ANALISA FAKTOR INTENSITAS TEGANGAN AKIBAT PENGARUH VARIASI RASIO KEDALAMAN CHAMFERING PADA COUNTERSUNK RIVET HOLE DENGAN SIMULASI KOMPUTER

SKRIPSI Konsentrasi Teknik Konstruksi

Diajukan untuk memenuhi sebagian persyaratan memperoleh gelar Sarjana Teknik

4

Disusun Oleh : **GUGUH PRIHANDOKO** NIM. 0110620063-62

DEPARTEMEN PENDIDIKAN NASIONAL UNIVERSITAS BRAWIJAYA FAKULTAS TEKNIK JURUSAN MESIN MALANG 2006

KATA PENGANTAR

Puji syukur kami panjatkan kehadirat Allah SWT, karena dengan limpahan rahmat dan hidayah-Nya sehingga penyusun dapat menyelesaikan skripsi dengan judul "Analisa Faktor Intensitas Tegangan Akibat Pengaruh Variasi Rasio Kedalaman *Chamfering* pada *Countersunk Rivet Hole* dengan Simulasi Komputer" untuk memenuhi sebagian persyaratan akademik untuk mencapai gelar Sarjana Teknik.

Pada kesempatan ini penulis mengucapkan terima kasih dan penghargaan yang sebesar-besarnya kepada :

- Bapak Ir. Bambang Indrayadi, MT, selaku Ketua Jurusan Teknik Mesin Universitas Brawijaya.
- Bapak Ir. Djoko Sutikno, M.Eng, selaku Sekretaris Jurusan Universitas Brawijaya.
- Bapak Ir. Achmad As'ad Sonief, MT, selaku Ketua Kelompok Teknik Konstruksi.
- Bapak Ir. Bardji Hadi Pranoto, selaku Dosen Pembimbing I.
- Bapak Moch. Agus Choiron, ST, MT, selaku Dosen Pemimbing II.
- Semua Dosen Penguji Skripsi yang telah bersedia meluangkan waktu dan memberikan masukan ilmu kepada penulis.
- Semua pihak yang telah memberikan semangat dan dorongan selama penyusunan skripsi ini.

Penulis menyadari sepenuhnya bahwa skripsi ini jauh dari sempurna, untuk itu penulis mengharapkan kritik dan saran yang membangun bagi kesempurnaannya.

Akhirnya penulis berharap semoga skripsi ini dapat memberikan manfaat bagi semua. Amin.

Malang, 22 juni 2006

Penulis

DAFTAR ISI

			Halaman
KAT	TA PEN	GANTAR	i
DAF	TAR IS	SI	ii
DAF	TAR T	ABEL	iv
DAF	TAR G	AMBAR	v
DAF	TAR L	AMPIRAN	vi
RIN	GKASA		vii
I.	PEN	DAHULUAN SI AS BRA	1
	1.1	Latar Belakang	1
	1.2	Rumusan Masalah	2
	1.3	Batasan Masalah	2
	1.4	Tujuan Penelitian	3
	1.5	Manfaat Penelitian	3
II.	TIN.	JAUAN PUSTAKA	4
	2.1	Fatigue (Kelelahan)	4
	2.2	Linear Elastic Fracture Mechanic (LEFM)	4
	2.3	Mode Pembukaan Retak	6
	2.4	Pendekatan Faktor Intensitas Tegangan	6
	2.5	Sambungan Keling	8
	2.6	Gaya Pengencangan Paku Keling	8
	2.7	Distribusi Tegangan Pada Dinding Silinder Tipis	9
	2.8	Elemen Quadratic Hexahedral Isoparametrik	9
	2.9	Teknik Metode Elemen Hingga Untuk Fracture Mechanic	10
	2.10	Elliptical Corner Crack pada Straight Shank Hole	10
	2	2.10.1 Two Symetric Corner Crack	10
	2.11	Hipotesa	12

III.	METODE PENELITIAN	13
	3.1 Diagram Alir Penelitian	13
	3.2 Variabel Penelitian	15
	3.3 Permodelan	18
	3.3.1 Permodelan Verifikasi	18
	3.3.2 Permodelan Countersunk Rivet Hole	20
IV.	HASIL DAN PEMBAHASAN	23
	4.1 Hasil Perhitungan dan Pembahasan	23
	4.1.1 Tinjauan Verifikasi	23
	4.1.2 Tinjauan Countersunk Rivet Hole	26
V.	KESIMPULAN DAN SARAN	42
	5.1 Kesimpulan	42
	5.2 Saran	42
DAFT	TAR PUSTAKA	43
LAMI	PIRAN	44
	and the find an	

DAFTAR GAMBAR

No.		Judul	Halaman
Gambar	2.1	Daerah plastis diujung retak	5
Gambar	2.2	Tiga mode pembebanan retak	6
Gambar	2.3	Distribusi tegangan di sekitar ujung retak	7
Gambar	2.4	Pemasangan Countersunk Rivet	8
Gambar	2.5	Gaya tangensial pada dinding silinder tipis	9
Gambar	2.6	Elemen quadratic hexahedral isoparametric	10
Gambar	3.1	Langkah-langkah evaluasi Stress Intensity Factor	14
Gambar	3.2	Pembebanan pada <i>sheet</i> sambungan keling dan asumsi permukaan retak yang terjadi.	17
Gambar	3.3	Pembagian region <i>crack</i> yang terjadi	18
Gambar	3.4	Permodelan Sheet dengan lubang lurus.	18
Gambar	3.5	Pembagian volume dengan perintah VPTN	19
Gambar	3.6	Permodelan elemen singular pada ujung retak dengan	
		VSWEEP & CAR A SHARE S	19
Gambar	3.7	Hasil meshing secara keseluruhan	20
Gambar	3.8	Permodelan Countersunk Rivet Hole	21
Gambar	3.9	Pembagian volume dengan perintah VPTN	21
Gambar	3.10	Permodelan elemen singular pada ujung retak dengan	
		VSWEEP	22
Gambar	3.11	Hasil meshing secara keseluruhan	22

DAFTAR TABEL

No.	Judul	Halaman
Tabel 3.1	Variasi rasio kedalaman chamfering dan tebal sheet pada	
	Countersunk Rivet Hole	15
Tabel 3.2	Konfigurasi pembebanan pada Countersunk Rivet hole	15
Tabel 4.1	Perbandingan hasil perhitungan Faktor Intensitas Tegangan dengan <i>software</i> ANSYS dan rumusan analitis	25

DAFTAR LAMPIRAN

No.	Judul	Halaman
Lampiran A	Material Properties Aluminium Clad 2024-T3.	44
Lampiran B	Plot hasil distribusi tegangan di sekitar ujung retak dengan ANSYS 9.0.	45
Lampiran C	Data hasil perhitungan faktor intensitas tegangan (K).	54
Lampiran D	Listing Program ANSYS 9.0	67

RINGKASAN

GUGUH PRIHANDOKO, Jurusan Mesin, Fakultas Teknik Universitas Brawijaya, Juni 2006, Analisa Faktor Intensitas Tegangan akibat pengaruh variasi rasio kedalaman chamfering pada Countersunk Rivet Hole dengan simulasi komputer, Dosen Pembimbing : Ir. Bardji Hadi Pranoto dan Moch. Agus Choiron, ST, MT.

Besarnya kecenderungan suatu material untuk mengalami retak ditunjukkan oleh besarnya Faktor Intensitas Tegangan (K). Pada proses pemasangan paku keling, gaya pengencangan diberikan untuk menjaga agar tidak terjadi *sliding* antar *sheet* yang akan disambung. Gaya pengencangan pada paku keling jenis *Countersunk* akan mengakibatkan tekanan pada *chamfering area* yang besarnya tergantung dari kedalaman *chamfering* dari *Countersunk Rivet Hole* yang digunakan. Perlu adanya penelitian terhadap Faktor Intensitas Tegangan (K) pada *Countersunk Rivet Hole* akibat tekanan pada *chamfering area* yang dalam hal ini besarnya dipengaruhi oleh faktor kedalaman *chamfering* (h/t).

Tujuan dilakukan perhitungan harga K adalah untuk mengetahui bagaimana besar harga K dan hubungannya dengan variasi kedalaman *chamfering* dari *Countersunk Rivet Hole*.

Perhitungan dilakukan dengan metode simulasi yang memanfaatkan *software* ANSYS Rel. 9.0. Proses verifikasi dilakukan dengan membandingkan perhitungan K pada *elliptical crack* untuk kasus lubang lurus dengan ANSYS dan rumusan analitis. Kemudian dengan prosedur yang sama, dilakukan perhitungan K pada *elliptical crack* untuk kasus *Countersunk Rivet Hole*.

Setelah dilakukan perhitungan K didapatkan kecenderungan bahwa harga K paling besar terjadi pada posisi *crack* paling jauh yaitu posisi 6, dan semakin berkurang seiring berkurangnya panjang retak. Hal ini berlaku untuk semua variasi tebal *sheet* dan rasio kedalaman *chamfering*. Sedangkan untuk hubungan antara rasio kedalaman *chamfering* dan K untuk semua variasi tebal *sheet* yaitu : pada posisi *crack* 1, 2, dan 3 harga K cenderung bertambah seiring dengan bertambahnya kedalaman *chamfering*, sedangkan pada posisi *crack* 4, 5, dan 6 harga K memiliki kecenderungan yang sama dengan posisi 1, 2, dan 3 hanya pada sudut $\theta = \theta_{maks}$, dan harga K berkurang seiring dengan bertambahnya rasio kedalaman *chamfering* pada sudut $\theta < \theta_{maks}$. Dan dari keseluruhan hubungan rasio kedalaman *chamfering* dan faktor intensitas tegangan didapatkan bahwa dengan bertambahnya rasio kedalaman *chamfering*, maka harga K akan semakin berkurang.

BAB I PENDAHULUAN

1.1 Latar Belakang

Dalam industri penerbangan, sambungan keling pada bodi pesawat sering digunakan karena sambungan keling biayanya relatif murah (<u>http://www.roymech.co.uk/Useful_Tables/Rivets.html</u>). Jenis sambungan keling yang digunakan pada bagian luar bodi pesawat adalah jenis *countersunk rivet* untuk menghasilkan permukaan yang halus sehingga tidak mengganggu aliran fluida yang melewati bodi pesawat (Christy, 1984).

Penggunaan sambungan keling akan mengakibatkan adanya konsentrasi tegangan yang besar pada lubang keling yang bisa menimbulkan munculnya *crack* pada daerah tersebut. Besarnya kecenderungan suatu material untuk mengalami *crack*, ditunjukkan oleh besarnya faktor intensitas tegangan. Penelitian tentang faktor intensitas tegangan pada sambungan keling sudah banyak dilakukan baik dengan metode eksperimen, simulasi maupun perhitungan analitis. Salah satu penelitian tentang faktor intensitas tegangan pada *countersunk rivet hole* adalah penelitian yang dilakukan oleh de Rijck dan Fawaz (2003). Dalam penelitian tersebut, mereka menulis tentang perhitungan faktor intensitas tegangan pada *countersunk rivet hole* dengan pembebanan yang dilakukan berupa beban tarik, dan bending.

Pada proses pemasangan paku keling, gaya pengencangan diberikan untuk menjaga agar tidak terjadi *sliding* antar *sheet* yang akan disambung. *Sliding* antar *sheet* pada daerah kontak akan menimbulkan adanya *fretting damage*. *Fretting damage* adalah kerusakan pada permukaan *sheet* yang mengalami kontak akibat adanya *sliding* antar *sheet* dan merupakan salah satu faktor yang dominan dalam perambatan retak. (<u>www.library.unsw.edu.au/~thesis/adt-ADFA/uploads/approved/adt-ADFA20050819</u>. <u>111957/public/03chapter2.pdf</u>).

Penggunaan *countersunk rivet hole* pada sambungan keling bervariasi terutama untuk masalah kedalaman *chamfering* (h/t). Akibat adanya *chamfering area* dari *countersunk rivet hole*, pada proses pemasangan paku keling dimana diberikan gaya pengencangan, akan timbul gaya tekan pada *chamfering area* tersebut. Dengan kedalaman *chamfering* yang berbeda, maka luas *chamfering area* juga berbeda. Sehingga dengan gaya pengencangan yang sama, besarnya tekanan pada *chamfering area* akan berbeda-beda sesuai dengan kedalaman *chamfering* yang digunakan.

Dengan latar belakang tersebut, perlu adanya penelitian terhadap Faktor intensitas tegangan pada *countersunk rivet hole* akibat tekanan pada *chamfering area* yang dalam hal ini besarnya dipengaruhi oleh faktor kedalaman *chamfering* (h/t) disamping pengaruh dari beban tarik dan beban bending.

1.2 Rumusan Masalah

Berdasarkan latar belakang diatas, maka dapat dirumuskan permasalahan yang akan diteliti, yaitu :

- 1. Bagaimana besar faktor intensitas tegangan dari variasi rasio kedalaman *chamfering* (h/t) sepanjang *crack front* pada *countersunk rivet hole* ?
- 2. Bagaimana hubungan antara variasi rasio kedalaman *chamfering* (h/t) dan faktor intensitas tegangan pada *countersunk rivet hole*?

1.3 Batasan Masalah

Untuk lebih memfokuskan masalah, maka dalam penelitian ini digunakan beberapa batasan antara lain :

- 1. Material sheet yang digunakan adalah Alumunium Clad 2024-T3
- 2. Permodelan untuk *chamfering rivet hole* dilakukan dengan ¹/₄ bagian karena kesimetrian model.
- 3. Jenis elemen yang digunakan adalah elemen isoparametrik 20 node tiga dimensi.
- 4. Material bersifat homogen dan isotropik.
- 5. Perhitungan faktor intensitas tegangan dalam masalah *Linear Elastic Fracture Mechanics*.
- 6. *Crack* yang terjadi diasumsikan berupa *elliptical corner crack* dan berupa *long crack*.
- 7. Tidak membahas pengaruh dari luar, seperti : korosi dan temperatur.

1.4 Tujuan Penelitian

Adapun tujuan penelitian ini adalah antara lain :

- 1. Untuk mengetahui bagaimana besar faktor intensitas tegangan dari variasi kedalaman *chamfering* (h/t) pada *countersunk rivet hole*.
- 2. Untuk mengetahui hubungan antara variasi kedalaman *chamfering* (h/t) dan faktor intensitas tegangan pada *countersunk rivet hole*.

1.5 Manfaat Penelitian

- 1. Dengan mengetahui besarnya faktor intensitas tegangan pada material, maka prediksi kelelahan pada material tersebut dapat dilakukan.
- 2. Sebagai pertimbangan dalam perencanaan konstruksi sambungan keling, terutama pada bodi pesawat.

3

BAB II TINJAUAN PUSTAKA

2.1. Fatigue (kelelahan)

Kelelahan pada logam dapat diartikan sebagai patahnya logam akibat pembebanan berulang dalam sejumlah siklus. Proses terjadinya kelelahan melalui tiga kejadian, yaitu :

- Naiknya tegangan pada daerah retak yang dapat menimbulkan adanya konsentrasi tegangan yang kemudian akan terjadi bentukan plastis. Kemudian akan terjadi retak mikro pada daerah tersebut.
- 2. Retak mikro berkembang dan jika pembebanan berulang diteruskan, retak akan merambat.
- 3. Setelah retak merambat cukup jauh, maka beban yang bekerja hanya akan didukung oleh penampang sisa yang belum retak dan akhirnya terjadi *final fracture*.

Pada dasarnya retak dibagi menjadi 3 tipe, yaitu

- 1. *Physically Short Crack*, pada tipe ini ukuran retakan lebih kecil bila dibandingkan dengan ukuran butiran
- 2. *Mechanically Short Crack*, retak yang merambat pada daerah plastis. Pada tipe ini, radius plastis lebih besar daripada panjang retak.
- 3. *Long Crack*, pada tipe ini panjang retak yang terjadi mempunyai ukuran jauh lebih panjang daripada radius plastis yang terbentuk pada ujung retak.

2.2. Linear Elastic Fracture Mechanic (LEFM)

Linear Elastic Fracture Mechanic (LEFM) telah digunakan secara luas sebagai alat analisis untuk memprediksi patah pada struktur. Diawali dengan penelitian Griffith (1920) tentang retak yang menyatakan retak akan merambat bila perambatannya menyebabkan berkurangnya jumlah energi dalam sistim. Pendekatan ini juga dikenal sebagai pendekatan keseimbangan energi pada retak. Perkembangan selanjutnya adanya medan tegangan singular untuk panjang retak yang mendekati nol (r = 0), mengembangkan pendekatan faktor intensitas tegangan (Irwin, 1948). Pendekatan ini

dapat menghitung faktor intensitas tegangan yang terjadi pada pada ujung retak. Dengan mengetahui faktor intensitas tegangan maka dapat diketahui terjadinya perambatan retak jika intensitas tegangan yang bekerja telah mencapai suatu harga intensitas tegangan kritis.

Penggunaan konsep LEFM dibatasi untuk kondisi tertentu yaitu digunakan untuk material yang isotropik dan linear elastis. Validitas penggunaan konsep ini di batasi dengan *small- scale yeilding* yaitu besarnya radius plastis yang terjadi jauh lebih kecil dibanding dengan panjang retak (gambar 2.1). Dapat di rumuskan sebagai berikut:

dengan:

- $K = Faktor intensitas tegangan (MPa\sqrt{m})$
- a = panjang retak (m)
- σ_y = tegangan luluh (MPa)
- $r_p = radius plastis (m)$

BRAWIJAYA

2.3. Mode Pembukaan Retak

Suatu retak pada padatan dapat dibebani dalam tiga mode berbeda seperti gambar 2.1 berikut.

Gambar 2.2 Tiga mode pembebanan retak. Sumber : Broek, 1989 : 8

Pada mode I (*Opening Mode*) beban bekerja tegak lurus pada bidang retak dan cenderung untuk membuka retak. Beban berupa gaya geser dalam bidang akan menyebabkan terjadinya mode II (*Shearing Mode*) dengan perambatan retak yang muncul sejajar dengan gaya-gaya utama penyebab keretakan. Sedangkan mode III (*Tearing Mode*) diakibatkan oleh gaya puntir yang keluar bidang struktur. Bentuk ketiga mode tersebut dapat dilihat pada gambar 2.1. Suatu benda yang mengandung retak dapat dibebani dengan salah satu mode pembebanan ini atau kombinasi dari mode-mode tersebut. Secara teknis mode I merupakan hal yang paling penting dan banyak terjadi.

2.4. Pendekatan Faktor Intensitas Tegangan

Distribusi tegangan di ujung retak dapat diperoleh dari gambar 2.2, yaitu :

$$\sigma_x = \frac{K}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \left[1 - \sin \frac{\theta}{2} \sin \frac{3\theta}{2} \right]$$
$$\sigma_y = \frac{K}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \left[1 + \sin \frac{\theta}{2} \sin \frac{3\theta}{2} \right]$$
$$\tau_{xy} = \frac{K}{\sqrt{2\pi r}} \left[\sin \frac{\theta}{2} \cos \frac{3\theta}{2} \cos \frac{3\theta}{2} \right]$$

(Broek, 1989) (2-2)

Gambar 2.3 Distribusi tegangan di sekitar ujung retak Sumber : Broek, 1989: 9

dengan : $K = Faktor intensitas tegangan (MPa \sqrt{m})$

r = Jarak dari ujung retak (m)

Dari persamaan di atas dapat dilihat bahwa distribusi tegangan di sekitar ujung retak sangat ditentukan oleh harga K, sedangkan suku-suku lainnya hanyalah menunjukkan posisi. Harga K disebut dengan faktor intensitas tegangan yang merupakan fungsi dari (σ ,a). Medan tegangan di sekitar ujung retak dapat diketahui diketahui sehingga K merupakan suatu parameter penting karena jika Κ menggambarkan tegangan-tegangan di sekitar ujung retak.

Dari persamaan (2-2) Dapat diketahui bahwa faktor ini pada mode I dengan memberikan $\theta = 0$ adalah :

$$K = \sigma \sqrt{\pi a}$$

Besarnya K untuk bentuk geometri yang berbeda akan diberikan suatu faktor koreksi geometri (*shape factor*) β :

$$K = \beta \sigma \sqrt{\pi a} \tag{2-4}$$

dengan :

K = Faktor intensitas tegangan (MPa \sqrt{m})

 $\sigma = far field stress (MPa)$

 β = faktor koreksi geometri

a = panjang retak (m)

(2-3)

2.5. Sambungan Keling

Sambungan keling merupakan salah satu jenis sambungan permanen. *Rivet* banyak diaplikasikan dalam skala besar antara lain pada bidang perkapalan, penerbangan, *boiler*, *pressure vessel*, jembatan dan lain-lain.

Keling terdiri atas tubuh yang berbentuk silindris yang disebut *shank* dan kepala keling. Seperti pada gambar 2.3, proses pemasangan keling dapat dilakukan dengan cara :

- 1. Memasukkan keling tersebut pada sebuah lubang yang menembus *sheet* yang akan disambung
- 2. Bagian pangkal dari *shank* ditahan dengan menggunakan *bucking bar*.
- **3**. Bagian *rivet head* diberikan gaya tekan oleh *Vibrating gun*, sehingga terbentuk kepala baru pada pangkal dari *shank*

Gambar 2.4 Pemasangan *Countersunk Rivet* Sumber : <u>www.nasa.gov/search/test_of_hidraulically_expanded_rivet.pdf</u>

2.6. Gaya Pengencangan Paku Keling

Gaya pengencangan pada paku keling (Q) diberikan untuk menjaga agar tidak terjadi *sliding* antar *sheet* yang akan disambung. Besarnya gaya pengencangan paku keling (Q), menurut Dobrovolsky (1985) adalah :

$$Q = \frac{F}{\mu} \tag{2-5}$$

dengan :

F = Gaya tarik pada sheet (N)

 μ = Koefisien gesek antar *sheet* Alumunium = 1,1 - 1,7 (Hibbeler, 2001)

2.7 Distribusi Tegangan pada Dinding Silinder Tipis.

Tegangan pada dinding yang tipis biasanya dihitung dengan asumsi bahwa tegangannya merata pada tebal dinding. Seperti pada gambar, silinder dikenai tekanan dari dalam sebesar *p*. Jika panjang dari bagian yang tegak lurus gambar adalah *l*, dan elemen dari area pada silinder adalah *rldθ*. Komponen gaya horizontal pada elemen tersebut adalah *prl cosθ dθ*. Jika gaya tersebut dikenai pada ¹/₄ bagian silinder, maka :

$$F = \int_0^{\pi/2} prl\cos\theta d\theta = prl\sin\theta \Big|_0^{\pi/2} = prl \qquad (2-6)$$

Gaya tangensial σ_t didapatkan dengan membagi gaya *F* dengan luas pemukaan *tl*, sehingga :

Gambar 2.5 Gaya tangensial pada dinding silinder tipis Sumber : Spotts, et al, 2004: 434

2.8. Elemen Quadratic Hexahedral Isoparametric (Solid 95 20 node)

Elemen *quadratic hexahedral isoparametric* adalah versi yang lebih tinggi untuk pemodelan tiga dimensi dibanding *linear hexahedral isoparametric*. Elemen ini dapat memodelkan bentuk yang tidak biasa tanpa kehilangan banyak keakuratan. *Quadratic hexahedral isoparametric* mempunyai bentuk perpindahan yang cocok dan sangat baik untuk model dengan batas berbentuk kurva. Elemen ini di definisikan oleh 20 buah *node* yang memiliki tiga derajat kebebasan pada setiap *node*nya, yaitu perpindahan terhadap arah x, y, dan z.

Gambar 2.6. Elemen *quadratic hexahedral isoparametric* Sumber : ANSYS Rel. 9.0, 2004

2.9. Teknik Metode Elemen Hingga Untuk Kasus Fracture

Sejumlah teknik telah diusulkan untuk mengevaluasi faktor intensitas tegangan dari hasil elemen hingga, tapi representasi yang memadai dari singularitas ujung retak (*crack tip singularity*) merupakan masalah rata-rata dari metode ini. Pengunaan metode elemen hingga pada prediksi keretakan memerlukan dua pertimbangan yang jelas, yaitu:

- 1. Pemodelan crack tip singularity.
- 2. Evaluasi faktor intensitas tegangan.

2.10 Elliptical Corner Crack pada Straight Shank Hole

2.10.1 Two symetric corner crack

Persamaan faktor intensitas tegangan (K) untuk *two symmetric corner crack* berdasarkan persamaan Newman dan Raju (*Stress Intensity Factor Equation for Cracks In Three Dimensional Finite Bodies Subjected to Tensile and Bending Loads*) pada titik sepanjang *crack* pada *sheet*, adalah:

$$K = \sigma \sqrt{\pi \frac{a}{Q}} F_{ch}\left(\frac{a}{c}, \frac{a}{t}, \frac{r}{t}, \frac{r}{b}, \frac{c}{b}, \phi\right)$$
(2-8)

Untuk $0.2 \le a/c \le 2$; $a/t \le 1$; $0.5 \le r/t \le 2$; $(r+c)/b \le 0.5$, dan $0 \le \phi \le \pi/2$.

Dimana σ adalah *remote stress* yang bekerja pada *sheet*, *a* adalah panjang retak, c adalah kedalaman retak, t adalah tebal *sheet*, b adalah lebar *sheet*, r adalah radius lubang. F_{ch} atau *boundary correction factor* adalah fungsi dari kedalaman retak,

panjang retak, radius lubang, ketebalan sheet, lebar sheet, dan sudut parametric dari elips, dan Q adalah *shape factor* untuk sebuah *elliptical crack*. dimana :

$$Q = 1 + 1,464 \left(\frac{a}{c}\right)^{1.65}$$
 untuk $\frac{a}{c} \le 1$ (2-9)

Dan,

$$Q = 1 + 1,464 \left(\frac{c}{a}\right)^{1.65}$$
 untuk $\frac{a}{c} > 1$ (2-10)

F_{ch} diperoleh dari :

$$F_{ch} = \left[M_1 + M_2 (\frac{a}{t})^2 + M_3 (\frac{a}{t})^4 \right] g_1 g_2 g_3 g_4 f_{\phi} f_w \qquad (2-11)$$

Dimana :

Untuk a/c \leq **1**, maka :

$$M_{1} = 1.13 - 0.09(\frac{a}{c}) \qquad (2 - 12)$$

$$M_{2} = -0.54 + \frac{0.89}{0.2 + \frac{a}{c}} \qquad (2 - 13)$$

$$M_{3} = 0.5 - \frac{1}{0.65 + \frac{a}{c}} + 14(1 - \frac{a}{c})^{24} \qquad (2 - 14)$$

$$g_{1} = 1 + \left[0.1 + 0.35(\frac{a}{t})^{2}\right](1 - \sin\phi)^{2} \qquad (2 - 15)$$

$$g_2 = \frac{1 + 0.358\lambda + 1.425\lambda^2 - 1.578\lambda^3 + 2.156\lambda^4}{1 + 0.13\lambda^2}$$
(2-16)

$$g_3 = (1+0.04(\frac{a}{c}))\left[1+0.1(1-\cos\phi)^2\right]\left[0.85+0.15(\frac{a}{t})^{1/4}\right]$$
(2-17)

dan

$$g_4 = 1 - 0,7(1 - \frac{a}{t})(\frac{a}{c} - 0,2)(1 - \frac{a}{c})$$
(2 - 18)

dimana :

$$\lambda = \frac{1}{1 + \frac{c}{r}\cos(\mu\phi)} \tag{2-19}$$

 $\mu = 0.85$ untuk beban tarik.

$$f_{\phi} = \left[\left(\frac{a}{c}\right)^{1/2} \cos^2 \phi + \sin^2 \phi \right]^{1/4}$$
 (2-20)

$$f_w = \left\{ \sec\left(\frac{\pi r}{2b}\right) \sec\left[\frac{\pi (2r+nc)}{4(b-c)+2nc}\sqrt{\frac{a}{t}}\right] \right\}^{1/2}$$
(2-21)

Untuk a/c > 1,

$$M_1 = \sqrt{\frac{c}{a}} \left(1 + 0.04 \frac{c}{a}\right)$$
 (2-22)

$$M_{2} = 0.2 \left(\frac{c}{a}\right)^{4}$$

$$M_{3} = -0.11 \left(\frac{c}{a}\right)^{4}$$
(2-23)
(2-24)

$$g_1 = 1 + \left[0, 1 + 0, 35 \left(\frac{c}{a} \right) \left(\frac{a}{t} \right)^2 \right] (1 - \sin \phi)^2$$
 (2-25)

Fungsi g_2 dan λ diberikan pada persamaan (2 - 16) dan (2 - 19). Dan fungsi g₃ diberikan sebagai berikut :

$$g_{3} = \left(1,13 - 0,09\frac{c}{a}\right) \left[1 + 0,1(1 - \cos\phi)^{2} \left(0,85 + 0,15\left(\frac{a}{t}\right)^{1/4}\right)\right]$$
(2-26)

Dan g₄ = 1. Fungsi f_{ϕ} dan f_{w} diberikan dari persamaan (2 – 20) dan (2 – 21).

2.11 Hipotesa

Dengan bertambahnya kedalaman chamfering, maka luas permukaan chamfering area akan bertambah. Sehinggga besarnya penekanan akibat adanya gaya pengencangan paku keling akan semakin berkurang. Dengan berkurangnya tekanan pada chamfering area, maka harga faktor intensitas tegangan juga akan berkurang.

BAB III METODOLOGI PENELITIAN

3.1 Diagram alir penelitian

Penelitian dilakukan dengan menggunakan metode simulasi yaitu dengan menggunakan software ANSYS 9.0 untuk menganalisis faktor intensitas tegangan (K) dari variasi kedalaman *chamfering* (h/t) pada *elliptical corner crack* sambungan keling.. Sebelum dilakukan permodelan dan perhitungan harga K pada countersunk rivet hole, dilakukan verifikasi prosedur penelitian dengan software ANSYS. Verifikasi dilakukan dengan menghitung harga K untuk kasus elliptical corner crack pada lubang lurus dan kemudian membandingkan hasil perhitungan harga K pada software ANSYS dengan perhitungan analitis dengan menggunakan persamaan Newman dan Raju untuk kasus elliptical corner crack pada lubang lurus. Verifikasi prosedur perhitungan dianggap sesuai bila hasil perhitungan harga K dengan menggunakan software ANSYS dan hasil perhitungan dengan menggunakan rumusan analitis pada kasus lubang lurus, tidak jauh berbeda. Jika verifikasi perhitungan harga K untuk kasus elliptical corner crack pada lubang lurus dengan ANSYS dan rumusan analitis sesuai, berarti prosedur perhitungan harga K pada kasus elliptical corner crack pada lubang lurus bisa diterapkan untuk kasus elliptical corner crack pada countersunk rivet hole. Kemudian setelah verifikasi sesuai, dilakukan permodelan dan perhitungan harga K sepanjang crack front pada countersunk rivet hole dengan prosedur yang sama dengan perhitungan harga K untuk elliptical corner crack pada lubang lurus. Hasil perhitungan harga K untuk elliptical corner crack pada countersunk rivet hole dianalisa untuk mengetahui hubungan antara kedalaman *chamfering* pada sambungan keling dan harga K. Dapat dibuat *flowchart* sebagai dasar program komputer dan perhitungan, dimana garis besar langkah-langkahnya pada gambar 3.1.

Gambar 3.1. Langkah-langkah evaluasi factor intensitas tegangan

BRAWIJAYA

3.2 Variabel Penelitian

Variabel yang digunakan dalam penelitian terdiri atas vaiabel bebas, variabel terikat, dan variabel konstan

1. Variabel bebas

Variabel bebas adalah variabel yang ditentukan nilainya. Variabel bebas yang digunakan terdiri dari :

a. Rasio kedalaman *chamfering* dan tebal plat yang divariasikan sebesar: Tabel 3.1 Variasi kedalaman *chamfering* dan tebal *sheet* pada *Countersunk Rivet Hole*

Sheet thickness t (mm)		1,0			1,60			2,00	
Ratio h/t	0,25	0,5	0,75	0,25	0,5	0,75	0,25	0,5	0,75

b. Pembebanan yang diberikan adalah sebagai berikut :

Tabel 3.2 Konfigurasi pembebanan pada countersunk rivet hole

Daughahanan		_ 1		-	- 1 6		4 - 2		
Pembebanan	τ	= 1 mr	n 🔨		= 1.6 m	m	t = 2 mm		
Beban tarik (MPa)	188			117.5			94		
Tekanan pada	h/t=	h/t=	h/t=	h/t=	h/t=	h/t=	h/t=	h/t=	h/t=
chamfering	0,25	0, 5	0,75	0,25	0, 5	0,75	0,25	0, 5	0,75
area (MPa)	59,53	92	189,5	22,1	34,68	56,09	13,72	21,81	46
<i>Pressure</i> dari dalam kabin		100			100		Jan 1	100	
(kPa)			K						

c.Pembagian region retak, dapat dilihat pada gambar

Initial crack diasumsikan berupa *elliptical corner crack* dengan membagi *sheet* menjadi 6 region (gambar 3.3) dengan masing-masing memiliki a/c=1. Titik perhitungan dilakukan spanjang crack front yang dinyatakan dalam sudut θ .

Dimana :

- Region 1, *Initial crack* berada pada posisi a = h/2
- Region 2, *Initial crack* berada pada posisi a = 3h/4
- Region 3, *Initial crack* berada pada posisi a = h
- Region 4, *Initial crack* berada pada posisi *crack front* memotong bagian tengah dari *chamfering area*.

- Region 5, *Initial crack* berada pada posisi *crack front* memotong bagian atas dari *chamfering area*.
- Region 6, *Initial crack* berada pada daerah *free surface*.

2. Variabel terikat

Variabel terikat adalah variabel yang nilainya tergantung dari nilai variabel bebas. Variabel terikat adalah Faktor Intensitas Tegangan (K)

3. Variabel konstan

Variabel konstan adalah variabel yang nilainya tetap, pada setiap analisa yang dilakukan. Variabel konstan terdiri dari :

- a. Dimensi dari countersunk rivet hole, dapat dilihat pada gambar 3.2
 - p = 50,8 mm
 - 1 = 35 mm
 - D = 4,8 mm
- b. Material Properties dari bahan Alumunium Clad 2024-T3 :
 - Modulus Elastisitas bahan (E) = 73,1 GPa
 - Angka Poisson (v) = 0.33
 - Tegangan Yield (σ_y) = 310 MPa
 - Tegangan Ultimate (σ_u) = 448 MPa

Sumber: http://www.matweb.com/search/SpecificMaterial.asp?Bassnum

Gambar 3.2 (a) Pembebanan pada *sheet* sambungan keling dimana σ_t = beban tarik, W = tekanan pada *chamfering area*, dan P_{kabin} = *pressure* dari dalam kabin. (b) Asumsi permukaan retak yang terjadi.

Gambar 3.3 Pembagian region *crack* yang terjadi. (a = panjang retak, c = kedalaman retak, h = kedalaman *chamfering*, dan t = tebal plat)

3.3 Permodelan

3.3.1 Permodelan Verifikasi

Proses verifikasi yang dilakukan adalah dengan menggunakan spesimen lubang lurus yang dikenai beban tarik. *Material properties* yang digunakan sama dengan material pada spesimen *countersunk rivet hole* yaitu Alumunium Clad 2024-T3. Permodelan dilakukan dengan memodelkan *sheet* 3 dimensi yang diberi lubang dengan geometri yang sama dengan spesimen *countersunk rivet hole*. Permodelan dilakukan dengan ¹/₄ bagian karena kesimetrian model, baik geometri dan pembebanan. *Initial crack* diberikan pada posisi a = t/2 dan berupa *elliptical crack front*. Bentuk permodelan dilakukan dangat dilihat pada gambar 3.4.

Gambar 3.4 Permodelan sheet dengan lubang lurus.

Setelah permodelan selesai, langkah selanjutnya adalah proses pembagian elemen (*meshing*). Proses *meshing* dilakukan dengan metode submodel, dimana model dibagi menjadi 2, yaitu daerah lokal pada ujung retak untuk memodelkan singularitas pada ujung retak dan daerah selain ujung retak. Pembagian model ini dilakukan dengan perintah VPTN dimana volume akan dibagi menjadi dua volume dengan batas area yang sama (gambar 4.2). Kemudian dengan menggunakan perintah VSWEEP, pada daerah ujung retak dilakukan *meshing* untuk menghasilkan elemen singular pada ujung retak. Pada daerah selain ujung retak dilakukan *meshing* secara *free*. Hasil permodelan elemen singular dan hasil *meshing* secara keseluruhan dapat dilihat pada gambar 3.6 dan gambar 3.7.

Gambar 3.6 Permodelan elemen singular pada ujung retak dengan VSWEEP.

Gambar 3.7 Hasil meshing secara keseluruhan.

Setelah proses *meshing* selesai, dilakukan pemberian *constrain* dan pembebanan yang bekerja pada *sheet*. Pembebanan yang diberikan berupa beban tarik sebesar 188 MPa. Kemudian dilakukan proses *solving* dan perhitungan Faktor intensitas tegangan tiap titik sepanjang *crack front* yang ditunjukkan oleh besarnya sudut (θ) yang diukur tiap 10⁰ dari pusat radius *elliptical crack*. Hasil perhitungan Faktor intensitas tegangan untuk kasus *elliptical crack* pada lubang lurus dibandingkan dengan perhitungan secara analitis untuk mengetahui apakah prosedur perhitungan Faktor intensitas tegangan pada *software* ANSYS sudah benar dan hasilnya akurat.

3.3.2 Permodelan Countersunk Rivet Hole

Permodelan dilakukan dengan memodelkan *countersunk rivet hole* 3 dimensi dan dilakukan dengan ¹/₄ bagian karena adanya kesimetrian model, baik geometri maupun pembebanan. *Material properties* yang dimasukkan adalah *material properties* dari Alumunium Clad 2024-T3. Jumlah permodelan yang dilakukan adalah sebanyak 54 model sesuai dengan masing-masing variasi rasio kedalaman *chamfering* (h/t), tebal *sheet* dan posisi retak yang digunakan. Bentuk permodelan *countersunk rivet hole* dapat dilihat pada gambar 3.8.

Gambar 3.8 Permodelan *countersunk rivet hole*.

Setelah permodelan selesai, langkah selanjutnya adalah proses pembagian elemen (*meshing*). Proses *meshing* dilakukan dengan metode submodel, dimana model dibagi menjadi 2, yaitu daerah lokal pada ujung retak untuk memodelkan singularitas pada ujung retak dan daerah selain ujung retak. Pembagian model ini dilakukan dengan perintah VPTN dimana volume akan dibagi menjadi dua volume dengan batas area yang sama (gambar 4.6). Kemudian dengan menggunakan perintah VSWEEP, pada daerah ujung retak dilakukan *meshing* untuk menghasilkan elemen singular pada ujung retak. Pada selain ujung retak dilakukan *meshing* secara *free*. Hasil permodelan elemen singular dan hasil *meshing* secara keseluruhan dapat dilihat pada gambar 3.10 dan gambar 3.11. Proses permodelan diatas sama untuk tiap variasi geometri yang digunakan.

Gambar 3.9 Pembagian volume dengan perintah VPTN.

Gambar 3.10 Permodelan elemen singular pada ujung retak VSWEEP.

Gambar 3.11 Hasil *meshing* secara keseluruhan.

Setelah proses *meshing* selesai, dilakukan pemberian *constrain* dan pembebanan pada *sheet*. Besarnya konfigurasi pembebanan pada *sheet*, sesuai dengan konfigurasi pembebanan untuk tiap-tiap variasi geometri yang digunakan (tabel 3.2). Kemudian dilakukan proses *solving* dan perhitungan Faktor intensitas tegangan tiap titik sepanjang *crack front* yang ditunjukkan oleh besarnya sudut fisik (θ) dari pusat radius *elliptical crack*.

BRAWIJAYA

BAB IV HASIL DAN PEMBAHASAN

4.1 Hasil Perhitungan dan Pembahasan

4.1.1 Tinjauan Verifikasi

Verifikasi dilakukan untuk mengetahui apakah prosedur perhitungan faktor intensitas tegangan pada *software* ANSYS sudah benar dan hasilnya akurat. Hasil perhitungan Faktor intensitas tegangan dengan ANSYS dibandingkan dengan rumusan analitis yaitu *Newman-Raju Equation*.

Contoh perhitungan faktor intensitas tegangan dengan menggunakan rumusan analitis dari Newman-Raju adalah sebagai berikut :

Besar Faktor intensitas tegangan pada *sheet* dengan lubang lurus dimana tebal *sheet* t = 1 mm, a/c = 1, a/t = 0.5 dan beban tarik $\sigma = 188$ MPa pada sudut $\theta = 0^0$ adalah:

$$K = \sigma \sqrt{\pi \frac{a}{Q}} F_{ch}(\frac{a}{c}, \frac{a}{t}, \frac{r}{t}, \frac{r}{b}, \frac{c}{b}, \phi)$$

Shape Factor Q adalah sebagai berikut :

$$Q = 1 + 1,464 \left(\frac{a}{c}\right)^{1.65} \text{ untuk } \frac{a}{c} \le 0 = 2.464$$

dan

$$F_{ch} = \left[M_1 + M_2 \left(\frac{a}{t}\right)^2 + M_3 \left(\frac{a}{t}\right)^4 \right] g_1 g_2 g_3 g_4 f_{\phi} f_{w}$$

1

dimana :

$$M_{1} = 1,13 - 0,09(\frac{a}{c}) = 1,04$$

$$M_{2} = -0,54 + \frac{0,89}{0,2 + \frac{a}{c}} = 0,201667$$

$$M_{3} = 0,5 - \frac{1}{0,65 + \frac{a}{c}} + 14(1 - \frac{a}{c})^{24} = -0,10606$$

$$g_{1} = 1 + \left[0,1 + 0,35(\frac{a}{t})^{2}\right](1 - \sin\phi)^{2} = 1,1875$$

dengan
$$\lambda = \frac{1}{1 + \frac{c}{r}\cos(\mu\phi)} = 0,90566$$

2b

maka :

$$g_2 = \frac{1 + 0.358\lambda + 1.425\lambda^2 - 1.578\lambda^3 + 2.156\lambda^4}{1 + 0.13\lambda^2} = 2.524296$$

$$g_{3} = (1+0,04(\frac{a}{c}))\left[1+0,1(1-\cos\phi)^{2}\right]\left[0,85+0,15(\frac{a}{t})^{1/4}\right] = 1,01518$$

$$g_{4} = 1-0,7(1-\frac{a}{t})(\frac{a}{c}-0,2)(1-\frac{a}{c}) = 1$$

$$f_{\phi} = \left[(\frac{a}{c})^{1/2}\cos^{2}\phi + \sin^{2}\phi\right]^{1/4} = 1$$

$$f_{\phi} = \left[(\frac{\pi}{c})^{1/2}\cos^{2}\phi + \sin^{2}\phi\right]^{1/4} = 1$$

$$g_{4} = 1 - 0,7(1 - \frac{a}{t})(\frac{a}{c} - 0,2)(1 - \frac{a}{c}) = 1$$

$$f_{\phi} = \left[(\frac{a}{c})^{1/2} \cos^{2} \phi + \sin^{2} \phi \right]^{1/4} = 1$$

$$f_{w} = \left\{ \sec(\frac{\pi r}{2b}) \sec\left[\frac{\pi (2r + nc)}{4(b - c) + 2nc} \sqrt{\frac{a}{t}} \right] \right\}^{1/2} = 1,100478$$

Jadi :

$$F_{ch} = \left[M_1 + M_2 \left(\frac{a}{t}\right)^2 + M_3 \left(\frac{a}{t}\right)^4 \right] g_1 g_2 g_3 g_4 f_{\phi} f_w = 3,6072643$$

Dan

$$K = \sigma \sqrt{\pi \frac{a}{Q}} F_{ch}$$
 = 16481093 Pa \sqrt{m} = 16,48 MPa \sqrt{m}

R

Dari hasil perhitungan faktor intensitas tegangan dengan menggunakan rumusan analitis untuk tiap sudut θ , diperoleh data hasil perhitungan Faktor intensitas tegangan yang dibandingkan dengan hasil perhitungan Faktor intensitas tegangan dengan software ANSYS, dapat dilihat pada tabel dan grafik berikut:

MAS

Sudut	(0)	ANSYS (MPa√m)	Newman & Raju (MPa√m)	% Error (%)	
0		16,3	16,48	1,1043	
10)	15,4	15,68	1,8182	1
20)	14,9	15,11	1,4094	1
30		14,6	14,77	1,1644	S
40)	14,5	14,67	1,1724	
50		14,7	14,8	0,6803	
60)	15	15,13	0,8667	
70)	15,5	15,68	1,1613	
80)	16,3	16,42	0,7362	
90)	18,2	18,34	0,7692	
Ρ	erban Newr	idingan harga nan-Raju Equ	l K dengan softwar ation pada plat den lurus	e ANSYS da Igan lubang	n
20 [1	
19					
18			•		

17

15 14 13

0

10 20

30

40 50

sudut

¥ 16

Tabel 4.1 Perbandingan hasil perhitungan faktor intensitas tegangan dengan *software* ANSYS dan rumusan analitis.

60 70 80 90

ANSYS

Newman & Raju

Dari grafik 4.1 diatas dapat dilihat bahwa hasil perhitungan faktor intensitas tegangan dengan *software* ANSYS dan rumusan analitis memiliki tren yang sama. Besarnya faktor intensitas tegangan untuk tiap titik sepanjang *crack front* dari kedua grafik diatas tidak jauh berbeda. Sehingga dapat diambil kesimpulan bahwa prosedur perhitungan faktor intensitas tegangan dengan *software* ANSYS sudah cukup valid untuk menganalisa faktor intensitas tegangan dan hasilnya akurat bila dibandingkan dengan rumusan analitis Newman-Raju.

BRAWIJAYA

4.1.2 Tinjauan countersunk rivet hole

1. Pengaruh posisi crack terhadap faktor intensitas tegangan

Salah satu parameter pemilihan sambungan keling jenis *countersunk* adalah parameter kedalaman *chamfering* dari lubang keling. Kedalaman *chamfering* (h/t) dari *countersunk rivet hole* akan mempengaruhi besarnya tekanan yang bekerja pada *chamfering area*. Oleh karena itu, perlu dilakukan strategi dalam hal memilih kedalaman *chamfering* yang tepat untuk digunakan.

Dari hasil perhitungan Faktor intensitas tegangan dengan software ANSYS, diperoleh grafik sebagai berikut :

BRAWIJAYA

Grafik 4.4 Faktor intensitas tegangan pada *sheet* dengan variasi h/t= 0,75; t =1 mm

Grafik 4.5 Faktor intensitas tegangan pada *sheet* dengan variasi h/t= 0,25; t=1,6 mm

Grafik 4.6 Faktor intensitas tegangan pada *sheet* dengan variasi h/t= 0,5; t=1,6 mm

Grafik 4.8 Faktor intensitas tegangan pada *sheet* dengan variasi h/t= 0,25; t= 2 mm

Grafik 4.10 Faktor intensitas tegangan pada sheet dengan variasi h/t=0,75; t=2 mm

Dari keseluruhan grafik harga faktor intensitas tegangan untuk masing-masing kedalaman *chamfering* (h/t) dan tebal *sheet* diatas, dapat dilihat bahwa besarnya faktor intensitas tegangan untuk masing-masing kedalaman *chamfering* (h/t) dan tebal *sheet* memiliki kecenderungan yang sama yaitu dengan bertambahnya panjang retak (a) yang ditunjukkan oleh posisi crack, besarnya faktor intensitas tegangan (K) juga bertambah. Hal dengan faktor ini sesuai rumusan intensitas tegangan vaitu $K = \sigma \sqrt{\pi \frac{a}{O} F_{ch}(\frac{a}{c}, \frac{a}{t}, \frac{r}{t}, \frac{r}{b}, \frac{c}{b}, \phi)}$ dimana semakin panjang retak (a), maka harga faktor intensitas tegangan juga bertambah. Dari keseluruhan grafik diatas juga dapat dilihat bahwa harga faktor intensitas tegangan cenderung turun terlebih dahulu kemudian naik lagi. Hal ini dikarenakan distribusi tegangan lebih besar terjadi pada ujung elliptical crack ($\theta = 0^0$ dan $\theta = 90^0$) dibandingkan daerah lain sepanjang elliptical crack front. Pada daerah tersebut distribusi tegangan yang terjadi lebih besar karena adanya konsentrasi tegangan pada ujung elliptical crack yang mana terjadi intersection antara crack front dan daerah batas elliptical crack (lihat lampiran B).

3. Pengaruh rasio kedalaman *chamfering* (h/t) terhadap faktor intensitas tegangan

Perbandingan hasil perhitungan faktor intensitas tegangan pada *sheet* untuk variasi kedalaman *chamfering* h/t = 0.25; 0.5; dan 0.75 untuk masing-masing tebal *sheet* adalah dalam grafik berikut :

Grafik 4.12 Perbandingan faktor intensitas tegangan pada *sheet* pada posisi 2 dengan variasi h/t = 0,25; 0,5; dan 0,75; t=1 mm

Grafik 4.14 Perbandingan faktor intensitas tegangan pada *sheet* pada posisi 4 dengan variasi h/t = 0,25; 0,5; dan 0,75; t=1 mm

Grafik 4.16 Perbandingan faktor intensitas tegangan pada *sheet* pada posisi 6 dengan variasi h/t = 0,25; 0,5; dan 0,75; t=1 mm

Grafik 4.17 Perbandingan faktor intensitas tegangan pada *sheet* pada posisi 1 dengan variasi h/t = 0,25; 0,5; dan 0,75; t=1,6 mm

Grafik 4.18 Perbandingan faktor intensitas tegangan pada *sheet* pada posisi 2 dengan variasi h/t = 0,25; 0,5; dan 0,75; t=1,6 mm

Grafik 4.20 Perbandingan faktor intensitas tegangan pada *sheet* pada posisi 4 dengan variasi h/t = 0,25; 0,5, dan 0,75; t=1,6 mm

Grafik 4.22 Perbandingan faktor intensitas tegangan pada *sheet* pada posisi 6 dengan variasi h/t = 0,25; 0,5; dan 0,75; t=1,6 mm

Grafik 4.24 Perbandingan faktor intensitas tegangan pada *sheet* pada posisi 2 dengan variasi h/t = 0,25; 0,5; dan 0,75; t= 2 mm

Grafik 4.25 Perbandingan faktor intensitas tegangan pada *sheet* pada posisi 3 dengan variasi h/t = 0.25; 0.5; dan 0.75; t= 2 mm

Grafik 4.26 Perbandingan faktor intensitas tegangan pada *sheet* pada posisi 4 dengan variasi h/t = 0,25; 0,5; dan 0,75; t= 2 mm

Grafik 4.27 Perbandingan faktor intensitas tegangan pada *sheet* pada posisi 5 dengan variasi h/t = 0,25; 0,5; dan 0,75; t= 2 mm

Grafik 4.28 Perbandingan faktor intensitas tegangan pada *sheet* pada posisi 6 dengan variasi h/t = 0,25; 0,5; dan 0,75; t= 2 mm

Dari keseluruhan grafik perbandingan harga faktor intensitas tegangan untuk masing-masing kedalaman *chamfering* diatas, dapat dilihat pada posisi 1, 2, dan 3 untuk masing-masing tebal *sheet* harga faktor intensitas tegangan memiliki kecenderungan yang sama yaitu dengan bertambahnya rasio kedalaman *chamfering* dari *sheet*, maka harga faktor intensitas tegangan juga bertambah untuk setiap sudut θ . Namun pada

posisi 3, 4, dan 5 kecenderungan yang sama dengan posisi 1, 2, dan 3 hanya terjadi pada sudut $\theta = \theta_{maks}$. Pada sudut $\theta < \theta_{maks}$, kecenderungan harga faktor intensitas tegangan yang terjadi adalah merupakan kebalikannya yaitu dengan bertambahnya rasio kedalaman *chamfering*, harga faktor intensitas tegangan justru semakin turun untuk setiap sudut θ .

Pada posisi 1, 2, dan 3 kecenderungan tersebut terjadi karena dengan bertambahnya posisi *crack*, maka panjang retak (a) juga bertambah. Selain itu dengan bertambahnya rasio kedalaman *chamfering*, maka besarnya beban pada *chamfering area* juga bertambah. Sesuai dengan rumusan Faktor intensitas tegangan yaitu $K = \sigma \sqrt{\pi \frac{a}{Q}} F_{ch}(\frac{a}{c}, \frac{a}{t}, \frac{r}{t}, \frac{r}{b}, \frac{c}{b}, \phi)$ dengan bertambahnya panjang retak (a) dan beban (σ), maka harga faktor intensitas tegangan juga akan bertambah. Namun pada posisi 4,

(65), maka narga raktor intensitas tegangan juga akan bertamban. Namun pada posisi 4, 5, dan 6, panjang retak tidak terlalu berpengaruh pada besarnya harga faktor intensitas tegangan karena panjang retak untuk masing-masing rasio kedalaman *chamfering* pada posisi yang sama, relatif tidak jauh berbeda. Sesuai dengan rumusan faktor bentuk dari material yaitu $F_{ch} = \left[M_1 + M_2 \left(\frac{a}{t}\right)^2 + M_3 \left(\frac{a}{t}\right)^4 \right] g_1 g_2 g_3 g_4 f_{\phi} f_w$ dimana terdapat

parameter (a/t) yang pada posisi 4, 5, dan 6 memiliki harga yang hampir sama untuk masing-masing rasio kedalaman *chamfering* (h/t) sehingga panjang retak (a) tidak terlalu berpengaruh terhadap besarnya harga K. Pada posisi ini, dengan bertambahnya rasio kedalaman *chamfering*, maka jarak dari sumber beban ke daerah sudut θ terkecil akan semakin jauh sehingga tegangan yang terdistribusi sepanjang crack front akan semakin kecil seiring dengan berkurangnya sudut θ dan kemudian naik sedikit karena adanya konsentrasi tegangan pada $\theta = 0^0$ (lihat lampiran B). Selain itu, harga faktor intensitas tegangan juga dipengaruhi oleh adanya konsentrasi tegangan pada ujung dari chamfering area karena distribusi tegangan akan terpusat pada pertemuan chamfering area dengan daerah yang lurus (lihat lampiran B). Dengan bertambahnya rasio kedalaman chamfering, maka luas chamfering area akan berkurang. Dengan berkurangnya luas chamfering area ini, maka jarak antara crack front dan titik pertemuan *chamfering area* dan daerah yang lurus semakin berdekatan. Daerah yang paling dekat dengan titik tersebut adalah pada sudut $\theta = \theta_{maks}$, sehingga distribusi tegangan pada sudut $\theta = \theta_{maks}$ akan semakin bertambah seiring bertambahnya rasio kedalaman *chamfering* yang ditunjukkan oleh h/t (lihat lampiran B).

4. Hubungan Rasio kedalaman chamfering (h/t) dan faktor intensitas tegangan

Dari keseluruhan grafik diatas, diambil salah satu grafik untuk melihat hubungan antara rasio kedalaman *chamfering* dan besarnya faktor intensitas tegangan. Dari grafik 4.11 untuk harga $\theta = \theta_{maks}$, hubungan antara rasio kedalaman *chamfering* dan faktor intensitas tegangan dapat dilihat pada grafik berikut :

Grafik 4.29 Grafik hubungan kedalaman chamfering dan faktor intensitas tegangan pada $\theta = \theta_{maks}$ dan t = 1 mm.

Dari grafik 4.29 diatas, dapat dilihat bahwa kecenderungan harga K semakin berkurang seiring dengan bertambahnya rasio kedalaman *chamfering*. Dan dari grafik ini bisa dilihat bahwa hubungan antara rasio kedalaman *chamfering* dan faktor intensitas tegangan besifat linier dengan persamaan y = -12,044x+21,552. Kecenderungan bentuk linier ini juga berlaku untuk semua variasi rasio kedalaman chamfering dan tebal plat dimana dengan bertambahnya rasio kedalaman *chamfering*, maka harga K akan semakin berkurang.

epository.ub.ac.

BAB V KESIMPULAN DAN SARAN

5.1 Kesimpulan

- 1. Dari keseluruhan harga faktor intensitas tegangan untuk masing-masing kedalaman *chamfering*, memiliki kecenderungan turun terlebih dahulu kemudian naik seiring dengan bertambahnya sudut θ . Hal ini dikarenakan adanya konsentrasi tegangan yang lebih besar pada ujung-ujung *elliptical crack* ($\theta = 0^0$ dan $\theta = 90^0$). Untuk masing-masing kedalaman *chamfering* dan tebal plat, besarnya harga faktor intensitas tegangan terbesar terjadi pada posisi *crack* 6, kemudian diikuti oleh posisi 5, 4, 3, 2, dan 1. Hal ini terjadi karena dengan bertambahnya posisi *crack*, maka panjang retak juga akan bertambah. Sehingga harga Faktor intensitas tegangan juga bertambah. Kecenderungan tersebut berlaku untuk semua variasi kedalaman *chamfering* dan tebal plat.
- 2. Dari hasil perhitungan Faktor intensitas tegangan pada *countersunk rivet hole* untuk masing-masing variasi kedalaman *chamfering*, dapat dilihat hubungan antara kedalaman *chamfering* pada *countersunk rivet hole*dan faktor intensitas tegangan. Pada posisi *crack* 1, 2, dan 3 dengan bertambahnya kedalaman *chamfering*, maka harga faktor intensitas tegangan semakin berkurang untuk posisi *crack* dan tebal plat yang sama. Sedangkan pada posisi 4, 5, dan 6 merupakan kebalikannya yaitu pada daerah sudut $\theta < \theta_{maks}$. Pada posisi ini, dengan semakin bertambahnya kedalaman *chamfering*, maka harga faktor intensitas tegangan semakin bertambahnya kedalaman *chamfering*, maka harga K semakin bertambahnya kedalaman *chamfering*, maka harga K semakin bertambah. Pada daerah $\theta = \theta_{maks}$ pada posisi 4, 5, dan 6, kecenderungan harga K sama seperti pada posisi 1, 2, dan 3. Kecenderungan tersebut sama untuk semua variasi tebal plat. Dan dari keseluruhan hubungan kedalaman *chamfering* dan faktor intensitas tegangan didapatkan bahwa dengan bertambahnya kedalaman *chamfering*, maka harga K akan semakin berkurang.

5.2 Saran

1. Perlu dikembangkan penelitian dengan menambahkan adanya pengaruh dari luar seperti pengaruh temperatur dan korosi.

DAFTAR PUSTAKA

Anonim. Boeing Description. www.boeing.com

Anonim. Chapter 2 : Literature Review. Courtersy of LPS Laboratories, Inc. www.library.unsw.edu.au/~thesis/adtADFA/uploads/approved/adtADFA200508 19.111957/public/03chapter2.pdf

ANSYS Rel. 9.0. 2004. Ansys Release 9.0 Documentation. Ansys, Inc.

Banantine, Julie .A.1990. *Fundamentals of Metal Fatigue Analysis*. Prentice Hall. Engewood Cliffs, New Jersey.

Broek, David. 1989. *Elementary Engineering Fracture Mechanics*. Sijthoff & Noordhoff International Publisher B.V.. Alphen aan den Rijn, The netherland.

Christy, Joe. 1984. Aircraft Construction : Repair and Inspection. TAB Books.

de Rijk, J.J.M and Fawaz, S.A. 2003. Stress Intensity Factor for Countersunk Holes Subjected to Tension & Bending. Sixth Joint DoD/FAA/NASA Conference on Aging Aircraft. www.galaxyscientific.com/agingaircraft2002/SESSIONS/9/9A2_DERIJCK.PDF

Dobrovolsky, V. 1985. Machine Elements. Peace Publishers Moscow

Hibbeler, R.C. 2001. Engineeering Mechanics : Statics. Prentice Hall International.

Newman, J.C. and Raju, I.S. 1984. Stress Intensity Factor Equation for Cracks in Three Dimensional Finite Bodies Subjected to Tension and Bending Loads. NASA Technical Memorandum 85793. NASA, April 1984. www.ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19840015857_1984015857 .pdf

Spotts, M.F., Shoup, T.E. and Hornberger, L.E. 2004. *Design of Machine Elements*. Pearson Prentice Hall.

Lampiran A. Material Properties Aluminium Clad 2024-T3

• Ko	mposisi Kimia :		
Al	: 90.7 - 94.7 %	Mn	: 0.3 – 0.9 %
Cr	: Max 0.1 %	Si	: Max 0.5 %
Cu	: 3.8 – 4.9 %	Ti	: Max 0.15 %
Fe	: Max 0.5 %	Zn	: Max 0.25 %
Mg	: 1.2 – 1.8 %		

Sifat Fisik : •

• Sifat Fisik :	TAS	
Massa jenis	: 2.78 gr/cc	
Ultimate Tensile Strength	: 448 MPa	
Tensile Yield Strength	: 310 MPa	
Modulus Elastisitas	- : 73.1 GPa	
	T	

Sumber : <u>www.matweb.com</u>

Lampiran B. Plot hasil distribusi tegangan di sekitar ujung retak dengan ANSYS 9.0

Gambar 1. Distribusi tegangan pada *sheet* dengan h/t = 0,25; t = 1 mm; posisi 1, 2, 3, 4, 5 dan 6

Gambar 2. Distribusi tegangan pada *sheet* dengan h/t = 0.5; t = 1 mm; posisi 1, 2, 3, 4, 5 dan 6

Gambar 3. Distribusi tegangan pada *sheet* dengan h/t = 0,75; t = 1 mm; posisi 1, 2, 3, 4, 5 dan 6

Gambar 4. Distribusi tegangan pada *sheet* dengan h/t = 0,25; t = 1.6 mm; posisi 1, 2, 3, 4, 5 dan 6

Gambar 5. Distribusi tegangan pada *sheet* dengan h/t = 0.5; t = 1.6 mm; posisi 1, 2, 3, 4, 5 dan 6

- t = 1,6 mm; h/t = 0,75; posisi 5
- t = 1,6 mm; h/t = 0,75; posisi 6
- Gambar 6. Distribusi tegangan pada *sheet* dengan h/t = 0,75; t = 1.6 mm; posisi 1, 2, 3, 4, 5 dan 6

Gambar 7. Distribusi tegangan pada *sheet* dengan h/t = 0,25; t = 2 mm; posisi 1, 2, 3, 4, 5 dan 6

Gambar 9. Distribusi tegangan pada *sheet* dengan h/t = 0,75; t = 2 mm; posisi 1, 2, 3, 4, 5 dan 6

Lampiran C. Data hasil perhitungan Faktor intensitas tegangan (K)

• Pengaruh posisi crack terhadap Faktor intensitas tegangan

θ	posisi 1 (MPa√m)	θ	posisi 2 (MPa√m)	θ	posisi 3 (MPa√m)	θ	posisi 4 (MPa√m)	θ	posisi 5 (MPa√m)	θ	posisi 6 (MPa√m)
0	16,172	0	19,739	0	22,099	0	32,696	0	37,985	0	40,288
5		5		5	4-57	5	30,261	5	34,271	5	37,126
10	14,108	10	17,53	10	19,61	10	29,96	10	33,145	10	35,75
15	NS P	15	a R A	15		15	29,1	15	31,875	15	33,3697
20	13,53	20	16,683	20	19,689	20	28,76	20	30,02	20	32,871
25		25		25		25	28,208	25	28,59	25	31,931
30	13,224	30	16,339	30	19,334	30	27,721	30	29,91	30	31,687
35	4-11	35		35		35	27,591	35	30,22	35	32,276
40	13,002	40	16,628	40	19,147	40	27,9	40	31,758	40	35,61
45		45		45		45	28,195	45	37,705	41,8	50,885
50	12,981	50	16,442	50	19,009	50	29,295	48,17	47,351		
55		55		55		54,42	35,893				
60	12,911	60	16,268	60	19,101					V .	
65		65		65		<i>A</i>		~			
70	13,094	70	16,371	70	19,264	S Con		Ρ.			
75		75		75				~ 1			
80	13,578	80	16,8	80	21,01		5/64				
85		85		85		-201-	A A				
90	15,53	90	19,054	90	28,41		1/25-11		$\overline{\Lambda}$		

Tabel 7.1 Faktor intensitas tegangan pada *sheet* dengan variasi h/t=0.25; t =1 mm

		同同	- W		ě S		
Tabel 7.2 Faktor intensitas	tegang	gan pada	a <i>sheet</i> o	dengan v	ariasi h/t=	= 0,5; t =1 i	mm

θ	posisi 1 (MPa√m)	θ	posisi 2 (MPa√m)	θ	posisi 3 (MPa√m)	θ	posisi 4 (MPa√m)	θ	posisi 5 (MPa√m)	θ	posisi 6 (MPa√m)
0	18,483	0	21,227	0	24,613	0	29,919	0	30,876	0	38,3
5		5		5	tej	5	27,31	5	30,829	5	36,293
10	16,618	10	20,142	10	23,38	10	26,206	10	29,282	10	34,22
15		15		15		15	25,639	15	27,993	15	33,163
20	16,54	20	19,42	20	21,935	20	25,231	20	26,785	20	32,452
25		25		25	a l	- 25	24,935	25	25,531	25	31,931
30	16,569	30	18,252	30	21,098	30	24,743	30	25,133	30	33,027
35	133	35		35		35	24,751	35	24,979	35	35,281
40	16,102	40	18,183	40	20,821	40	24,993	40	25,076	40	36,732
45		45		45		45	25,741	45	25,513	41,8	51,764
50	16,092	50	18,202	50	20,711	50	26,621	50	26,354		
55	AVA	55		55		55	28,707	55	30,561		RAY
60	15,895	60	18,283	60	21,211	59,54	40,201	59,55	49,996		TRR
65	NU-P	65		65			N	ER.		T A	2.50
70	16,034	70	18,617	70	21,695			1	1121		
75	100	75		75							DS
80	16,603	80	19,309	80	23,282		Let 1				3473
85	TAD	85	CBK!	85		477					
90	18,541	90	21,352	90	32,662						

	posisi 1		posisi 2		posisi 3		posisi 4		posisi 5		posisi 6
θ	(MPa√m)	θ	(MPa√m)	θ	(MPa√m)	θ	(MPa√m)	θ	(MPa√m)	θ	(MPa√m)
0	18,881	0	21,884	0	26,29	0	29,074	0	28,908	0	33,202
5		5		5		-5	470	5	27,963	5	31,499
10	17,599	10	21,123	10	23,908	10	25,421	10	27,197	10	29,194
15		15		15		15	TVE	15	25,632	15	27,266
20	17,114	20	19,95	20	22,349	20	23,39	20	24,716	20	27,243
25		25		25		25		25	24,195	25	27,193
30	16,612	30	18,933	30	21,438	30	23,126	30	23,629	30	26,84
35	24-16	35		35		35		35	23,038	35	27,726
40	16,259	40	18,634	40	20,889	40	22,629	40	22,492	40	27,992
45		45		45		45		45	22,643	45	31,47
50	16,283	50	18,63	50	20,805	50	22,976	50	22,84	50	34,22
55		55		55		55		55	23,357	56,44	60,743
60	16,647	60	18,897	60	21,205	60	24,269	60	25,276		
65		65		65		65		65	28,433		
70	17,058	70	19,469	70	22,132	70	27,114	70	32,278		
75		75		75		75		73,4	59,978		
80	17,776	80	20,252	80	23,96	80,4	46,504				
85		85		85			$\sum_{i=1}^{n}$				
90	19,318	90	22,078	90	32,494 🔿		2 C C				

Tabel 7.3 Faktor intensitas tegangan pada *sheet* dengan variasi h/t=0,75; t =1 mm

T.	-11	7 /	L E -	1-4	· • · · · ·	· - · · · - ·		S - 5 - 1 - 1	S. 4.1	1 1.1. 5		3 7	A		- 14	0 1	15.	L 1	1	
12	anei	14	ь на	KTOT	· 1n1	rensiras	S T(egangan	nad	a s <i>nee</i>	21 (dengan.	varia	IS1	n/I=	0 /	<u>ירי</u>	=	6	mm
- 1	1001			11001		combited.		Bangan	pau	a siree		aviigaii				· · · -		• •	,• .	

	posisi 1		posisi 2		posisi 3		posisi 4		posisi 5		posisi 6
θ	(MPa√m)	θ	(MPa√m)	θ	(MPa√m)	θ	(MPa√m)	θ	(MPa√m)	θ	(MPa√m)
0	9,8285	0	12,425	0	14,256	0	20,096	0	22,008	0	24,231
5		5		5_		5	19,335	5	21,661	5	23,62
10	9,0493	10	11,418	10	13,364	10	18,95	10	21,059	10	22,712
15		15		15		15	18,674	15	20,552	15	22,305
20	8,8859	20	11,217	20	13,288	20	18,533	20	20,151	20	21,203
25		25		25	1 H L	25	18,446	25	19,87	25	21,655
30	8,8044	30	10,876	30	12,917	30	18,455	30	19,32	30	21,759
35		35		35		35	18,611	35	20,124	35	22,776
40	8,8312	40	10,806	40	12,763	40	18,928	40	21,176	40	24,86
45		45		45		45	19,568	45	24,22	41,8	39,273
50	8,8789	50	10,81	50	12,844	- 50	20,661	48,17	33,47		
55		55		55		54,41	25,602				
60	8,9111	60	11,047	60	13,083						124
65	FT.	65		65							
70	9,1091	70	11,369	70	14,056						
75		75		75							
80	9,4188	80	11,684	80	14,492						
85		85		85							
90	10,671	90	12,992	90	20,154	1	5610				C BR

Δ	posisi 1		posisi 2		posisi 3	Δ	posisi 4	Δ	posisi 5		posisi 6
0		0	(IVIF a VIII)	0	(IVIF a VIII)	0	(IVIF a VIII)	0	(IVIF a VIII)	0	(IVIF a VIII)
0	11,541	0	13,69	0	15,985	0	18,783	0	19,489	0	23,719
5		5		5	3471	5	18,016	5	19,384	5	22,1
10	11,005	10	13,123	10	14,607	10	17,622	10	19,274	10	21,394
15		15		15		15	17,267	15	18,702	15	21,105
20	10,674	20	12,61	20	14,177	20	16,967	20	18,524	20	20,212
25		25		25		25	16,756	25	18,432	25	19,832
30	10,409	30	12,506	30	13,903	30	16,633	30	18,314	30	19,317
35		35		35		35	16,604	35	18,478	35	20,083
40	10,433	40	12,165	40	13,837	40	16,688	40	18,825	40	20,619
45	2005	45	5	45		45	16,876	45	18,898	45	23,905
50	10,482	50	12,317	50	13,954	50	17,276	50	20,004	50	26,605
55		55		55		55	18,765	55	25,639	53,13	41,623
60	10,582	60	12,617	60	14,197	60	19,938	59,17	37,698		
65		65		65		65	22,571				
70	10,895	70	13,144	70	14,94	68,31	30,249				
75		75		75							
80	11,332	80	13,705	80	16,38						
85		85		85	-01		\sim	h			
90	12,629	90	15,026	90	22,124	A pulling					

Tabel 7.5 Faktor intensitas tegangan pada *sheet* dengan variasi h/t=0,5; t=1,6 mm

Ί	abel	7.6	Faktor	intensita	as tegangar	n pada shee	t dengan	variasi h/t=	0,75; t=	1,6 mm
					0 0					· · ·

θ	posisi 1 (MPa√m)	θ	posisi 2 (MPa√m)	θ	posisi 3 (MPa√m)	θ	posisi 4 (MPa√m)	θ	posisi 5 (MPa√m)	θ	posisi 6 (MPa√m)
0	12,275	0	13,768	0	16,842	0	18,452	0 /	18,999	0	20,164
5		5		5.		5	17,417	5	17,213	5	19,965
10	12,068	10	13,325	10	15,85	10	16,804	10	16,673	10	18,832
15		15		15		15	16,35	15	16,4	15	18,103
20	11,654	20	12,811	20	15,077	20	15,905	20	15,938	20	17,216
25		25		25		25	15,554	25	15,468	25	16,357
30	11,495	30	12,455	30	14,69	-30	15,237	30	15,425	30	15,482
35		35		35		35	15,044	35	14,664	35	14,857
40	11,378	40	12,472	40	14,525	40	14,889	40	14,683	40	14,447
45		45		45		45	14,123	45	14,739	45	14,517
50	11,482	50	12,528	50	14,743	C50 (15,791	50	15,344	50	15,082
55		55		55		55	16,23	55	15,424	55	16,126
60	11,728	60	12,817	60	15,284	60	17,038	60	17,17	60	19,454
65		65		65		65	18,216	65	19,864	62,73	41,996
70	12,069	70	13,286	70	16,202	70	19,687	70	27,014	70	NU S
75	JA.	75		75		75	23,761	73,4	39,733	75	DAW
80	12,675	80	14,147	80	17,839	80,32	34,784			80	60
85		85	VA.	85		77-6				85	S P P
90	13,689	90	15,552	90	23,997				1205	90	- AS

θ	posisi 1 (MPa√m)	θ	posisi 2 (MPa√m)	θ	posisi 3 (MPa√m)	θ	posisi 4 (MPa√m)	θ	posisi 5 (MPa√m)	θ	posisi 6 (MPa√m)
0	8,4354	0	10,227	0	11,529	0	16,155	0	17,245	0	19,957
5		5		5	14-11	5	15,762	5	17,609	5	19,88
10	7,6352	10	9,4421	10	10,949	10	15,533	10	17,393	10	18,862
15		15	HAY.	15		15	15,351	15	17,162	15	18,013
20	7,5022	20	9,0593	20	10,655	20	15,272	20	16,674	20	17,288
25		25		25		25	15,301	25	16,646	25	17,806
30	7,2233	30	9,046	30	10,572	30	15,386	30	16,614	30	17,672
35		35	P . 0	35		35	15,69	35	16,514	35	18,388
40	7,2209	40	9,1295	40	10,66	40	16,132	40	18,102	40	19,722
45	11-1-6	45		45		45	16,851	45	21,632	45	24,988
50	7,3313	50	9,2932	50	10,749	50	18,336	48,18	31,081	45,58	35,493
55	$\mathbf{N}\mathbf{D}^{\prime}$	55		55		51,76	21,988				
60	7,505	60	9,4411	60	11,064						
65		65		65							
70	7,6815	70	9,764	70	11,495						
75		75		75							
80	8,0587	80	10,148	80	12,459	a.					
85		85		85		S Con		P			
90	8,9964	90	11,119	90	17,369			$\mathbf{\Lambda}$			

Tabel 7.7 Faktor intensitas tegangan pada *sheet* dengan variasi h/t=0,25; t=2 mm

Tabel 7.8 Faktor intensitas tegangan pada *sheet* dengan variasi h/t=0,5; t=2 mm

	posisi 1		posisi 2		posisi 3		posisi 4		posisi 5		posisi 6
θ	(MPa√m)	θ	(MPa√m)	θ	(MPa√m)	θ	(MPa√m)	θ	(MPa√m)	θ	(MPa√m)
0	9,7592	0	11,744	0_	12,98	0	15,098	0	17,021	0	19,07
5		5		5		5	14,711	5	16,686	5	18,051
10	9,295	10	10,871	10	12,03	10	14,41	10	16,267	10	17,257
15		15		15		15	14,118	15	15,868	15	16,491
20	9,0295	20	10,599	20	11,888	20	13,914	20	15,684	20	16,713
25		25		25		25	13,848	25	15,536	25	17,001
30	8,9441	30	10,5	30	11,737	- 30	13,812	30	15,338	30	17,138
35		35		35		35	13,886	35	15,636	35	17,219
40	8,9349	40	10,519	40	11,798	40	13,969	40	16,114	40	18,013
45		45		45	50	45	14,203	45	16,44	45	18,914
50	9,0502	50	10,654	50	12,065	50	14,583	50	17,607	50	22,251
55		55		55		55	15,165	55	20,791	53,13	33,412
60	9,2576	60	10,956	60	12,543	60	16,129	59,3	31,301		
65		65		65		65	18,232				
70	9,5892	70	11,354	70	13,288	68,38	26,284				
75		75		75							
80	10,062	80	11,977	80	14,541						DAV
85	1.44	85		85						C D	
90	10,859	90	13,463	90	19,467	T	VI-AN				s bh

	posisi 1		posisi 2		posisi 3		posisi 4		posisi 5		posisi 6
θ	(MPa√m)	θ	(MPa√m)	θ	(MPa√m)	θ	(MPa√m)	θ	(MPa√m)	θ	(MPa√m)
0	10,687	0	12,151	0	13,573	0	15,264	0	15,67	0	18,218
5		5		5	MATT	5	14,529	5	15,418	5	17,058
10	9,6299	10	11,446	10	13,173	10	14,106	10	14,154	10	16,367
15		15		15	JA U	15	13,762	15	13,818	15	15,635
20	9,5163	20	11,103	20	12,529	20	13,542	20	13,612	20	15,021
25	314	25		25		25	13,415	25	13,522	25	14,856
30	9,5163	30	10,947	30	12,298	30	13,313	30	13,496	30	14,959
35		35		35		35	13,285	35	13,512	35	15,034
40	9,5412	40	10,963	40	12,31	40	13,334	40	13,92	40	15,663
45	1380	45		45		45	13,486	45	14,161	45	15,5832
50	9,6802	50	11,162	50	12,586	50	13,774	50	14,354	50	17,659
55		55		55		55	13,972	55	14,847	55	19,25
60	9,9361	60	11,512	60	13,082	60	14,314	60	15,697	60	22,141
65		65		65		65	15,122	65	18,038	65,38	45,028
70	10,341	70	12,075	70	14,01	70	16,287	70	23,379		
75		75		75		75	18,366	73,4	40,663	S .	
80	10,912	80	12,888	80	15,656	80,33	32,275	_			
85		85		85		Reality					
90	12,223	90	14,284	90	21,292			\sim			

Tabel 7.9 Faktor intensitas tegangan pada *sheet* dengan variasi h/t=0,75; t=2 mm

• Pengaruh Kedalaman *chamfering* (h/t) terhadap Faktor intensitas tegangan

Tabel 7.10 Perbandingan Faktor intensitas tegangan pada *sheet* pada posisi 1 dengan h/t= 0,25; 0,5; dan 0,75; t= 1 mm

Sudut	h/t=0,25	h/t=0,5	h/t=0,75
(Ө)	(MPa√m)	(MPa√m)	(MPa√m)
0	16,172	18,483	18,881
5			
10	14,108	16,618	17,599
15			
20	13,53	16,54	17,114
25	- ,		
30	13.224	16.569	16.612
35	-,	-,	0
40	13 002	16 102	16 259
45	10,002	10,102	10,200
50	12 981	16 092	16 283
55	12,001	10,002	10,200
60	12 011	15 805	16 647
65	12,311	13,085	10,047
70	12 004	16.024	17.059
70	13,094	10,034	000,11
15	40.570	40.000	47.770
80	13,578	16,603	17,776
85			
90	15,53	18,541	19,318

Sudut (θ)	h/t=0,25 (MPa√m)	h/t=0,5 (MPa√m)	h/t=0,75 (MPa√m)	
0	19,739	21,227	21,884	
5		N-144	ins I	
10	17,53	20,142	21,123	
15	JAU			
20	16,683	19,42	19,95	
25			1.1.1	
30	16,339	18,252	18,933	
35	40.000	10 100	10.001	
40	16,628	18,183	18,634	
45	16 112	10 202	10.62	
55	10,442	10,202	10,05	
60	16 268	18 283	18 897	
65	10,200	10,200	10,001	
70	16,371	18,617	19,469	9
75			,	
80	16,8	19,309	20,252	
85				
90	19,054	21,352	22,078	

Tabel 7.12 Perbandingan Faktor intensitas tegangan pada *sheet* pada posisi 4 dengan h/t= 0,25; 0,5; dan 0,75; t= 1 mm

BRAWIJA

Sudut	h/t=0,25	Sudut	h/t=0,5	Sudut	h/t=0,75
(θ)	(MPa√m)	(θ)	(MPa√m)	(θ)	(MPa√m)
0	32,696	() () () () () () () () () () () () () (29,919	0	29,074
5	30,261	5	27,31	5	
10	29,96	10	26,206	10	25,421
15	29,1	15	25,639	15	
20	28,76	20	25,231	20 🛁	23,39
25	28,208	25	24,935	25	
30	27,721	30	24,743	30	23,126
35	27,592	35	24,751	35	15.1
40	27,591	40	24,993	40	22,629
45	27,8	45	25,741	45	12/5
50	27,9	50 🕁	26,621	50	22,976
54,42	28,195	55	28,707	55	
6		59,54	40,201	60	24,269
				65	
VE				70	27,114
				75	
				80,3	46,504

Tabel 7.13 Perbandingan Faktor intensitas tegangan pada *sheet* pada posisi 5 dengan h/t= 0,25; 0,5; dan 0,75; t= 1 mm

Sudut	h/t=0,25	Sudut	h/t=0,5	Sudut	h/t=0,75
(θ)	(MPa√m)	(θ)	(MPa√m)	(θ)	(MPa√m)
0	37,985	0	30,876	0	28,908
5	34,271	5	30,829	5	27,963
10	33,145	10	29,282	10	27,197
15	31,875	15	27,993	15	25,632
20	30,02	20	26,785	20	24,716
25	28,59	25	25,531	25	24,195
30	29,91	30	25,133	30	23,629
35	30,22	35	24,979	35	23,038
40	31,758	40	25,076	40	22,492
45	37,705	45	25,513	45	22,643
48,17	47,351	50	26,354	50	22,84
		55	30,561	55	23,357
		59,55	49,996	60	25,276
				65	28,433
		01		70	32,278
				73,4	59,978

Tabel 7.14 Perbandingan Faktor intensitas tegangan pada *sheet* pada posisi 6 dengan h/t= 0,25; 0,5; dan 0,75; t= 1 mm

Sudut	h/t=0,25	Sudut	h/t=0,5	Sudut	h/t=0,75
(θ)	(MPa√m)	(θ)	(MPa√m)	(θ)	(MPa√m)
0	40,288	5 0 0	38,3	0~~~	33,202
5	37,126	5	36,293	5	31,499
10	35,75	10	34,22	10	29,194
15	34,3697	15	33,163	15	27,266
20	33,871	20	32,452	20	27,243
25	32,931	25	31,931	25	27,193
30	32,687	30~~	33,027	30	26,84
35	33,276	35	35,281	35	27,726
40	35,61	40	36,732	40	27,992
41,8	50,885	41,8	51,764	45	31,47
				50	34,22
				56,44	60,743

Tabel 7.15 Perbandingan Faktor intensitas tegangan pada *sheet* pada posisi 1 dengan h/t= 0,25; 0,5; dan 0,75; t= 1,6 mm

Sudut (θ)	h/t=0,25 (MPa√m)	h/t=0,5 (MPa√m)	h/t=0,75 (MPa√m)
0	9,8285	11,541	12,275
5			
10	9,0493	11,005	12,068
15			
20	8,8859	10,674	11,654
25			
30	8,8044	10,409	11,495
35			
40	8,8312	10,433	11,378
45			
50	8,8789	10,482	11,482

55			B P
60	8,9111	10,582	11,728
65		HOS	
70	9,1091	10,895	12,069
75			47-1
80	9,4188	11,332	12,675
85	1.400	A U P	
90	10,671	12,629	13,689

 Tabel 7.16 Perbandingan Faktor intensitas tegangan pada *sheet* pada posisi 2 dengan h/t= 0,25; 0,5; dan 0,75; t= 1,6 mm

 Sudut
 h/t=0,25
 h/t=0,5
 h/t=0,75

 (θ)
 (MPa \sqrt{m})
 (MPa \sqrt{m})
 (MPa \sqrt{m})

 0
 12,425
 13,69
 13,768

 5
 10
 11,418
 13,123
 13,325

 45
 42.61
 12,811
 12,811

Sudut (θ)	h/t=0,25 (MPa√m)	h/t=0,5 (MPa√m)	h/t=0,75 (MPa√m)	
0	12,425	13,69	13,768	
5				
10	11,418	13,123	13,325	
15				
20	11,217	12,61	12,811	
25		\sim		5
30	10,876	12,506	12,455	1
35			5 3 3 3	1
40	10,806	12,165	12,472	2
45				
50	10,81	12,317	12,528	5
55				
60	11,047	12,617	12,817	1
65				1
70	11,369	13,144	13,286	
75				
80	11,684	13,705	14,147	
85		L'é		
90	12,992	15,026	15,552	Ľ

Tabel 7.17 Perbandingan Faktor intensitas tegangan pada *sheet* pada posisi 3 dengan h/t= 0,25; 0,5; dan 0,75; t= 1,6 mm

Sudut	h/t=0,25	h/t=0,5	h/t=0,75
(θ)	(MPa√m)	(MPa√m)	(MPa√m)
0	14,256	15,985	16,842
5			
10	13,364	14,607	15,85
15			
20	13,288	14,177	15,077
25			1941
30	12,917	13,903	14,69
35	NU.A		
40	12,763	13,837	14,525
45			f_{1}
50	12,844	13,954	14,743
55			
60	13,083	14,197	15,284

65	1154		BK.
70	14,056	14,94	16,202
75		100	
80	14,492	16,38	17,839
85			HT -1:
90	20,154	22,124	23,997

Tabel 7.18 Perbandingan Faktor intensitas tegangan pada *sheet* pada posisi 4 dengan h/t= 0,25; 0,5; dan 0,75; t= 1,6 mm

Sudut	h/t=0,25	Sudut	h/t=0,5	Sudut	h/t=0,75
(θ)	(MPa√m)	(θ)	(MPa√m)	(θ)	(MPa√m)
0	20,096	0	18,783	0	18,452
5	19,335	5	18,016	5	17,417
10	18,95	10	17,622	10	16,804
15	18,674	15	17,267	15	16,35
20	18,533	20	16,967	20	15,905
25	18,446	25	16,756	25	15,554
30	18,455	30	16,633	30	15,237
35	18,611	35	16,604	35	15,044
40	18,928	40	16,688	40	14,889
45	19,568	45 式	16,876	45 📎	14,123
50	20,661	50	17,276	50	15,791
54,41	25,602	55	18,765	55	16,23
		60	19,938	60	17,038
		65	22,571	65	18,216
		68,31	30,249	70	19,687
			えてと	75	23,761
				80,32	34,784

Tabel 7.19 Perbandingan Faktor intensitas tegangan pada *sheet* pada posisi 5 dengan h/t= 0,25; 0,5; dan 0,75; t= 1,6 mm

Sudut	h/t=0,25	Sudut	h/t=0,5	Sudut	h/t=0,75
(θ)	(MPa√m)	(θ)	(MPa√m)	(θ)	(MPa√m)
0	22,008	0	19,489	0	18,999
5	21,661	5	19,384	5	17,213
10	21,059	10 0	19,274	V 10 C	16,673
15	20,552	15	18,702	15	16,4
20	20,151	20	18,524	20	15,938
25	19,87	25	18,432	25	15,468
30	19,32	30	18,314	30	15,425
35	20,124	35	18,478	35	14,664
40	21,176	40	18,825	40	14,683
45	24,22	45	18,898	45	14,739
48,17	33,47	50	20,004	50	15,344
		55	25,639	55	15,424
		59,17	37,698	60	17,17
		2-55		65	19,864
MAN				70	27,014
				73,4	39,733

Tabel 7.20 Perbandingan Faktor intensitas tegangan pada *sheet* pada posisi 6 dengan h/t=0,25; 0,5; dan 0,75; t= 1,6 mm

Sudut (θ)	h/t=0,25 (MPa√m)	Sudut (θ)	h/t=0,5 (MPa√m)	Sudut (θ)	h/t=0,75 (MPa√m)
0	24,231	0	23,719	0	20,164
5	23,62	5	22,1	5	19,965
10	22,712	10	21,394	10	18,832
15	22,305	15	21,105	15	18,103
20	21,203	20	20,212	20	17,216
25	21,655	25	19,832	25	16,357
30	21,759	30	19,317	30	15,482
35	22,776	35	20,083	35	14,857
40	24,86	40	20,619	40	14,447
44,08	39,273	45	23,905	45	14,517
		50	26,605	50	15,082
		53,13	41,623	55	16,126
				60	19,454
			FAG	62,73	41,996

Tabel 7.21 Perbandingan Faktor intensitas tegangan pada *sheet* pada posisi 1 dengan h/t= 0,25; 0,5; dan 0,75; t= 2 mm

Sudut	h/t=0,25 (MPa√m)	h/t=0,5 (MPa√m)	h/t=0,75 (MPa√m)	
0	8,4354	9,7592	10,687	5
5 10	7,6352	9,295	9,6299	13
15 20	7 5022	9 0295	9 5163	A.
25	7,0002	0,0100		
30 35	7,2233	8,9441	9,5163	λŸ.
40 45	7,2209	8,9349	9,5412	
50	7,3313	9,0502	9,6802	P
55 60	7,505	9,2576	9,9361	
65 70	7 6815	9 5892	10 341	h
75	1,0010	0,0002	10,011	
80 85	8,0587	10,062	10,912	\bigcup
90	8,9964	10,859	12,223	

Sudut (θ)	h/t=0,25 (MPa√m)	h/t=0,5 (MPa√m)	h/t=0,75 (MPa√m)
0	10,227	11,744	12,151
5 10 15	9,4421	10,871	11,446
20	9,0593	10,599	11,103
25 30	9,046	10,5	10,947
35 40	9,1295	10,519	10,963
45 50	9,2932	10,654	11,162
55 60	9,4411	10,956	11,512
65 70	9.764	11.354	12.075
75	10 149	11 077	12,000
85	10,140	5	12,000
90	11,119	13,463	14,284

Tabel 7.22 Perbandingan Faktor intensitas tegangan pada *sheet* pada posisi 2 dengan h/t= 0,25; 0,5; dan 0,75; t= 2 mm

Tabel 7.23 Perbandingan Faktor intensitas tegangan pada *sheet* pada posisi 3 dengan h/t= 0,25; 0,5; dan 0,75; t= 2 mm

BRAWIJAL

Sudut	h/t=0,25	h/t=0,5	h/t=0,75		
(θ)	(MPa√m)	(MPa√m)	(MPa√m)		
0	11,529	12,98	13,573		
5			11. 🔨	メ	
10	10,949	12,03	13,173		
15			引い合		
20	10,655	11,888	12,529	11	
25					
30	10,572	11,737	12,298	1	
35		Ч	Y I V		
40	10,66	11,798	12,31		
45					
50	10,749	12,065	12,586		
55					
60	11,064	12,543	13,082		
65					
70	11,495	13,288	14,01		
75					
80	12,459	14,541	15,656		
85		VAY			
90	17,369	19,467	21,292		
Sudut (θ)	h/t=0,25 (MPa√m)	Sudut (θ)	h/t=0,5 (MPa√m)	Sudut (θ)	h/t=0,75 (MPa√m)
--------------	---------------------	--------------	--------------------	--------------	---------------------
0	16,155	0	15,098	0	15,264
5	15,762	5	14,711	5	14,529
10	15,533	10	14,41	10	14,106
15	15,351	15	14,118	15	13,762
20	15,272	20	13,914	20	13,542
25	15,301	25	13,848	25	13,415
30	15,386	30	13,812	30	13,313
35	15,69	35	13,886	35	13,285
40	16,132	40	13,969	40	13,334
45	16,851	45	14,203	45	13,486
50	18,336	50	14,583	50	13,774
51,76	21,988	55	15,165	55	13,972
		60	16,129	60	14,314
		65	18,232	65	15,122
		68,38	26,284	70	16,287
		7		75 0	18,366
				80,33	32,275

Tabel 7.24 Perbandingan Faktor intensitas tegangan pada *sheet* pada posisi 4 dengan h/t=0,25; 0,5; dan 0,75; t= 2 mm

Tabel 7.25 Perbandingan Faktor intensitas tegangan pada *sheet* pada posisi 5 dengan h/t= 0,25; 0,5; dan 0,75; t= 2 mm

Sudut	h/t=0,25	Sudut	h/t=0,5	Sudut	h/t=0,75
(θ)	(MPa√m)	(θ)	(MPa√m)	(θ)	(MPa√m)
0	17,245	0	17,021	0	15,67
5	17,609	5 6	16,686	5 20	15,418
10	17,393	10	16,267	10	14,154
15	17,162	15	15,868	15	13,818
20	16,674	20	15,684	20	13,612
25	16,646	25 I.	15,536	25	13,522
30	16,614	30	15,338	30	13,496
35	16,514	35	15,636	35	13,512
40	18,102	40 🗁	16,114	40	13,92
45	21,632	45	16,44	45	14,161
48,18	31,081	50	17,607	50	14,354
-77 N		55	20,791	55	14,847
		59,3	31,301	60	15,697
$\Gamma N N$				65	18,038
				70	23,379
7 A Y				73,4	40,663

Sudut	h/t=0,25	Sudut	h/t=0,5	Sudut	h/t=0,75
(θ)	(MPa√m)	(θ)	(MPa√m)	(0)	(MPa√m)
0	19,957	0	19,07	0	18,218
5	19,88	5	18,051	5	17,058
10	18,862	10	17,257	10	16,367
15	18,013	15	16,491	15	15,635
20	17,288	20	16,713	20	15,021
25	17,806	25	17,001	25	14,856
30	17,672	30	17,138	30	14,959
35	18,388	35	17,219	35	15,034
40	19,722	40	18,013	40	15,663
45	24,988	45	18,914	45	15,5832
45,58	35,293	50	22,251	50	17,659
		53,13	35,412	55	19,25
				60	22,141
				65,38	45,028

Tabel 7.26 Perbandingan Faktor intensitas tegangan pada *sheet* pada posisi 6 dengan h/t= 0,25; 0,5; dan 0,75; t= 2 mm

Lampiran D. Listing Program ANSYS 9.0

Permodelan Lubang Lurus (Verifikasi)

/BATCH /COM,ANSYS RELEASE 9.0 UP20041104 23:00:34 02/05/2006 /input,menust,tmp,",,,,,,,1 /GRA,POWER /GST,ON /PLO,INFO,3 /GRO,CURL,ON /CPLANE,1 AS BRAWIU /REPLOT, RESIZE WPSTYLE,,,,,,0 /NOPR /PMETH,OFF,0 KEYW, PR SET, 1 KEYW,PR_STRUC,1 KEYW,PR_THERM,0 KEYW, PR FLUID,0 KEYW, PR ELMAG, 0 KEYW,MAGNOD,0 KEYW,MAGEDG,0 KEYW,MAGHFE,0 KEYW,MAGELC,0 KEYW,PR_MULTI,0 KEYW, PR CFD,0 /GO /COM, /COM,Preferences for GUI filtering have been set to display: /COM, Structural /PREP7 ET,1,SOLID95 **MPTEMP**,,,,,,, 11 MPTEMP,1,0 MPDATA,EX,1,,73.1e9 MPDATA, PRXY, 1,, 0.33 BLC4, , ,0.0175,0.0254,0.001 CYL4, , ,0.0024, , , ,0.001 1, VSBV, KWPAVE, 10 wpro,,90.000000, CYL4, , ,0.000125,90, , , ADELE, FLST,2,2,4,ORDE,2 FITEM,2,4 FITEM,2,-5 LDELE, P51X, , ,1 KWPAVE, 10

KWPAVE, 10 wpro,,90.000000, CYL4, , ,0.0005,90, , ADELE, 1 FLST,2,2,4,ORDE,2 FITEM,2,4 FITEM,2,-5 LDELE,P51X, , ,1

KWPAVE, 2 wpro,,-90.000000, CYL4, , ,0.000025,180, ,

VDRAG, 1, , , , , , , LDELE, 1, , , 1 FLST,2,2,6,ORDE,2 FITEM,2,1 FITEM,2,3 VPTN,P51X

1

11

FLST,5,3,4,ORDE,3 FITEM,5,13 FITEM,5,-14 FITEM,5,18 CM,_Y,LINE LSEL, , , ,P51X CM,_Y1,LINE CMSEL,_Y

LESIZE,_Y1, , ,27, , , ,1

VSWEEP,4,3,5

MSHAPE,1,3D MSHKEY,0

CM,_Y,VOLU VSEL, , , , 5 CM,_Y1,VOLU CHKMSH,'VOLU' CMSEL,S,_Y

VMESH,_Y1

CMDELE,_Y CMDELE,_Y1 CMDELE,_Y2

FLST,2,1,5,ORDE,1 FITEM,2,12 FLST,2,1,5,ORDE,1 FITEM,2,12 !* /GO DA,P51X,UX,

FLST,2,2,5,ORDE,2 FITEM,2,5 FITEM,2,17 !* /GO DA,P51X,UY,

AS BRAWIU AL !*

FLST,2,1,5,ORDE,1 FITEM,2,4 /GO SFA, P51X, 1, PRES, -188e6 /STATUS,SOLU SOLVE FINISH /POST1 SET, FIRST NWPAVE, 268 wpro,,,-90.000000 SITAS BRAWINA wpro,,90.000000, wpro,,90.000000, CSWPLA,11,0,1,1, PATH,KI1,3,,48 PPATH,1,268 PPATH,2,545 PPATH,3,270 KCALC,,,1 *GET,KI1,KCALC,,K,1 CSDELE,11, ,1, NWPAVE, 237 wpro,,,10.000000 CSDELE,11, ,1, CSWPLA,11,0,1,1, PATH,KI1,3,,48 PPATH,1,237 PPATH,2,123 PPATH,3,254 KCALC,,,1 *GET,KI1,KCALC,,K,1 CSDELE,11, ,1, NWPAVE, 241 wpro,,,10.000000 11 CSWPLA,11,0,1,1, PATH,KI1,3,,48 PPATH,1,241 PPATH,2,133 PPATH,3,258 KCALC,,,1 *GET,KI1,KCALC,,K,1 CSDELE,11, ,1, NWPAVE, 245 wpro,,,10.000000 CSWPLA,11,0,1,1, PATH,KI1,3,,48 PPATH,1,245

PPATH,2,136 PPATH,3,262 KCALC,,,1

*GET,KI1,KCALC,,K,1 CSDELE,11, ,1,

NWPAVE, 249 wpro,,,10.000000 CSWPLA,11,0,1,1, PATH,K11,3,,48 PPATH,1,249 PPATH,2,134 PPATH,3,266 KCALC,,,1 *GET,K11,KCALC,,K,1 CSDELE,11,,1,

NWPAVE, 569 wpro,,,10.000000 CSWPLA,11,0,1,1, PATH,KI1,3,,48 PPATH,1,569 PPATH,2,131 PPATH,3,551 KCALC,,,1 *GET,KI1,KCALC,,K,1 CSDELE,11, ,1,

NWPAVE, 573 wpro,,,10.000000 CSWPLA,11,0,1,1, PATH,KI1,3,,48 PPATH,1,573 PPATH,2,129 PPATH,3,555 KCALC,,,1 *GET,KI1,KCALC,,K,1 CSDELE,11,,1,

NWPAVE, 577 wpro,,,10.000000 CSWPLA,11,0,1,1, PATH,KI1,3,,48 PPATH,1,577 PPATH,2,126 PPATH,3,559 KCALC,,,1 *GET,KI1,KCALC,,K,1 CSDELE,11, ,1,

11

NWPAVE, 581 wpro,,,10.000000 CSWPLA,11,0,1,1, PATH,KI1,3,,48 PPATH,2,138 PPATH,2,138 PPATH,3,563 KCALC,,,1 *GET,KI1,KCALC,,K,1 CSDELE,11,,1,

NWPAVE, 271 wpro,,,10.000000 CSWPLA,11,0,1,1, PATH,KI1,3,,48

TAS BRAWINA

BRAWIJAYA

PPATH,1,271 PPATH,2,535 PPATH,3,273 KCALC,,,1 *GET,KI1,KCALC,,K,1 FINISH

Permodelan Countersunk rivet holeuntuk t = 1 mm, h/t = 0.25, posisi 1 ٠

/BATCH

/COM, Structural

/PREP7

ET,1,SOLID95

MPTEMP,1,0 MPDATA, EX, 1,, 73.1e-9 MPDATA, PRXY, 1,, 0.33 BLC4, , ,0.0175,0.0254,0.001 CYL4, , ,0.0024, , , ,0.001 CONE,0.0024,0.00569486,0.00025,0.001,0,360,

FLST, 3, 2, 6, ORDE, 2 FITEM,3,2 FITEM,3,-3 VSBV, 1,P51X

KWPAVE, 18 wpro,,,90.000000

wpro,,90.000000,

CYL4, , ,0.000125,130, ,

ADELE, 1 FLST,2,2,4,ORDE,2 FITEM,2,4 FITEM,2,-5 LDELE,P51X, , ,1

KWPAVE, 2 wpro,,-90.000000,

CYL4, , ,0.000025,180, ,

VDRAG, 1, , , , ,

LDELE, 1, , ,1 FLST,2,2,6,ORDE,2

FITEM,2,1 FITEM,2,4 VPTN,P51X

FLST,5,3,4,ORDE,3 FITEM,5,13 FITEM,5,-14 FITEM,5,17 CM,_Y,LINE LSEL, , , , ,P51X CM,_Y1,LINE CMSEL,,_Y

LESIZE,_Y1, , ,13, , , , ,1

EXTO,VSWE,AUTO,OFF VSWEEP,3,3,5

11

MSHAPE,1,3D MSHKEY,0

CM,_Y,VOLU VSEL,,,, 5 CM,_Y1,VOLU CHKMSH,'VOLU' CMSEL,S,_Y

VMESH,_Y1 FLST,2,2,5,ORDE,2 FITEM,2,5 FITEM,2,13

/GO DA,P51X,UY, FLST,2,1,5,ORDE,1 FITEM,2,20

/GO DA,P51X,UX, FLST,2,1,4,ORDE,1

AS BRAWIJA

FITEM,2,27

/GO DL,P51X, ,UZ, FLST,2,1,5,ORDE,1 FITEM,2,4 /GO

SFA,P51X,1,PRES,92e6 FLST,2,1,5,ORDE,1 FITEM,2,4 /GO

SFA,P51X,1,PRES,-188e6 FLST,2,1,5,ORDE,1 FITEM,2,14 /GO

SFA,P51X,1,PRES,100000 /STATUS,SOLU SOLVE FINISH /POST1 SET,FIRST

NWPAVE, 268 wpro,-90.000000,, wpro,-90.000000,, CSWPLA,11,0,1,1, PATH,KI1,3,,48 PPATH,1,268 PPATH,2,545 PPATH,3,270 KCALC,,,1 *GET,KI1,KCALC,,K,1

NWPAVE, 237 wpro,,,10.000000 CSDELE,11, ,1, CSWPLA,11,0,1,1, PATH,KI1,3,,48 PPATH,1,237 PPATH,2,136 PPATH,3,254 KCALC,,,1 *GET,KI1,KCALC,,K,1 CSDELE,11, ,1,

11

NWPAVE, 241 wpro,,,10.000000 CSWPLA,11,0,1,1, PATH,KI1,3,,48 PPATH,1,241 PPATH,2,134 PPATH,3,258 KCALC,,,1 *GET,KI1,KCALC,,K,1 CSDELE,11,,1,

NWPAVE, 245

AS BRAWINAL

wpro,,,10.000000 CSWPLA,11,0,1,1, PATH,KI1,3,,48 PPATH,1,245 PPATH,2,132 PPATH,3,262 KCALC,,,1 *GET,KI1,KCALC,,K,1 CSDELE,11,,1,

NWPAVE, 249 wpro,,,10.000000 CSWPLA,11,0,1,1, PATH,KI1,3,,48 PPATH,1,249 PPATH,2,130 PPATH,3,266 KCALC,,,1 *GET,KI1,KCALC,,K,1 CSDELE,11, ,1,

NWPAVE, 569 wpro,,,10.000000 CSWPLA,11,0,1,1, PATH,KI1,3,,48 PPATH,1,569 PPATH,2,128 PPATH,3,551 KCALC,,,1 *GET,KI1,KCALC,,K,1 CSDELE,11,,1,

NWPAVE, 573 wpro,,,10.000000 CSWPLA,11,0,1,1, PATH,KI1,3,,48 PPATH,2,126 PPATH,3,555 KCALC,,,1 *GET,KI1,KCALC,,K,1 CSDELE,11, ,1,

NWPAVE, 577 wpro,,,10.000000 CSWPLA,11,0,1,1, PATH,KI1,3,,48 PPATH,1,577 PPATH,2,124 PPATH,3,559 KCALC,,,1 *GET,KI1,KCALC,,K,1 CSDELE,11, ,1,

NWPAVE, 581 wpro,,,10.000000 CSWPLA,11,0,1,1, PATH,KI1,3,,48 PPATH,1,581 PPATH,2,123 SITAS BRAWIJA

PPATH,3,563 KCALC,,,1 *GET,KI1,KCALC,,K,1 CSDELE,11, ,1,

NWPAVE, 271 wpro,,,10.000000 CSWPLA,11,0,1,1, PATH,KI1,3,,48 PPATH,1,271 PPATH,2,535 PPATH,3,273 KCALC,,,1 *GET,KI1,KCALC,,K,1 FINISH

• Permodelan *Countersunk rivet hole*untuk t = 1 mm; h/t = 0.5; posisi 1

/COM, /COM,Preferences for GUI filtering have been set to display: /COM, Structural

/PREP7

ET,1,SOLID95 MPTEMP,,,,,, MPTEMP,1,0 MPDATA,EX,1,,73.1e9 MPDATA,PRXY,1,,0.33 BLC4, , ,0.0175,0.0254,0.001 CYL4, , 0.0024, , , ,0.001 CONE,0.0024,0.005396573,0.0005,0.001,0,360,

FLST,3,2,6,ORDE,2 FITEM,3,2 FITEM,3,-3 VSBV, 1,P51X

KWPAVE, 10 wpro,,90.000000, CYL4, , ,0.00025,90, ,

ADELE, 1 FLST,2,2,4,ORDE,2 FITEM,2,4 FITEM,2,-5 LDELE,P51X, , ,1

KWPAVE, 2 wpro,,-90.000000, CYL4,,,0.000025,180,, VDRAG, 1,,,,,, 1

LDELE, 1, , ,1

FLST,2,2,6,0RDE,2 FITEM,2,1 FITEM,2,4 VPTN,P51X

FLST,5,3,4,ORDE,3 FITEM,5,13 FITEM,5,-14 FITEM,5,17 CM,_Y,LINE LSEL, , , , ,P51X CM,_Y1,LINE CMSEL,,_Y

LESIZE,_Y1, , ,18, , , , ,1

EXTO, VSWE, AUTO, OFF

11

VSWEEP,3,3,5

SAVE MSHAPE,1,3D MSHKEY,0

CM,_Y,VOLU VSEL, , , , 5 CM,_Y1,VOLU CHKMSH,'VOLU' CMSEL,S,_Y

VMESH,_Y1

CMDELE,_Y CMDELE,_Y1 CMDELE,_Y2

/GO DA,P51X,UY, FLST,2,1,5,ORDE,1 FITEM,2,20 RSITAS BRAWINA

/GO DA,P51X,UX, FLST,2,1,4,ORDE,1 FITEM,2,27

/GO DL,P51X, ,UZ, FLST,2,1,5,ORDE,1 FITEM,2,4 /GO

SFA,P51X,1,PRES,92e6 FLST,2,1,5,ORDE,1 FITEM,2,4 /GO

SFA,P51X,1,PRES,-188e6 FLST,2,1,5,ORDE,1 FITEM,2,14 /GO

SFA,P51X,1,PRES,100000 /STATUS,SOLU SOLVE FINISH /POST1 SET,FIRST

NWPAVE, 268 wpro,-90.000000,, wpro,-90.000000,, PATH,KI1,3,,48 PPATH,1,268 PPATH,2,545 PPATH,3,270 KCALC,,,1 *GET,KI1,KCALC,,K,1 CSDELE,11, ,1,

11

NWPAVE, 237 wpro,,,10.000000 CSWPLA,11,0,1,1, PATH,KI1,3,,48 PPATH,1,237 PPATH,2,123 PPATH,3,254 KCALC,,,1 *GET,KI1,KCALC,,K,1 CSDELE,11, ,1, NWPAVE, 241 wpro,,,10.000000 CSWPLA,11,0,1,1, PATH,KI1,3,,48 PPATH,1,241 PPATH,2,133 PPATH,3,258 KCALC,,,1 *GET,KI1,KCALC,,K,1 CSDELE,11, ,1,

AS BRAWIJA

NWPAVE, 245 wpro,,,10.000000 CSWPLA,11,0,1,1, PATH,KI1,3,,48 PPATH,1,245 PPATH,2,136 PPATH,3,262 KCALC,,,1 *GET,KI1,KCALC,,K,1 CSDELE,11,,1,

NWPAVE, 249 wpro,,,10.000000 CSWPLA,11,0,1,1, PATH,KI1,3,,48 PPATH,1,249 PPATH,2,134 PPATH,3,266 KCALC,,,1 *GET,KI1,KCALC,,K,1 CSDELE,11, ,1,

NWPAVE, 569 wpro,,,10.000000 CSWPLA,11,0,1,1, PATH,KI1,3,,48 PPATH,1,569 PPATH,2,131 PPATH,3,551 KCALC,,,1 *GET,KI1,KCALC,,K,1 CSDELE,11,,1,

NWPAVE, 573 wpro,,,10.000000 CSWPLA,11,0,1,1, PATH,KI1,3,,48 PPATH,2,129 PPATH,2,555 KCALC,,,1 *GET,KI1,KCALC,,K,1 CSDELE,11, ,1,

NWPAVE, 577 wpro,,,10.000000 CSWPLA,11,0,1,1, PATH,KI1,3,,48 PPATH,2,126 PPATH,3,559 KCALC,,,1 *GET,KI1,KCALC,,K,1 CSDELE,11, ,1,

NWPAVE, 581 wpro,,,10.000000 CSWPLA,11,0,1,1, PATH,KI1,3,,48 RSITAS BRAWIU

PPATH,1,581 PPATH,2,138 PPATH,3,563 KCALC,,,1

NWPAVE, 271 wpro,,,10.000000 CSWPLA,11,0,1,1, PATH,KI1,3,,48 PPATH,1,271 PPATH,2,535 PPATH,3,273 KCALC,,,1 *GET,KI1,KCALC,,K,1 FINISH

• Permodelan *Countersunk rivet hole*untuk t = 1 mm; h/t = 0.75; posisi 1

/BATCH

/COM, /COM,Preferences for GUI filtering have been set to display: /COM, Structural

/PREP7

/GO

KEYW,PR_MULTI,0 KEYW,PR_CFD,0 !* ET,1,SOLID95

MPTEMP,,,,,,, MPTEMP,1,0 MPDATA,EX,1,,73.1e9 MPDATA,PRXY,1,,0.33 BLC4, , ,0.0175,0.0254,0.001 CYL4, , 0.0024, , ,0.001 CONE,0.0024,0.005098,0.00075,0.001,0,360,

FLST,3,2,6,0RDE,2 FITEM,3,2 FITEM,3,-3 VSBV, 1,P51X

KWPAVE, 10 wpro,,90.000000, CYL4, , ,0.000375,90, , ADELE, 1

FLST,2,2,4,ORDE,2 FITEM,2,4 FITEM,2,-5 LDELE,P51X, , ,1

KWPAVE, 2 wpro,,-90.000000, CYL4,,,0.000025,180,, VDRAG, 1,,,,,, 1 LDELE, 1,,,1

FLST,2,2,6,0RDE,2 FITEM,2,1 FITEM,2,4 VPTN,P51X

FLST,5,3,4,ORDE,3 FITEM,5,13 FITEM,5,-14 FITEM,5,17 CM,_Y,LINE LSEL,,,,,P51X CM,_Y1,LINE CMSEL,,_Y

11

LESIZE,_Y1, , ,27, , , ,1

EXTO,VSWE,AUTO,OFF VSWEEP,3,3,5

MSHAPE,1,3D MSHKEY,0

CM,_Y,VOLU VSEL,,,, 5 CM,_Y1,VOLU CHKMSH,'VOLU' CMSEL,S,_Y AS BRAWIU

VMESH,_Y1 FLST,2,2,5,ORDE,2 FITEM,2,5 FITEM,2,13

/GO DA,P51X,UY, FLST,2,1,5,ORDE,1 FITEM,2,20

/GO DA,P51X,UX, FLST,2,1,4,ORDE,1 FITEM,2,27

/GO DL,P51X, ,UZ, FLST,2,1,5,ORDE,1 FITEM,2,4 /GO

SFA,P51X,1,PRES,59.53e6 FLST,2,1,5,ORDE,1 FITEM,2,4 /GO

SFA,P51X,1,PRES,-188e6 FLST,2,1,5,ORDE,1 FITEM,2,14 /GO

SFA,P51X,1,PRES,100000 /STATUS,SOLU SOLVE FINISH /POST1 SET,FIRST

NWPAVE, 403 wpro,-90.000000,, CSWPLA,11,0,1,1, PATH,KI1,3,,48 PPATH,1,403 PPATH,2,788 PPATH,3,405 KCALC,,,1 *GET,KI1,KCALC,,K,1 CSDELE,11, ,1,

NWPAVE, 356 wpro,,,10.000000 CSWPLA,11,0,1,1, PATH,KI1,3,,48 PPATH,1,356 PPATH,2,193 PPATH,3,382 KCALC,,,1 *GET,KI1,KCALC,,K,1 SITAS BRAWINA

CSDELE,11, ,1,

NWPAVE, 362 wpro,,,10.000000 CSWPLA,11,0,1,1, PATH,KI1,3,,48 PPATH,1,362 PPATH,2,203 PPATH,3,388 KCALC,,,1 *GET,KI1,KCALC,,K,1 CSDELE,11, ,1,

NWPAVE, 368 wpro,,,10.000000 CSWPLA,11,0,1,1, PATH,KI1,3,,48 PPATH,2,207 PPATH,3,394 KCALC,,,1 *GET,KI1,KCALC,,K,1 CSDELE,11, ,1,

NWPAVE, 374 wpro,,,10.000000 CSWPLA,11,0,1,1, PATH,KI1,3,,48 PPATH,2,204 PPATH,3,400 KCALC,,,1 *GET,KI1,KCALC,,K,1 CSDELE,11, ,1,

NWPAVE, 822 wpro,,,10.000000 CSWPLA,11,0,1,1, PATH,KI1,3,,48 PPATH,1,822 PPATH,2,200 PPATH,3,795 KCALC,,,1 *GET,KI1,KCALC,,K,1 CSDELE,11,,1,

NWPAVE, 828 wpro,,,10.000000 CSWPLA,11,0,1,1, PATH,KI1,3,,48 PPATH,2,196 PPATH,3,801 KCALC,,,1 *GET,KI1,KCALC,,K,1 CSDELE,11, ,1,

NWPAVE, 834 wpro,,,10.000000 CSWPLA,11,0,1,1, RSITAS BRAWIN

PATH,KI1,3,,48 PPATH,1,834 PPATH,2,189 PPATH,3,807 KCALC,,,1 *GET,KI1,KCALC,,K,1 CSDELE,11, ,1,

NWPAVE, 840 wpro,,,10.000000 CSWPLA,11,0,1,1, PATH,KI1,3,,48 PPATH,1,840 PPATH,2,185 PPATH,3,813 KCALC,,,1 *GET,KI1,KCALC,,K,1 CSDELE,11,,1,

NWPAVE, 406 wpro,,,10.000000 CSWPLA,11,0,1,1, PATH,KI1,3,,48 PPATH,1,406 PPATH,2,778 PPATH,3,408 KCALC,,,1 *GET,KI1,KCALC,,K,1 FINISH

83

AS BRAWIUM

DAFTAR PUSTAKA

Anonim. Boeing Description. www.boeing.com

Anonim. *Chapter 2 : Literature Review*. Courtersy of LPS Laboratories, Inc. <u>www.library.unsw.edu.au/~thesis/adtADFA/uploads/approved/adtADFA200508</u> <u>19.111957/public/03chapter2.pdf</u>

Anonim. www.matweb.com

ANSYS Rel. 9.0. 2004. Ansys Release 9.0 Documentation. Ansys, Inc.

Banantine, Julie .A.1990. *Fundamentals of Metal Fatigue Analysis*. Prentice Hall. Engewood Cliffs, New Jersey.

Broek, David. 1989. *Elementary Engineering Fracture Mechanics*. Sijthoff & Noordhoff International Publisher B.V.. Alphen aan den Rijn, Netherland.

Christy, Joe. 1984. Aircraft Construction : Repair and Inspection. TAB Books.

de Rijk, J.J.M and Fawaz, S.A. 2003. *Stress Intensity Factor for Countersunk Holes Subjected to Tension & Bending*. Sixth Joint DoD/FAA/NASA Conference on Aging Aircraft. www.galaxyscientific.com/agingaircraft2002/SESSIONS/9/9A2_DERIJCK.PDF

Dobrovolsky, V. 1985. Machine Elements. Peace Publishers, Moscow

Hibbeler, R.C. 2001. Engineeering Mechanics : Statics. Prentice Hall International.

Newman, J.C. and Raju, I.S. 1984. Stress Intensity Factor Equation for Cracks in Three Dimensional Finite Bodies Subjected to Tension and Bending Loads. NASA Technical Memorandum 85793. NASA, April 1984. <u>www.ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19840015857_1984015857</u> <u>.pdf</u>

Spotts, M.F., et al. 2004. Design of Machine Elements. Pearson Prentice Hall.