 + 0.065381i
0.0067866 + 0.065381i	0.0067866 + 0.065381i	0.0067866 + 0.065381i
0.0067866 + 0.065381i	0.0067866 + 0.065381i	0.0067866 + 0.065381i
-0.0029374 + 0.03386i	-0.0029374 + 0.03386i	-0.0029374 + 0.03386i
-0.0029374 + 0.03386i	-0.0029374 + 0.03386i	-0.0029374 + 0.03386i
-0.0029374 + 0.03386i	-0.0029374 + 0.03386i	-0.0029374 + 0.03386i

Columns 16 through 18

0	.0067866 +	0.065381i	0.0067866 +	0.065381i	0.0067866 +	0.065381i
-0	.0029374 +	0.03386i	-0.0029374 +	0.03386i	-0.0029374 +	0.03386
0	.0067866 +	0.065381i	0.0067866 +	0.065381i	0.0067866 +	0.065381i
0	.0067866 +	0.065381i	0.0067866 +	0.065381i	0.0067866 +	0.065381i
	0.02811 +	0.10071i	0.02811 + 0).10071i	0.02811 + 0	0.10071i
0	.0067866 +	0.065381i	0.0067866 +	0.065381i	0.0067866 +	0.065381i

0.0067866 + 0.065381i	0.0067866 + 0.065381i	0.0067866 + 0.065381i
-0.0029374 + 0.03386i	-0.0029374 + 0.03386i	-0.0029374 + 0.03386i
-0.0029374 + 0.03386i	-0.0029374 + 0.03386i	-0.0029374 + 0.03386i
-0.0029374 + 0.03386i	-0.0029374 + 0.03386i	-0.0029374 + 0.03386i
0.0067866 + 0.065381i	0.0067866 + 0.065381i	0.0067866 + 0.065381i
0.0067866 + 0.065381i	0.0067866 + 0.065381i	0.0067866 + 0.065381i
0.0067866 + 0.065381i	0.0067866 + 0.065381i	0.0067866 + 0.065381i
0.02811 + 0.10071i	0.02811 + 0.10071i	0.02811 + 0.10071i
0.02811 + 0.10071i	0.02811 + 0.10071i	0.02811 + 0.10071i
0.044074 + 0.11799i	0.02811 + 0.10071i	0.02811 + 0.10071i
0.02811 + 0.10071i	0.042363 + 0.11614i	0.02811 + 0.10071i
0.02811 + 0.10071i	0.02811 + 0.10071i	0.044074 + 0.11799i
0.0067866 + 0.065381i	0.0067866 + 0.065381i	0.0067866 + 0.065381i
0.0067866 + 0.065381i	0.0067866 + 0.065381i	0.0067866 + 0.065381i
0.0067866 + 0.065381i	0.0067866 + 0.065381i	0.0067866 + 0.065381i
0.0067866 + 0.065381i	0.0067866 + 0.065381i	0.0067866 + 0.065381i
-0.0029374 + 0.03386i	-0.0029374 + 0.03386i	-0.0029374 + 0.03386i
-0.0029374 + 0.03386i	-0.0029374 + 0.03386i	-0.0029374 + 0.03386i
-0.0029374 + 0.03386i	-0.0029374 + 0.03386i	-0.0029374 + 0.03386i
Columns 19 through 21		
0.0067866 + 0.065381i	0.0067866 + 0.065381i	0.0067866 + 0.065381i
-0.0029374 + 0.03386i	-0.0029374 + 0.03386i	-0.0029374 + 0.03386i
0.0067866 + 0.065381i	0.0067866 + 0.065381i	0.0067866 + 0.065381i
0.0067866 + 0.065381i	0.0067866 + 0.065381i	0.0067866 + 0.065381i
0.0067866 + 0.065381i	0.0067866 + 0.065381i	0.0067866 + 0.065381i
0.02811 + 0.10071i	0.02811 + 0.10071i	0.02811 + 0.10071i
0.0067866 + 0.065381i	0.0067866 + 0.065381i	0.0067866 + 0.065381i
-0.0029374 + 0.03386i	-0.0029374 + 0.03386i	-0.0029374 + 0.03386i
-0.0029374 + 0.03386i	-0.0029374 + 0.03386i	-0.0029374 + 0.03386i
-0.0029374 + 0.03386i	-0.0029374 + 0.03386i	-0.0029374 + 0.03386i
0.0067866 + 0.065381i	0.0067866 + 0.065381i	0.0067866 + 0.065381i

0.0067866 + 0.065381i

109

0.0067866 + 0.065381i	0.0067866 + 0.065381i	0.0067866 + 0.065381i
0.0067866 + 0.065381i	0.0067866 + 0.065381i	0.0067866 + 0.065381i
0.0067866 + 0.065381i	0.0067866 + 0.065381i	0.0067866 + 0.065381i
0.0067866 + 0.065381i	0.0067866 + 0.065381i	0.0067866 + 0.065381i
0.053766 + 0.12849i	0.02811 + 0.10071i	0.02811 + 0.10071i
0.02811 + 0.10071i	0.045214 + 0.11923i	0.02811 + 0.10071i
0.02811 + 0.10071i	0.02811 + 0.10071i	0.052911 + 0.12756i
0.02811 + 0.10071i	0.02811 + 0.10071i	0.02811 + 0.10071i
-0.0029374 + 0.03386i	-0.0029374 + 0.03386i	-0.0029374 + 0.03386i
-0.0029374 + 0.03386i	-0.0029374 + 0.03386i	-0.0029374 + 0.03386i
-0.0029374 + 0.03386i	-0.0029374 + 0.03386i	-0.0029374 + 0.03386i

Columns 22 through 24

Columns 22 through 24		
0.0067866 + 0.065381i	-0.0029374 + 0.03386i	-0.0029374 + 0.03386i
-0.0029374 + 0.03386i	0.0069228 + 0.073416i	0.0069228 + 0.073416i
0.0067866 + 0.065381i	-0.0029374 + 0.03386i	-0.0029374 + 0.03386i
0.0067866 + 0.065381i	-0.0029374 + 0.03386i	-0.0029374 + 0.03386i
0.0067866 + 0.065381i	-0.0029374 + 0.03386i	-0.0029374 + 0.03386i
0.02811 + 0.10071i	-0.0029374 + 0.03386i	-0.0029374 + 0.03386i
0.0067866 + 0.065381i	-0.0029374 + 0.03386i	-0.0029374 + 0.03386i
-0.0029374 + 0.03386i	0.0069228 + 0.073416i	0.0069228 + 0.073416i
-0.0029374 + 0.03386i	0.018611 + 0.086071i	0.018611 + 0.086071i
-0.0029374 + 0.03386i	0.0069228 + 0.073416i	0.0069228 + 0.073416i
0.0067866 + 0.065381i	-0.0029374 + 0.03386i	-0.0029374 + 0.03386i
0.0067866 + 0.065381i	-0.0029374 + 0.03386i	-0.0029374 + 0.03386i
0.0067866 + 0.065381i	-0.0029374 + 0.03386i	-0.0029374 + 0.03386i
0.0067866 + 0.065381i	-0.0029374 + 0.03386i	-0.0029374 + 0.03386i
0.0067866 + 0.065381i	-0.0029374 + 0.03386i	-0.0029374 + 0.03386i
0.0067866 + 0.065381i	-0.0029374 + 0.03386i	-0.0029374 + 0.03386i
0.0067866 + 0.065381i	-0.0029374 + 0.03386i	-0.0029374 + 0.03386i
0.0067866 + 0.065381i	-0.0029374 + 0.03386i	-0.0029374 + 0.03386i
0.02811 + 0.10071i	-0.0029374 + 0.03386i	-0.0029374 + 0.03386i
0.02811 + 0.10071i	-0.0029374 + 0.03386i	-0.0029374 + 0.03386i
0.02811 + 0.10071i	-0.0029374 + 0.03386i	-0.0029374 + 0.03386i
0.040083 + 0.11367i	-0.0029374 + 0.03386i	-0.0029374 + 0.03386i

-0.0029374 +	0.03386i	0.030014 +	0.098417i	0.018611 +	0.086071i
-0.0029374 +	0.03386i	0.018611 +	0.086071i	0.029444 +	0.0978i
-0.0029374 +	0.03386i	0.018611 +	0.086071i	0.018611 +	0.086071i

H

TAS BRAWIURL

Column 25

-0.0029374 +	0.03386i
0.0069228 +	0.073416i
-0.0029374 +	0.03386i
0.0069228 +	0.073416i
0.018611 +	0.086071i
0.0069228 +	0.073416i
-0.0029374 +	0.03386i
0.018611 +	0.086071i
0.018611 +	0.086071i
0.030014 +	0.098417