ANALISIS EFISIENSI ALOKATIF INPUT USAHATANI JAGUNG (ZEA MAYS)

(Kasus di Desa Sukolilo, Kecamatan Wajak, Kabupaten Malang)

GITAS BR

Oleh:

INDROYONO (0710440009-44)

UNIVERSITAS BRAWIJAYA
FAKULTAS PERTANIAN
JURUSAN SOSIAL EKONOMI PERTANIAN
PROGRAM STUDI AGRIBISNIS
MALANG
2011

ANALISIS EFISIENSI ALOKATIF INPUT USAHATANI JAGUNG (ZEA MAYS)

(Kasus di Desa Sukolilo, Kecamatan Wajak, Kabupaten Malang)

Oleh : INDROYONO 0710440009-44

SKRIPSI

Diajukan sebagai salah satu syarat untuk memperoleh Gelar Sarjana Pertanian Strata Satu (S-1)

UNIVERSITAS BRAWIJAYA
FAKULTAS PERTANIAN
JURUSAN SOSIAL EKONOMI PERTANIAN
PROGRAM STUDI AGRIBISNIS
MALANG
2011

BRAWIJAYA

PERNYATAAN

Dengan ini saya menyatakan bahwa dalam skripsi ini tidak terdapat karya yang pernah diajukan untuk memperoleh gelar kesarjanaan di suatu Perguruan Tinggi, dan sepanjang pengetahuan saya juga tidak terdapat karya atau pendapat yang pernah ditulis atau diterbitkan oleh orang lain, kecuali yang secara tertulis diacu dalam naskah ini dan disebutkan dalam daftar pustaka.

Malang, Januari 2011 <u>Indroyono</u> Nim.0710440009-44

LEMBAR PERSETUJUAN SKRIPSI

Judul Skripsi : Analisis Efisiensi Alokatif Input Usahatani Jagung

(Zea Mays) Di Desa Sukolilo, Kecamatan Wajak,

RAW

Kabupaten Malang

Nama Mahasiswa : Indroyono

Nim : 0710440009

Program Studi : Agribisnis

Jurusan : Sosial Ekonomi Pertanian

Menyetujui : Dosen Pembimbing

Utama,

Pendamping,

Dr. Ir. Nuhfil Hanani AR, MS. NIP. 19581128 198303 1 005 <u>Riyanti Isaskar,SP.M.Si</u> NIP. 19740413 200501 2 001

Mengetahui,

Ketua Jurusan Sosial Ekonomi

Dr. Ir Djoko Koestiono, MS

NIP. 19530715 198103 1 006

Tanggal Persetujuan:

RINGKASAN

INDROYONO. 0710440009-44. ANALISIS EFISIENSI INPUT USAHATANI JAGUNG (Zea Mays) DI DESA SUKOLILO, KECAMATAN WAJAK, KABUPATEN MALANG. Di bawah bimbingan Dr. Ir. Nuhfil Hanani AR, MS dan Riyanti Isaskar, SP.M.Si

Jagung merupakan salah satu tanaman palawija yang produktivitasnya akan ditingkatkan oleh pemerintah mengingat semakin meningkatnya jumlah penduduk di Indonesia. Pemerintah mencanangkan swasembada jagung pada tahun 2014 sebagai upaya menghadapi kenaikan jumlah penduduk guna mengatasi ketahanan pangan di Indonesia. Hal ini dikarenakan jagung memiliki keunggulan bila dibandingkan dengan tanaman palawija lainya sebagai sumber pangan alternatif bagi masyarakat di Indonesia. Di samping itu, jagung memiliki nilai tukar yang cukup tinggi di karenakan hampir seluruh bagian tanaman jagung dapat diolah dan dimanfaatkan untuk memenuhi kebutuhan manusia.

Salah satu daerah yang sesuai untuk pengembangan sektor pertanian khususnya untuk komoditas jagung yaitu di Kecamatan Wajak, Kabupaten Malang mengingat hasil produksi dan luas panen jagungnya berada di peringkat pertama dalam tingkat Kabupaten Malang (Badan Perencanaan dan Pembangunan Kabupaten Malang, 2009).

Permasalahan utama dalam usahatani jagung di desa sukolilo adalah masih rendahnya produktivitas jagung yang dihasilkan apabila dibandingkan dengan rata-rata produktivitas Kecamatan Wajak. Selisih produktivitas Kecamatan Wajak dengan Desa Sukolilo sebesar 12,73 kw/ha (Badan Perencanaan dan Pembangunan Kabupaten Malang, 2009). Perbedaan produktivitas tersebut berkaitan dengan pengkombinasian berbagai macam input yang belum efisien sehingga produksi yang dihasilkan menjadi belum maksimal. Hal ini mendorong peneliti untuk melakukan penelitian tentang efisiensi alokatif input usahatani jagung di daerah penelitian. Penelitian ini bertujuan untuk: (1) Menganalisis faktor-faktor yang berpengaruh nyata terhadap produksi jagung, (2) Menganalisis tingkat efisiensi alokatif penggunaan faktor-faktor produksi yang berpengaruh terhadap usahatani jagung, dan (3) Menganalisis efisiensi usahatani jagung.

Metode analisis yang digunakan yaitu analisis statistik deskriptif dan statistik inferensial dengan fungsi produksi Cobb Douglas. Hasil yang diperoleh yaitu:

- 1. Faktor-faktor produksi yang digunakan dalam usahatani jagung di daerah penelitian adalah luas lahan, bibit, pupuk, dan tenaga kerja. Dari keempat variabel tersebut yang berpengaruh nyata pada usahatani jagung adalah luas lahan. Hal ini berarti bahwa dengan adanya penambahan luas lahan akan berpengaruh lebih besar terhadap produksi jagung dibandingkan faktor produksi lainnya. Sementara itu, faktor luas lahan, penggunaan benih, dan tenaga kerja memiliki hubungan yang positif sedangkan pupuk memiliki hubungan yang negatif dengan produksi jagung yang dihasilkan.
- 2. Dari hasil analisis diketahui bahwa nilai NPM_x/P_x alokasi lahan sebesar 1,77 dimana angka tersebut lebih besar dari satu, sehingga alokasi lahan di daerah

penelitian belum efisien. Dengan nilai rasio tersebut menunjukkan bahwa alokasi lahan seluas 2168,55 m² di daerah penelitian masih belum efisien. Dengan demikian penambahan alokasi penggunaan luas lahan usahatani jagung dapat dilakukan jika petani jagung di daerah penelitian masih menginginkan keuntungan yang lebih besar lagi. Agar penggunaan alokasi luas lahan dapat optimal maka perlu dilakukan penambahan luas lahan, sehingga dari penambahan tersebut penggunaan luas lahan optimal mencapai 3836,89 m².

3. Rata-rata total penerimaan petani jagung di daerah penelitian sebesar Rp. 3.542.489,47 dan rata-rata total biaya sebesar Rp. 782.278,96 sehingga diperoleh nilai R/C Ratio sebesar 4,53. Hal ini menunjukkan bahwa rata-rata usahatani jagung di Desa Sukolilo kecamatan Wajak kabupaten Malang sudah efisien dan mengguntungkan, karena rata-rata nilai RC rationya lebih dari 1. Dalam hal ini setiap Rp. 1,00 yang diinvestasikan akan menghasilkan penerimaan sebesar Rp. 4,53.

Saran untuk penelitian ini adalah (1) Untuk mengatasi kurang optimalnya penggunaan luas lahan, dapat dilakukan perbaikan sistem budidaya dan pengolahan tanah. Hal ini disebabkan karena perluasan lahan pertanian di daerah penelitian sulit dilakukan. Selain itu perluasan lahan tidak akan mampu meningktkan produksi dan keuntungan petani apabila sistem budidaya dan pengelolaan tanahnya kurang baik.(2) Perlu adanya penyuluhan pertanian terkait budidaya tanaman jagung dari instansi terkait agar produksi dan pendapatan petani semakin tinggi menginggat dari faktor-faktor produksi di daerah penelitian hanya luas lahan yang berpengaruh nyata terhadap produksi jagung. Dengan adanya penyuluhan dari instansi terkait diharapkan mampu meningkatkan produksi dan pendapatan petani guna keberlanjutan usahataninya. (3) Perlu adanya penelitian terkait kesuburan tanah di daerah penelitian dikarenakan dari hasil regresi menunjukkan bahwa penggunaan pupuk memiliki pengaruh negatif terhadap produksi jagung menginggat mayoritas lahan yang dimiliki oleh petani jagung dalam kategori kecil.

SUMMARY

INDROYONO. 0710440009-44. ANALYSIS ALLOCATIVE EFFICIENCY OF INPUT USAGE IN MAIZE FARMING (ZEA MAYS L) AT SUKOLILO VILLAGE, WAJAK SUB DISTRICT, MALANG RGENCY. Supervised by Dr. Ir. Nuhfil Hanani AR, MS as First Supervisor dan Riyanti Isaskar, SP.M.Si as Second Supervisor.

Corn is one of the crops whose productivity will be enhanced by the government considering the increasing number of people in Indonesia . The government launched a self-sufficient in corn by 2014 as an effort to deal with the increasing number of residents to address food security in Indonesia. This is because corn has advantages when compared with other crops as an alternative food source for people in Indonesia. In addition, corn has a relatively high exchange rate in because almost all parts of the corn crop can be processed and utilized to meet human needs

One of the areas suitable for agriculture sector development, particularly for corn that is in District Wajak, Malang Regency considering the results of production and area harvested cornin the ranked first in the District of Malang (Planningand Development Agency of Malang Regency ,2009).

The main problem of farming maize in the village Sukolilo is still low productivity of maize is produced when compared with the average productivity Wajak District. Difference in productivity District Wajak with Sukolilo Village of 12.73 kw / ha (Planning and Development Agency of Malang Regency, 2009). Productivity differences are related to combining different kinds of inputs that have not been efficient so that the production would be not maximal. This encourages researchers to conduct research on corn farming input allocative efficiency in the study area. This study aims to: (1) analyze the factors that significantly affect corn production, (2) analyze the level of allocative efficiency in the use of production factors that influence the production of corn, and (3) to analyze the efficiency of corn farming.

Descriptive and inferential statistics analysis with Cobb Douglas production function is use the analytical method . The results obtained are::

- 4. production factors used in corn farming in the study area is the area of land, seed, fertilizer, and labor. Of the four variables that influence is evident in corn farming land. This means that with the addition of land area will have an effect greater production of corn than any other production factors. Meanwhile, the factor of land area, seed use, and labor has a positive relationship while the fertilizer has a negative relationship with the production of corn produced.
- 5. From the results of analysis known that the value NPMx / Px land allocation of 1.77 where the number is greater than one, so that the allocation of land in the study area has not been efficient. With the value of this ratio indicates that the allocation of the land area of 2168.55 m2 in the study area is still not efficient. Thus the addition of the allocation of the land area of corn farming can be done if the corn farmers in the study area still wanted a bigger profit. For the use of

- land to optimal allocation it is necessary to increase the land area, so the addition of the optimal use of land reached 3836.89m².
- 6. Average total receipts of corn farmers in the study area amounted to USD. 3,542,489.47 and the average total cost of Rp. 782,278.96 thus obtained value of R / C ratio of 4.53. This shows that the average corn farm in the village of Malang regency Wajak Sukolilo district has efficient and mengguntungkan, because the average RC value ratio is more than 1. In this case each USD. 1.00 that is invested will generate revenue of Rp. 4.53.

Suggestions for this study were (1) In order to overcome less than optimal use of land area, can be improved cropping systems and soil management. This is caused by expansion of agricultural land in the study area is difficult. In addition, land expansion will not be able to meningktkan production and farmers' profits if the system of cultivation and land management is poor. (2) It is necessary to agricultural extension related to maize cultivation for the production of relevant agencies and the higher the income of farmers menginggat of the factors of production in the region study area only a significant effect on corn production. With the extension of the relevant agencies are expected to increase production and farmers' income to the sustainability of farming. (3) Keep the soil fertility related research in the study area because of the regression results indicate that the use of fertilizer has a negative effect on corn production menginggat majority of land owned by corn farmers in the small category.

KATA PENGANTAR

Alhamdulillah puji syukur senantiasa kita panjatkan kepada Allah SWT, atas segala nikmat dan hidayah-Nya sehingga penulis dapat menyelesaikan penyusunan laporan skripsi dengan judul "Analisis Efisiensi Alokatif Input Usahatani Jagung (*Zea mays*) Di Desa Sukolilo, Kecamatan Wajak, Kabupaten Malang". Skripsi ini disusun untuk memenuhi persyaratan dalam rangka menyelesaikan salah satu tugas akhir Strata Satu (S-1) pada Fakultas Pertanian Universitas Brawijaya Malang.

Penyusunan skripsi ini tidak lepas dari bimbingan, bantuan dan dorongan dari berbagai pihak. Penulis menyadari bahwa bimbingan, bantuan dan dorongan tersebut sangat berarti dalam penulisan skripsi ini. Sehubungan dengan hal tersebut di atas penulis menyampaikan hormat dan terima kasih kepada :

- 1. Bapak Dr. Ir. Nuhfil Hanani AR, MS sebagai dosen pembimbing utama yang telah meluangkan waktu untuk memberikan bimbingan dan bantuan dalam menyusun skripsi ini.
- 2. Riyanti Isaskar,SP.M.Si sebagai dosen pembimbing pendamping yang telah meluangkan waktu untuk memberikan bimbingan dan bantuan dalam menyusun skripsi ini.
- 3. Bapak dan Ibu Dosen Fakultas Pertanian khususnya jurusan IESP yang telah memberikan bekal ilmu dan pengetahuan kepada penulis.
- 4. Orang tua penulis beserta seluruh keluarga besar yang selalu memberikan dorongan moral dan spiritual serta semangat untuk menyelesaikan skripsi ini.
- 5. Ibu Basar selaku perangkat desa dan warga Desa Sukolilo atas bantuan dan informasi yang telah diberikan sehingga penulis dapat menyelesaikan skripsi ini.
- 6. Teman-teman Agribisnis 2007 dan semua pihak yang telah banyak memberikan bantuan hingga tersusunnya proposal ini.

Penulis menyadari bahwa laporan Kuliah Kerja Profesi ini masih jauh dari sempurna dan masih sedikitnya ilmu yang penulis miliki. Oleh karena itu, saran dan kritik yang membangun sangat diharapkan guna perbaikan di masa datang.

Malang, Desember 2010

Penulis

RIWAYAT HIDUP

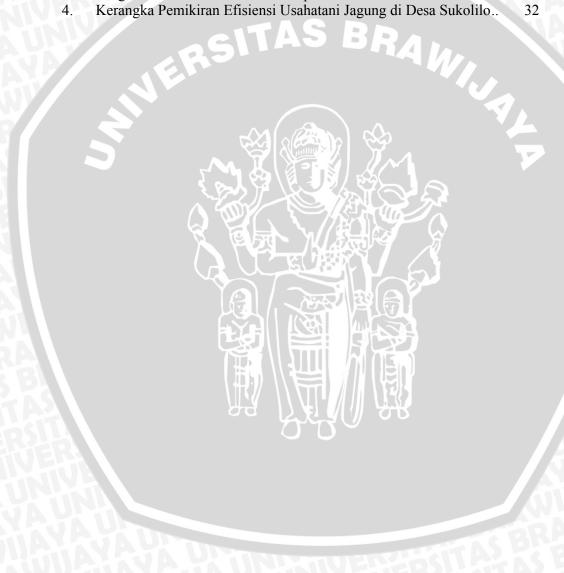
Penulis dilahirkan di Malang pada tanggal 7 Maret 1989 sebagai putra kedua dari tiga bersaudara dari ayah bernama Supeno dan Ibu bernama Kunjarwasih.

Penulis menyelesaikan pendidikan sekolah dasar di SD Negeri VI Sukun, Malang (1997-2002), dan melanjutkan ke SLTP Negeri 6 Malang (2002-2004), kemudian meneruskan studi di SMU Negeri 2, Malang (2004-2007). Penulis menjadi mahasiswa Fakultas Pertanian, Universitas Brawijaya, program studi Agribisnis, pada tahun 2007 melalui jalur SPMB.

Selama menjadi mahasiswa Fakultas Pertanian, penulis pernah aktif dalam kegiatan staff magang dan beberapa kegiatan kepanitian di Perhimpunan Mahasiswa Sosial Ekonomi Pertanian (PERMASETA) Fakultas Pertanian Universitas Brawijaya (2006-2009). Selain itu penulis juga pernah menjadi asisten mata kuliah Manejemen Keuangan, Dasar Akutansi, dan Perilaku Konsumen.

DAFTAR ISI

	III A LAVA ULTINI VITUER 2 16 SITH	lalaman
RIN	GKASAN	i
SUM	IMARY	iii
KAT	TA PENGANTAR	v
RIW	AYAT HIDUP	vi
	TAR ISI	vii
	TAR TABEL	ix
	TAR GAMBAR	X
DAF	TAR LAMPIRAN	xi
I.	PENDAHULUAN	1
	1.1 Latar Belakang	1
	1.2 Perumusan Masalah	4
	1.3 Tujuan Penelitian	6
	1.4 Kegunaan Penelitian	6
II.	TINJAUAN PUSTAKA	6
	2.1 Telaah Penelitian Terdahulu	6
	2.2 Profil Komoditas Jagung	9
	2.3 Pengertian Usahatani	15
	2.4 Faktor-Faktor Produksi Usahatani	15
	2.5 Teori Produksi Pertanian.	17
	2.5.1 Fungsi Produksi	17
	2.5.2 Fungsi Produksi Cobb-Douglas	19
	Z.6 Konsep Efisiensi Z.6.1 Pendekatan dari Sisi Input	20
	2.6.1 Pendekatan dari Sisi Input	22
	2.6.2 Pendekatan dari Sisi Output	24
	2.7 Konsep Biaya, Penerimaan, dan Pendapatan	24
777	KERANGKA TEORITIS	20
III.	2.1 V orangka Damikiran	28 28
	3.1 Kerangka Pemikiran	33
	3.3 Batasan Masalah	33
	3.4 Definisi Operasional dan Pengukuran Variabel	33
IV.	METODE PENELITIAN	36
	4.1 Lokasi Penelitian	36
	4.2 Teknik Penetuan Sample	36
	4.3 Teknik Pengumpulan Data	37 37
	4.4.1 Analisis Fungsi Produksi Usahatani	37
	4.4.2 Uji Asumsi Klasik	38
	4.4.3 Analisis Efisiensi Alokatif Input Produksi	41
	4.4.4 Analisis Biaya, Penerimaan, dan Keuntungan	42
	4.4.5 Analisis R/C Ratio	43


V.	HASIL DAN PEMBAHASAN	44
	5.1 Gambaran Umum Daerah Penelitian	44
	5.1.1 Letak Geografis	44
	5.1.2 Penggunaan Lahan	44
	5.1.3 Distribusi Penduduk Berdasarkan Jenis Kelamin	45
	5.2 Karakteristik Petani Responden	45
	5.2.1 Usia Petani Responden	45
	5.2.2 Tingkat Pendidikan Petani Responden	46
	5.2.3 Luas Lahan Petani Responden	47
	5.2.4 Status Kepemilikkan Lahan	48
	5.2.5 Jumlah Tanggugan Keluarga	48
	5.3 Analisis Fungsi Produksi Usahatani Jagung	49
	5.4. Analisis Efisiensi Penggunaan Input Usahatani Jagung	56
	5.5 Analisis Pendapatan Usahatani Jagung	57
	5.5 .1 Biaya Usaha Tani Jagung	57
	5.5 .2 Penerimaan Usaha Tani Jagung	61
	5.5 .3 Pendapatan Usaha Tani Jagung	62
	5.5 .4 Analisis Efisiensi Usaha	62
	5.6 Implikasi Hasil Penelitian	63
VI.	KESIMPULAN DAN SARAN	64
	6.1. Kesimpulan	64
	6.2. Saran	65
VII	DAFTAR PUSTAKA	66

DAFTAR TABEL

No	mor Teks	Halaman
1.	Perkembangan Luas Panen, Produksi, dan Produktiviyas Jagung di Kabupaten Malang 2005-2008	2
2.	Perkembangan Luas dan Produksi Jagung di Kabupaten Malang	
	2005-2008	3
3.	Prosentase Luas Lahan Berdasarkan Penggunaan Tanah	44
4.	Prosentase Jumlah Penduduk	45
5.	Prosentase Jumlah Responden Berdasarkan Golongan Usia	46
6.	Prosentase Jumlah Responden Berdasarkan Tingkat Pendidikan	46
7.	Prosentase Luas Lahan Petani Responden	47
8.	Distribusi Responden Berdasarkan Status Kepemilikkan Lahan	48
9.	Distribusi Responden Berdasarkan Jumlah Tanggungan Keluarga	49
10.	Hasil Uji Heteroskedasitas	50
11.	Hasil Uji Multikolinearitas	51
12.	Hasil Uji Regresi	52
13.	Rata-rata Biaya Variabel Usahatani Jagung	57
14.	Rata-rata Biaya Tenaga Kerja Usahatani Jagung	58
15.	Rata-rata Biaya Tetap Usahatani Jagung	60
16.	Rata-rata Biaya Total Usahatani Jagung	61
17.	Rata-rata Pendapatan Usahatani jagung	62

DAFTAR GAMBAR

Nomo	r Teks Halan	man
1.	Kurva Fungsi Produksi	18
2.	Pengukuran Efisiensi dari Sisi Input	23
3.	Pengukuran Efisiensi dari Sisi Output	24
4	Kerangka Pemikiran Efisiensi Usahatani Jagung di Desa Sukolilo	32

DAFTAR LAMPIRAN

Non	Nomor Teks	
1.	Peta Kecamatan Wajak Kabupaten Malang	68
2.	Data Karakteristik Responden	69
3.	Data Penggunaan Input Produksi	71
4.	Rincian Biaya Tetap Usahatani Jagung	73
5.	Rincian Biaya Variabel Usahatani Jagung	74
6.	Biaya, Penerimaan dan Pendapatan Usahani	76
7.	Data Penggunaan Tenaga Kerja Usahtani Jagung	78
8.	Rincian Biaya Penggunaan Tenaga Kerja Usahatani Jagung	8
9.	Uji Asumsi Klasik dan Hasil Regresi	84
10.	Analisis Efisiensi Alokatif Input Usahatani Jagung	87

I.PENDAHULUAN

I.1 Latar Belakang

Jagung merupakan salah satu tanaman palawija yang digunakan sebagai bahan baku industri dan sumber pangan bagi masyarakat Indonesia. Sebagai upaya menghadapi kenaikan jumlah penduduk dilakukan sinergi dan integrasi sistem terkait dengan ketahanan pangan di Indonesia. Salah satu strategi integrasi sistem dapat dilakukan dengan meningkatkan produktivitas beberapa komoditas unggulan pertanian seperti padi, jagung dan kedelai. Hal ini, senada dengan pernyataan Presiden Republik Indonesia pada saat menghadiri konferensi dewan ketahanan pangan di Jakarta *Convetidh center* tanggal 24 Mei 2010. Dalam pertemuan tersebut, pemerintah merencanakan peningkatan produksi jagung dari 20 juta ton saat ini menjadi 29 juta ton pada tahun 2014.

Jagung mempunyai beberapa keunggulan bila dibandingkan tanaman pangan lainnya. Selain menghasilkan biji-bijian, batang jagung merupakan bahan pakan ternak yang sangat potensial. Dengan demikian, dalam pengusahaan jagung selain mendapat biji atau tongkol jagung, masih ditambah lagi dengan brangkasannya yang juga memiliki nilai ekonomi tinggi. Dari segi pengelolaan, keuntungan bertanam jagung adalah kemudahan dalam budidaya. Tanaman jagung merupakan tanaman yang tidak membutuhkan perawatan intensif dan dapat ditanam di hampir semua jenis tanah. Resiko kegagalan bertanam jagung umumnya sangat kecil bila dibandingkan dengan tanaman palawija lainnya. Di samping itu, jagung memiliki nilai tukar yang cukup tinggi dikarenakan tanaman jagung dapat dimanfaatkan menjadi olahan yang bermanfaat bagi manusia.

Dari sisi permintaan, potensi pemasaran jagung terus mengalami peningkatan. Hal ini disebabkan oleh semakin berkembangnya industri peternakan yang tentunya akan meningkatkan permintaan jagung sebagai bahan pakan ternak. Selain itu, saat ini juga berkembang produk pangan dalam bentuk tepung jagung di kalangan masyarakat. Produk tersebut banyak dijadikan bahan baku untuk pembuatan produk pangan. Dengan gambaran potensi permintaan jagung tersebut,

tentu membuka peluang bagi petani untuk menanam jagung atau meningkatkan produksi jagungnya.

Kabupaten Malang merupakan salah satu daerah potensial penghasil jagung di Jawa Timur. Hal ini dapat dilihat pada Tabel 1 bahwa produktivitas jagung di Kabupaten Malang dari tahun ke tahun mengalami peningkatan meskipun luas areal panennya berfluktuasi. Selama periode 2005 – 2007 luas areal panen jagung mengalami penurunan dan mengalami peningkatan pada tahun 2008. Meskipun luas panen jagung mengalami fluktuasi tetapi produktivitas tiap tahunnya mengalami peningkatan. Dengan gambaran tersebut usahatani jagung di kabupaten Malang memiliki prospek dan potensi yang cukup menjanjikan.

Tabel 1 Perkembangan Luas Panen dan Produksi Jagung di Kabupaten Malang 2005-2008

2002 2000			
Tahun	Luas Areal Panen	Produksi (ton)	Produktivitas
	(ha)		
2005	65,274	277,415	42.50
2006	60,766	266,506	43.86
2007	54,463	241,835	44.40
2008	58,591	279,057	47.63

Sumber: Dinas Pertanian dan Perkebunan Kabupaten Malang (2009)

Fenomena produktivitas jagung di Kabupaten Malang dapat dilihat pada tabel 2 . Kecamatan Wajak merupakan sentra penghasil jagung di Kabupaten Malang dikarenakan produksi dan luas lahannya terbesar jika dibandingkan dengan kecamatan lainnya dengan luas sebesar 10,131 ha dan produksi mencapai 50,888 ton . Disisi lain, produktivitas Kecamatan Wajak hanya mampu menghasilkan 50.23 kw/ha lebih rendah apabila di bandingkan dengan Kecamatan Sumberpucung yang mampu menghasilkan 68.98 kw/ha. Rendahnya tingkat produktivitas ini mengindikasikan bahwa petani jagung di Kecamatan Wajak dalam mengelola usahataninya belum mengalokasikan faktor-faktor produksi secara efisien dan efektif guna memperoleh keuntungan maksimal. Untuk meningkatkan produktivitas jagung petani dihadapkan pada suatu masalah yaitu keterbatasan dalam memanfaatkan faktor-faktor produksi dalam kegiatan usahatani jagung dan berakibat pada belum maksimalnya hasil produksi yang didapat. Sehingga dibutuhkan pengkombinasian penggunaan faktor produksi seperti luas lahan, benih, pupuk, pestisida, dan tenaga kerja.

Tabel 2. Luas Panen, Produktivitas, dan Produksi jagung di Kabupaten Malang Tahun 2008

No.	Kecamatan	Luas Panen (ha)	Produktivitas	Produksi (ton)
	SO AVV. Tillip	(-11)	(kw)	
1	Donomulyo	1,894	40.87	7,741
2	Kalipare	5,720	41.75	23,881
3	Pagak	1,150	45.67	5,252
4	Bantur	2,790	41.99	11,715
5	Gedangan	2,860	41.58	11,892
6	Sumbermanjing	1,809	42.30	7,652
7	Dampit	5,737	42.01	24,101
8	Tirtoyudo	1,465	43.40	6,358
9	Ampelgading	338	41.51	1,403
10	Poncokusumo	2,636	55.38	14,598
11	Wajak	10,131	50.23	50,888
12	Turen	2,015	60.77	12,245
13	Bululawang	207	49.17	1,018
14	Gondanglegi	223	65.04	1,450
15	Pagelaran	491	61.24	3,007
16	Kepanjen	55	56.78	312
17	Sumberpucung	1,402	68.98	9,671
18	Kromengan	146	43.91	641
19	Ngajum	498	54.34	2,706
20	Wonosari	438	48.98	2,145
21	Wagir	1,654	24.24	6,986
22	Pakisaji	43	48.25	207
23	Tajinan	2,224	48.42	10,769
24	Tumpang	2,183	47.03	10,267
25	Pakis	445	60.82	2,706
26	Jabung	1,456	49.39	7,191
27	Lawang	1,060	44.32	4,698
28	Singosari	709	51.60	3,658
29	Karangploso	691	43.95	3,037
30	Dau	1,119	48.34	5,409
31	Pujon	1,735	51.83	8,993
32	Nantang	1,627	52.07	8,472
33	Kasembon	1,638	48.87	8,005

Sumber: Dinas Pertanian dan Perkebunan Kabupaten Malang (2009)

Desa Sukolilo merupakan salah satu diantara 13 desa di Kecamatan Wajak yang sebagian besar lahannya digunakan untuk usahatani tanaman palawija. Jagung menduduki urutan pertama dari segi produksi dan luas lahan jika dibandingkan komoditas palawija lainnya. Luas panen tanaman jagung di desa ini sebesar 90, 35 ha dan produksi mencapai 338,84 ton (Badan Pemberdayaan Masyarakat Kabupaten Malang 2010). Dengan gambaran tersebut mencerminkan bahwa usahatani jagung di Desa Sukolilo memiliki potensi yang cukup besar apabila dikelola dengan baik.

Sebagaimana diketahui bahwa dalam usahatani, tujuan yang ingin dicapai adalah tingkat pendapatan yang tinggi dan penggunaan input yang efisien dan efektif. Dikatakan efektif bila petani dapat mengalokasikan sumberdaya yang dimiliki sebaik-baiknya dan dapat dikatakan efisien bila pemanfaatan sumberdaya tersebut mengeluarkan output yang melebihi input. Kondisi usahatani yang menghasilkan keuntungan yang optimal diharapkan dapat menjaga petani jagung untuk terus melanjutkan usahataninya

Berdasarkan ulasan di atas dan ditunjang dengan keberadaan Desa Sukolilo yang memiliki potensi untuk pengembangan usahatani jagung, maka mendorong penulis untuk menganalisis efisiensi alokatif input usahatani jagung di Desa Sukolilo, Kecamatan Wajak, Kabupaten Malang dengan tujuan dapat meningkatkan pendapatan petani setempat.

I.2 Perumusan Masalah

Pengelolaan usahatani jagung umumnya dilaksanakan dalam skala usaha yang kecil dan disertai dengan modal yang kecil dan dikelola secara tradisional (Sutrisno, 1988). Beberapa hal yang diduga sebagai penyebab terjadinya kondisi tersebut adalah tingkat pengetahuan yang kurang sebagai akibat dari tingkat pendidikan dan ketrampilan yang rendah, luas pemilikan tanah yang kecil sebagai akibat adanya perpecahan tanah (fragmentasi tanah). Hal ini disebabkan oleh bertambah besarnya jumlah penduduk dan sistem warisan yang berlaku.

Tujuan yang ingin dicapai oleh petani dalam usahatani adalah tingkat pendapatan yang tinggi dan penggunaan input yang efisien dan efektif. Dikatakan efektif bila bila petani dalam mengalokasikan faktor produksi dapat menghasilkan output yang maksimal pada tingkat pengeluaran biaya tertentu dan efisien bila dapat meminimalisasi biaya input yang dikeluarkan untuk mencapai target produksi tertentu yang telah ditetapkan. Sehingga yang dimaksud dengan efektif dan efisien dalam pengelolaan usahatani yaitu penggunaan input dengan biaya yang sewajarnya guna memperoleh hasil yang maksimal sesuai dengan penggunaan input tersebut.

Pada teori produksi untuk menganalisis tingkat efektivitas dan efisiensi usahatani melalui fungsi produksi sebagai alat analisisnya, digunakan pendekatan

Produk Marjinal. Mubyarto (1989) menyatakan bahwa persoalan yang dihadapi dalam usahatani pada umumnya adalah bagaimana mengalokasikan secara tepat sumber-sumber daya atau faktor-faktor produksi yang terbatas agar dapat memaksimumkan pendapatan. Berkaitan dengan masalah efisiensi, maka ada dua pendekatan yang dapat mengukur efisiensi tersebut yakni : (1) Pendekatan produk marjinal yaitu pendekatan melalui konsep yaitu produksi marjinal mencapai maksimum, dan (2) Pendekatan efisiensi ekonomis yaitu pendekatan melalui konsep yaitu keuntungan mencapai maksimum. Kedua pendekatan ini merupakan cara analisis untuk mendapatkan gambaran tentang efisiensi usahatani dan apabila efisiensi ini tercapai, maka keuntungan maksimum akan tercapai, sehingga pendapatan petani yang lebih tinggi akan tercapai pula.

Petani dalam mengelola usahatani selalu berupaya untuk mencapai kondisi yang efisien, yaitu efisiensi secara teknis, alokatif, dan ekonomis. Efisien secara alokatif mengukur tingkat keberhasilan petani dalam usahanya untuk mencapai keuntungan maksimal, di mana efisiensi harga dicapai pada saat nilai produk dari masing-masing input sama dengan biaya marginalnya. Salah satu pendekatan dalam pengukuran efisiensi alokatif menggunakan fungsi produksi Cobb Douglas. Tingkat efisiensi penggunaan faktor produksi merupakan masalah yang dihadapi petani dalam memperoleh hasil produksi yang optimal. Penggunaan faktor produksi secara efisien dapat menghasilkan produksi yang optimal sehingga keuntungan yang dicapai menjadi maksimal.

Permasalahan utama dalam usahatani jagung di desa sukolilo adalah masih rendahnya produktivitas jagung yang dihasilkan apabila dibandingkan dengan rata-rata produktivitas Kecamatan Wajak. Selisih produktivitas Kecamatan Wajak dengan Desa Sukolilo sebesar 12,73 kw/ha. Tingginya angka tersebut mencerminkan bahwa petani memiliki keterbatasan dalam memanfaatkan segala faktor produksi dalam usahatani jagung dan berakibat pada belum maksimalnya hasil produksi yang didapat. Apabila tingkat produktivitas Desa Sukolilo yang sebesar 37,50 kw/ha dapat ditingkatkan minimal mencapai 50,23 kw/ha sesuai dengan rata-rata produktivitas Kecamatan Wajak maka akan semakin

BRAWIJAYA

menguntungkan dikarenakan berdampak pada semakin tinggi pendapatan yang akan diterima oleh petani.

Faktor penting dalam pengelolaan sumberdaya produksi adalah faktor lahan, tenaga kerja, modal dan manajemen (Wijaya, 2007). Modal yang dimaksud termasuk biaya untuk pembelian pupuk, pestisida, tenaga kerja dan bibit. Oleh karena itu, penelitian mengenai faktor-faktor yang mempengaruhi produksi tidak terlepas dari faktor penggunaan luas lahan maupun input usahatani.

Berdasarkan latar belakang yang telah dipaparkan sebelumnya, maka dapat dirumuskan permasalahan usahatani jagung di Desa Sukolilo, Kecamatan Wajak, Kabupaten Malang, yaitu :

- 1. Apakah faktor-faktor determinan yang berpengaruh nyata terhadap produksi jagung?
- 2. Bagaimana tingkat efisiensi alokatif penggunaan faktor-faktor produksi yang berpengaruh nyata terhadap produksi jagung?
- 3. Bagaimana tingkat efisiensi usahatani jagung?

I.3 Tujuan Penelitian

Tujuan diadakannya penelitian adalah:

- 1. Menganalisis faktor-faktor yang berpengaruh nyata terhadap produksi jagung.
- 2. Menganalisis tingkat efisiensi alokatif penggunaan faktor-faktor produksi yang berpengaruh terhadap produksi jagung.
- 3. Menganalisis efisiensi usahatani jagung.

I.4 Kegunaan Penelitian

Hasil penelitian ini diharapkan dapat bermanfaat bagi :

- 1. Sebagai bahan informasi dan bahan masukan bagi pihak-pihak instansi yang terkait dalam peningkatan produktivitas jagung di lokasi penelitian.
- 2. Peneliti lain yang ingin mengembangkan penelitian ini pada tahap berikutnya.

II. TINJAUAN PUSTAKA

2.1 Telaah Penelitian Terdahulu

Riyadi (2007) dalam penelitiannya mengenai analisis faktor-faktor yang mempengaruhi produksi jagung di Kecamatan Wirosari Kabupaten Grobogan, menggunakan analisis regresi dari fungsi produksi Cobb-Douglas yang perhitungannya menggunakan persamaan regresi linear berganda. Hasil estimasi menunjukkan bahwa faktor-faktor yang berpengaruh terhadap produksi jagung secara signifikan adalah luas lahan, tenaga kerja, bibit, pupuk, dan pestisida. Nilai efisiensi alokatif input lahan sebesar 0,033; tenaga kerja 0,92; bibit 4,73; Urea 3,97; TSP 13,20; KCL 20,78; dan Pestisida 23,35. Nilai efisiensi yang mendekati 1 artinya bahwa usaha yang dilakukan relatif sudah efisien dan jika ditambah input atau faktor produksi maka akan mempunyai dampak sebaliknya. Sedangkan nilai efisiensi yang lebih dari 1. Hal ini berarti bahwa pertanian tanaman jagung di Kecamatan Wirosari belum mencapai tingkat efisiensi, dengan demikian perlu dilakukan penambahan penggunaan faktor produksi agar dapat tercapai tingkat efisiensi. Besar penambahan input ini harus disesuaikan dengan kemampuan pembiayaan petani di daerah penelitian dan harus memperhatikan penerapan standar penggunaan input dalam pertanian tanaman jagung.

Berdasarkan penelitian yang dilakukan oleh Mangdeska (2009), tentang analisis efisiensi penggunaan faktor-faktor produksi pada usahatani jagung di Kabupaten Sidrap, menggunakan analisis fungsi Cobb Douglas yang ditransformasikan dalam bentuk linier logaritma dan metodenya yaitu OLS (*Ordinary Least Square*). Faktor produksi yang diduga mempengaruhi produksi jagung yaitu luas pertanaman jagung, tenaga kerja, penggunaan benih, dan pupuk phonska. Hasil yang diperoleh yaitu penggunaan faktor-faktor produksi yang berpengaruh secara signifikan adalah luas lahan dan pupuk phonska, sedangkan yang tidak berpengaruh secara nyata dari tenaga kerja dan penggunaan benih.

Hartono *et all* (2008) dalam penelitiannya mengenai efisiensi alokasi input usahatani benih jagung hibrida di Kabupaten Kediri, menggunakan beberapa macam alat analisis salah satunya yaitu pendugaan fungsi Cobb Douglas yang ditransformasi dalam bentuk linier logaritma dimana fungsi produksi ditaksir

dengan menggunakan metode OLS (*Ordinary Least Square*). Variabel yang diduga berpengaruh terhadap produksi jagung yaitu luas lahan garapan, TSP, dan tenaga kerja. Hasil yang diperoleh yaitu variabel lahan, TSP dan tenaga kerja berpengaruh terhadap produksi jagung yang sekaligus juga menunjukkan elastisitas produksi bertanda positif dan keduanya bernilai kurang dari satu.

Yulita (2009), mengenai Efisiensi alokatif input tanaman tebu di Kecamatan Gondanglegi Kabupaten Malang, menggunakan analisis fungsi produksi Cobb-Douglass dengan menggunakan model regresi linier berganda dan analisis efisiensi alokatif penggunaan faktor produksi yang berpengaruh nyata terhadap usahatani serta analisis pendapatan. Faktor produksi yang diduga berpengaruh nyata terhadap produksi antara lain luas lahan, bibit, pupuk ZA, pupuk phonska, dan tenaga kerja. Dari hail analisis diketahui variabel yang berpengaruh nyata terhadap nilai produksi yaitu luas lahan, bibit, dan pupuk phonska. Dari ketiga faktor-faktor produksi tersebut, hanya penggunaan luas lahan yang belum efisien, sedangkan penggunaan bibit dan pupuk phonska sudah efisien, meskipun penggunaannya belum optimal dan masih dapat ditingkatkan. Dari hasil penelitiaan di diketahui bahwa usahatanni tebu daerah penelitian mengguntungkan.

Dari penelitian terdahulu dapat disimpulkan bahwa terdapat persamaan pandangan dari beberapa peneliti mengenai alat analisis yang digunakan untuk menganalisis faktor yang mempengaruhi produksi pada usahatani jagung yaitu dengan mentransformasikan fungsi Cobb Douglas ke dalam bentuk linear logaritma menggunakan metode OLS (*Ordinary Least Square*). Sedangkan variabel yang diduga berpengaruh nyata terhadap produksi usahatani jagung yaitu luas lahan, penggunaan benih, pupuk, pestisida dan tenaga kerja. Untuk mengetahui efisiensi usaha yang dilakukan menggunakan analisis pendapatan.

Pertimbangan yang digunakan dalam menganalisis fungsi produksi *Cobb Douglas* yaitu umum digunakan dalam penelitian empiris di bidang pertanian, memiliki penyelesaian relatif lebih mudah dibandingkan dengan fungsi produksi lain dan dapat ditransfer ke dalam bentuk linier dengan mudah. Hasil pendugaan fungsi *Cobb Douglas* akan menghasilkan koefisien regresi yang sekaligus juga

menunjukkan besaran elastisitas serta jumlah besaran elastistas tersebut sekaligus menunjukkan tingkat besaran *return to scale* (Soekartawi,1990).

2.2 Profil Komoditas Jagung (Zea mays L)

Tanaman jagung merupakan salah satu jenis tanaman pangan biji-bijian dari keluarga rumput-rumputan. Berasal dari Amerika yang tersebar ke Asia dan Afrika melalui kegiatan bisnis orang-orang Eropa ke Amerika. Sekitar abad ke-16 orang Portugal menyebarluaskannya ke Asia termasuk Indonesia. Orang Belanda menamakannya *mais* dan orang Inggris menamakannya *corn*.

2.2.1 Klasifikasi Jagung

Jagung merupakan tanaman berumah satu (*monoecious*), letak bunga jantannya terpisah dengan yang betina pada satu tanaman.kedudukan tanaman jagung dalam taksonomi tumbuhan, dapat diklasifikasikan sebagai berikut :

Kingdom: Plantae (Tumbuh-tumbuhan)

Divisio : Spermatopyta (Tumbuhan berbiji)

Subdivisi : Angiospermae (Berbiji tertutup)

Kelas : Monocotyledonae (Berkeping *sam*)

Ordo : Gram mae (Rumput-rumpUtan)

Famili : Graminiceae

Genus : Zea

Spesies : Zea mays L

2.2.2 Manfaat Tanaman

Hampir seluruh bagian tanaman jagung memiliki nilai ekonomis. Secara umum, beberapa manfaat bagian-bagian tanaman jagung dapat dijelaskan sebagai berikut :

- a) Batang dan daun muda untuk pakan ternak.
- b) Batang dan daun tua (setelah panen) untuk pupuk hijau atau kompos.
- c) Batang dan daun kering untuk kayu bakar.
- d) Batang jagung untuk lanjaran (turus).
- e) Batang jagung untuk pulp (bahan kertas).
- f) Buah jagung muda untuk sayuran, perkedel, bakwan dan sambal goreng.

2.2.3 Pedoman Budidaya

Adapun hal-hal yang perlu dilakukan dalam budidaya jagung menurut Prihatman (2000) antra lain :

a.) Pembibitan

Pembibitan merupakan langkah awal menuju keberhasilan dalam usaha tani jagung. Adapun hal-hal yang perlu diperhatikan dalam pembibitan yaitu :

1) Persyaratan Benih

Benih yang akan digunakan sebaiknya bermutu tinggi, baik mutu genetik, fisik maupun fisiologinya. Benih yang demikian dapat diperoleh bila menggunakan benih bersertifikat. Pada umumnya benih yang dibutuhkan sangat bergantung pada kesehatan benih, kemurnian benih dan daya tumbuh benih. Penggunaan benih jagung hibrida biasanya akan menghasilkan produksi yang lebih tinggi. Tetapi jagung hibrida mempunyai beberapa kelemahan dibandingkan varietas bersari bebas yaitu harga benihnya yang lebih mahal dan hanya dapat digunakan maksimal 2 kali turunan dan tersedia dalam jumlah terbatas.

2) Penyiapan Benih

Benih dapat diperoleh dari penanaman sendiri yang dipilih dari beberapa tanaman jagung yang sehat pertumbuhannya. Dari tanaman terpilih, diambil yang tongkolnya besar, barisan biji lurus dan penuh tertutup rapat oleh klobot, dan tidak terserang oleh hama penyakit. Tongkol dipetik pada saat lewat fase matang fisiologi dengan ciri: biji sudah mengeras dan sebagian besar daun menguning. Tongkol dikupas dan dikeringkan hingga kering betul. Apabila benih akan disimpan dalam jangka lama, setelah dikeringkan tongkol dibungkus dan disimpan dan disimpan di tempat kering. Dari tongkol yang sudah kering, diambil biji bagian tengah sebagai benih. Biji yang terdapat di bagian ujung dan pangkal tidak digunakan sebagai benih. Daya tumbuh benih harus lebih dari 90%, jika kurang dari itu sebaiknya benih diganti. Benih yang dibutuhkan adalah sebanyak 20-30 kg untuk setiap hektar.

3) Pemindahan Benih

Sebelum benih ditanam, sebaiknya dicampur dulu dengan fungisida seperti Benlate, terutama apabila diduga akan ada serangan jamur. Sedangkan bila diduga akan ada serangan lalat bibit dan ulat agrotis, sebaiknya benih dimasukkan ke dalam lubang bersama-sama dengan insektisida butiran dan sistemik seperti Furadan 3 G.

b) Pengolahan Media Tanam

Pengolahan tanah bertujuan untuk memperbaiki kondisi tanah, dan memberikan kondisi menguntungkan bagi pertumbuhan akar. Melalui pengolahan tanah, drainase dan aerasi yang kurang baik akan diperbaiki. Tanah diolah pada kondisi lembab tetapi tidak terlalu basah. Tanah yang sudah gembur hanya diolah secara umum.

1) Persiapan

Dilakukan dengan cara membalik tanah dan memecah bongkah tanah agar diperoleh tanah yang gembur untuk memperbaiki aerasi. Tanah yang akan ditanami dicangkul sedalam 15-20 cm, kemudian diratakan. Tanah yang keras memerlukan pengolahan yang lebih banyak. Pertama-tama tanah dicangkul/dibajak lalu dihaluskan dan diratakan.

2) Pembukaan Lahan

Pengolahan lahan diawali dengan membersihkan lahan dari sisa tanaman sebelumnya. Bila perlu sisa tanaman yang cukup banyak dibakar, abunya dikembalikan ke dalam tanah, kemudian dilanjutkan dengan pencangkulan dan pengolahan tanah dengan bajak.

3) Pembentukan Bedengan

Setelah tanah diolah, setiap 3 meter dibuat saluran drainase sepanjang barisan tanaman. Lebar saluran 25-30 cm dengan kedalaman 20 cm. Saluran ini dibuat terutama pada tanah yang drainasenya jelek.

4) Pengapuran

Di daerah dengan pH kurang dari 5, tanah harus dikapur. Jumlah kapur yang diberikan berkisar antara 1-3 ton yang diberikan tiap 2-3 tahun. Pemberian dilakukan dengan cara menyebar kapur secara merata atau pada barisan tanaman, sekitar 1 bulan sebelum tanam. Dapat pula digunakan dosis 300 kg/ha per musim tanam dengan cara disebar pada barisan tanaman.

5) Pemupukan

Apabila tanah yang akan ditanami tidak menjamin ketersediaan hara yang cukup maka harus dilakukan pemupukan. Dosis pupuk yang dibutuhkan tanaman sangat bergantung pada kesuburan tanah dan diberikan secara bertahap. Anjuran dosis rata-rata adalah: Urea=200-300 kg/ha, TSP=75-100 kg/ha dan KCl = 50-100 kg/ha. Adapun cara dan dosis pemupukan untuk setiap hektar:

- a) Pemupukan dasar: 1/3 bagian pupuk Urea dan 1 bagian pupuk TSP diberikan saat tanam, 7 cm di parit kiri dan kanan lubang tanam sedalam 5 cm lalu ditutup tanah;
- b) Susulan I: 1/3 bagian pupuk Urea ditambah 1/3 bagian pupuk KCl diberikan setelah tanaman berumur 30 hari, 15 cm di parit kiri dan kanan lubang tanam sedalam 10 cm lalu di tutup tanah;
- c) Susulan II: 1/3 bagian pupuk Urea diberikan saat tanaman berumur 45 hari.

c) Penanaman

Jarak tanam jagung disesuaikan dengan umur panennya, semakin panjang umurnya, tanaman akan semakin tinggi dan memerlukan tempat yang lebih luas. Jagung berumur panjang dengan waktu panen ≥ 100 hari sejak penanaman, jarak tanamnya dibuat 40x100 cm (2 tanaman /lubang). Jagung berumur sedang (panen 80-100 hari), jarak tanamnya 25x75 cm (1 tanaman/lubang). Sedangkan jagung berumur pendek (panen < 80 hari), jarak tanamnya 20x50 cm (1 tanaman/lubang). Kedalaman lubang tanam yaitu antara 3-5 cm

d) Pemeliharaan

Pemeliharaan bertujuan untuk meningkatkan kualitas tanaman sehingga pada saat panen diharapkan akan mendapatkan hasil yang berkualitas tinggi. Halhal yang termasuk perawatan tanaman meliputi :

1) Penjarangan dan Penyulaman

Dengan penjarangan maka dapat ditentukan jumlah tanaman per lubang sesuai dengan yang dikehendaki. Apabila dalam 1 lubang tumbuh 3 tanaman,

sedangkan yang dikehendaki hanya 2 atau 1, maka tanaman tersebut harus dikurangi. Tanaman yang tumbuhnya paling tidak baik, dipotong dengan pisau atau gunting yang tajam tepat di atas permukaan tanah. Pencabutan tanaman secara langsung tidak boleh dilakukan, karena akan melukai akar tanaman lain yang akan dibiarkan tumbuh. Penyulaman bertujuan untuk mengganti benih yang tidak tumbuh/mati. Kegiatan ini dilakukan 7-10 hari sesudah tanam. Jumlah dan jenis benih serta perlakuan dalam penyulaman sama dengan sewaktu penanaman. Penyulaman hendaknya menggunakan benih dari jenis yang sama. Waktu penyulaman paling lambat dua minggu setelah tanam.

2) Penyiangan

Penyiangan bertujuan untuk membersihkan lahan dari tanaman pengganggu (gulma). Penyiangan dilakukan 2 minggu sekali. Penyiangan pada tanaman jagung yang masih muda biasanya dengan tangan atau cangkul kecil, garpu dan sebagainya. Dalam penyiangan ini yang terpenting adalah tidak mengganggu perakaran tanaman yang pada umur tersebut masih belum cukup kuat mencengkeram tanah. Hal ini biasanya dilakukan setelah tanaman berumur 15 hari.

3) Pembumbunan

Pembumbunan dilakukan bersamaan dengan penyiangan dan bertujuan untuk memperkokoh posisi batang, sehingga tanaman tidak mudah rebah. Selain itu juga untuk menutup akar yang bermunculan di atas permukaan tanah karena adanya aerasi. Kegiatan ini dilakukan pada saat tanaman berumur 6 minggu, bersamaan dengan waktu pemupukan. Caranya, tanah di sebelah kanan dan kiri barisan tanaman diuruk dengan cangkul, kemudian ditimbun di barisan tanaman. Dengan cara ini akan terbentuk guludan yang memanjang. Untuk efisiensi tenaga biasanya pembubunan dilakukan bersama dengan penyiangan kedua yaitu setelah tanaman berumur 1 bulan.

4) Pemupukan

Dosis pemupukan jagung untuk setiap hektarnya adalah pupuk Urea sebanyak 200-300 kg, pupuk TSP/SP 36 sebanyak 75-100 kg, dan pupuk KCl

sebanyak 50- 100 kg. Pemupukan dapat dilakukan dalam tiga tahap. Pada tahap pertama (pupuk dasar), pupuk diberikan bersamaan dengan waktu tanam. Pada tahap kedua (pupuk susulan I), pupuk diberikan setelah tanaman jagung berumur 3-4 minggu setelah tanama. Pada tahap ketiga (pupuk susulan II), pupuk diberikan setelah tanaman jagung berumur 8 minggu atau setelah malai keluar.

5) Pengairan dan Penyiraman

Setelah benih ditanam, dilakukan penyiraman secukupnya kecuali bila tanah telah lembab. Pengairan berikutnya diberikan secukupnya dengan tujuan menjaga agar tanaman tidak layu. Namun menjelang tanaman berbunga, air yang diperlukan lebih besar sehingga perlu dialirkan air pada parit-parit di antara bumbunan tanaman jagung.

6) Waktu Penyemprotan Pestisida

Penggunaan pestisida hanya diperkenankan setelah terlihat adanya hama yang dapat membahayakan proses produksi jagung. Adapun pestisida yang digunakan yaitu pestisida yang dipakai untuk mengendalikan ulat. Pelaksanaan penyemprotan hendaknya memperlihatkan kelestarian musuh alami dan tingkat populasi hama yang menyerang, sehingga perlakuan ini akan lebih efisien.

e) Panen dan Pasca Panen

Pemanen jagung dilakukan pada saat jagung telah berumur sekitar 100 hari setelah tanam tergantung dari jenis varietas yang digunakan. Jagung yang telah siap panen atau sering disebut masak fisiologis ditandai dengan daun jagung/klobot telah kering, bewarna kekuning-kuningan, dan ada tanda hitam di bagian pangkal tempat melekatnya biji pada tongkol (BPTP, 2008). Setelah jagung dipanen, langkah selanjutnya yaitu dikupas saat masih menempel pada batang atau setelah pemetikan selesai agar kadar air dalam tongkol dapat diturunkan sehinga jamur tidak tumbuh. Kemudian dilakukan pengeringan jagung untuk menurunkan kadar air sampai 9% - 11% selama \pm 7 – 8 hari. Kegiatan pemipilan dilakukan setelah proses pengerinan selesai sesuai dengan kadar air yang diinginkan. Langkah terakhir yaitu penyortiran dimana jagung dipisahkan dengan kotoran-kotoran yang tidak dikehendaki.

2.3 Pengertian Usahatani

Usahatani ialah organisasi dari alam, kerja dan modal yang ditunjukkan kepada produksi di lapangan pertanian. Pengertian organisasi usahatani dimaksudkan usahatani sebagai organisasi harus ada yang diorganisir dan ada yang mengorganisir. Yang mengorganisir usahatani adalah petani yang dibantu oleh keluarganya, yang diorganisir adalah faktor produksi yang dapat dikuasai, makin maju usahatani makin sulit bentuk dan cara pengorganisasiannya (Hernanto, 1998).

Ilmu usahatani diartikan sebagai ilmu yang mempelajari bagaimana seseorang mengalokasikan sumber daya secara efektif dan efisien untuk memperoleh keuntungan yang tinggi pada waktu tertentu. Dikatakan efektif bila petani atau produsen dapat mengalokasikan sumber daya yang mereka miliki sebaik-baiknya dan dikatakan efisien jika pemanfaatan sumber daya tersebut menghasilkan (output) yang lebih besar dari masukan (input) (Soekartawi, 1995).

Prawirokusumo (1990), mengemukakan bahwa ilmu usahatani dapat diartikan sebagai ilmu terapan yang membahas atau mempelajari bagaimana membuat atau menggunakan sumber daya secara efisien pada suatu usaha pertanian atau peternakan.

2.4 Faktor-Faktor Produksi Usahatani

Faktor-faktor produksi adalah semua unsur yang menopang usaha penciptaan nilai atau usaha memperbesar nilai barang. Faktor-faktor produksi itu terdiri atas :

1. Tanah atau Lahan

Tanah atau lahan bukan sekedar tanah untuk ditanami atau untuk ditinggali saja, tetapi di termasuk pula di dalamnya segala sumber daya alam. Itulah sebabnya faktor produksi ini sering disebut *natural resources*.

2. Tenaga Kerja

Tenaga kerja disini tidak hanya mencakup tenaga fisik atau jasmani tetapi juga kemampuan mental atau kemampuan non-fisiknya, tidak saja tenaga terdidik tetapi juga tenaga yang tidak terdidik. Jadi tenaga kerja dapat diartikan sebagai semua kemampuan manusiawi yang dapat disumbangkan untuk memungkinkan dilakukannya produksi barang dan jasa.

Menurut Soekartawi (1990), umur tenaga kerja di pedesaan juga menjadikan perdebatan tersendiri. Mereka yang tergolong di bawah usia kerja akan menerima upah lebih rendah jika dibandingkan dengan tenaga kerja dewasa. Oleh karena itu, pilihan tingkat upah perlu distandarisasi menjadi hari kerja setara pria (HKSP) atau hari orang kerja (HOK).

3. Modal

Modal meliputi semua jenis barang yang dibuat untuk menunjang kegiatan produksi barang serta jasa. Modal dalam faktor produksi adalah barang-barang modal, bukan modal uang.

Menurut Soekartawi (1990), modal dalam usaha tani dapat diklasifikasikan dalam bentuk kekayaan baik berupa uang maupun barang yang digunakan untuk menghasilkan output secara langsung maupun tidak langsung. Selain itu modal juga dibedakan dalam dua macam, yaitu :

- a. Modal tetap: yakni modal yang dikeluarkan dalam proses produksi yang tidak habis dalam sekali proses produksi. Modal jenis ini terjadi dalam waktu yang pendek (*short term*) dan tidak terjadi dalam jangka waktu panjang (*long term*).
- b. Modal tidak tetap: yaitu modal yang dikeluarkan dalam proses produksi yang habis dalam satu kali proses produksi. Misalnya biaya untuk membeli obat-obatan, pakan, benih dan upah tenaga kerja.

4. Manajemen

Menurut Soekartawi (1990) manajemen diartikan sebagai seni dalam merencanakan, mengorganisasi dan melaksanakan serta mengevaluasi suatu proses produksi. Karena proses produksi melibatkan orang atau tenaga kerja dari sejumlah tingkatan, maka manajemen berarti pula bagaimana mengelola orang-orang tersebut dalam tingkatan atau tahapan proses produksi.

2.5 Teori Produksi Pertanian

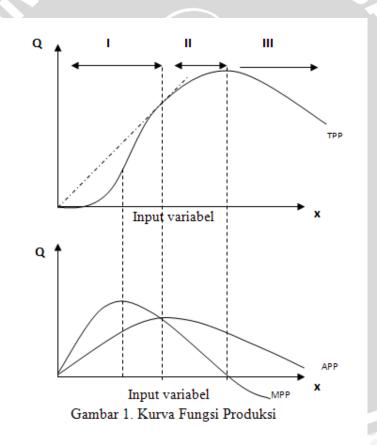
Produksi diartikan sebagai penggunaan atau pemanfaatan sumber daya yang mengubah suatu komoditi menjadi komoditi lainnya yang sama sekali berbeda, baik dalam pengertian apa, dan dimana atau kapan komoditi-komoditi itu dialokasikan, maupun dalam pengertian apa yang dapat dikerjakan oleh konsumen terhadap komoditi itu. Istilah produksi berlaku untuk barang maupun jasa, karena istilah komoditi memang mengacu pada barang dan jasa. Keduanya sama-sama dihasilkan dengan mengerahkan modal dan tenaga kerja. Produksi merupakan konsep arus (*flow concept*), maksudnya adalah produksi merupakan kegiatan yang diukur sebagai tingkat-tingkat output per unit periode/waktu. Sedangkan outputnya sendiri senantiasa diasumsikan konstan kualitasnya (Miller dan Meiners (2000) dalam Podesta (2009)).

Sedangkan Dominic Salvatore (1997) *dalam* Podesta (2009) mendefinisikan fungsi produksi untuk setiap komoditi adalah suatu persamaan, tabel atau grafik yang menunjukkan jumlah (maksimum) komoditi yang dapat diproduksi per unit waktu setiap kombinasi input alternatif bila menggunakan teknik produksi terbaik yang tersedia.

2.5.1 Fungsi Produksi

Perkembangan atau pertambahan produksi dalam kegiatan ekonomi tidak lepas dari peranan faktor-faktor produksi atau input. Untuk menaikkan jumlah output yang diproduksi dalam perekonomian dengan faktor-faktor produksi, para ahli teori pertumbuhan neoklasik menggunakan konsep produksi. Menurut Soedarsono (1998) dalam Podesta (2009), fungsi produksi adalah hubungan teknis yang menghubungkan antara faktor produksi (input) dan hasil produksi (output). Disebut faktor produksi karena bersifat mutlak, supaya produksi dapat dijalankan untuk menghasilkan produk. Suatu fungsi produksi yang efisien secara teknis dalam arti menggunakan kuantitas bahan mentah yang minimal, tenaga kerja minimal, dan barang-barang modal lain yang minimal. Secara matematika, bentuk persamaan fungsi produksi adalah sebagai berikut:

$$Y = Af(K,L)$$


Dimana A adalah teknologi atau indeks perubahan teknik, K adalah input kapasitas atau modal, dan L adalah input tenaga kerja. Karakteristik dari fungsi produksi tersebut adalah sebagai berikut :

a. Produksi mengikuti pendapatan pada skala yang konstan (*Constant Return to Scale*), artinya apabila input digandakan maka output akan berlipat dua kali.

BRAWIJAY

b. Produksi marjinal, dari masing-masing input atau faktor produksi bersifat positif tetapi menurun dengan ditambahkannya satu factor produksi pada faktor lainnya yang tetap atau dengan kata lain tunduk pada hukum hasil yang menurun (*The Law of Deminishing Return*).

Hukum kenaikan hasil yang semakin berkurang dapat ditunjukan melalui hubungan antar kurva TPP (*Total Physical Product*) atau kurva TP (Total Produk), kurva MPP (*Marginal Physical Product*) atau Marjinal Produk (MP), dan kurva APP (*Average Physical Product*) atau produk rata-rata dalam grafik fungsi produksi .

Grafik pada fungsi produksi terbagi pada tiga tahapan produksi yang lazim disebut *Three Stages of Production*. Tahap *pertama*, kurva APP dan kurva MPP terus meningkat. Makin banyak penggunaan faktor produksi, maka semakin tinggi produksi rata-ratanya. Tahap ini disebut tahap tidak rasional, karena jika penggunaan faktor produksi ditambah, maka penambahan output total yang dihasilkan akan lebih besar dari penambahan faktor produksi itu sendiri.

Tahap *kedua* adalah tahap rasional atau fase ekonomis, dimana berlaku hukum kenaikan hasil yang berkurang. Dalam tahap ini terjadi perpotongan antara kurva MPP dengan kurva APP pada saat APP mencapai titik optimal. Pada tahap ini masih dapat meningkatkan output, walaupun dengan presentase kenaikan yang sama atau lebih kecil dari kenaikan jumlah faktor produksi yang digunakan. Tahap *ketiga* disebut daerah tidak rasional, karena apabila penambahan faktor produksi diteruskan, maka produktivitas faktor produksi akan menjadi nol (0) bahkan negatif. Dengan demikian, penambahan faktor produksi justru akan menurunkan hasil produksi.

2.5.2 Fungsi Produksi Cobb-Douglas

Produksi hasil komoditas pertanian (on-farm) sering disebut korbanan produksi karena factor produksi tersebut dikorbankan untuk menghasilkan komoditas pertanian. Untuk menghasilkan suatu produk diperlukan hubungan antara faktor produksi atau input dan komoditas atau output (Menurut Soekartawi (2000), hubungan antar input dan output disebut *factor relationship* (FR).

Secara matematik, dapat dituliskan dengan menggunakan analisis fungsi produksi Cobb- Douglas. Fungsi produksi Cobb- Douglas adalah suatu fungsi atau persamaan yang melibatkan dua atau lebih variabel independen dan variabel dependen.

Y =
$$\beta$$
0X1 β 1X2 β 2 β ... Xi β i ... Xⁿ β ⁿe^v

Dimana:

Y = variabel yang dijelaskan

X = variabel yang menjelaskan

B = besaran yang akan diduga v = kesalahan (*disturbance term*)

e = logaritma natural

Untuk menaksir parameter-parameternya harus ditransformasikan dalam bentuk double logaritme natural (ln) sehingga merupakan bentuk linear berganda (multiple linear) yang kemudian dianalisis dengan metode kuadrat terkecil (ordinary least square) yang dirumuskan sebagai berikut:

$$Ln Y = Ln \beta 0 + \beta 1 Ln X1 + \beta 2 Ln X2 + \beta 3 Ln X3 + + \beta n Ln Xn + u$$

Dalam proses produksi Y dapat berupa produksi komoditas petanian dan X dapat berupa faktor produksi pertanian seperti lahan, tenaga kerja, bibit, pupuk dan sebagainya. Pengukuran efisiensi alokatif dapat dilakukan dengan menurunkan fungsi biaya *dual* dari fungsi produksi Cobb-Douglas yang homogenous. Caranya yaitu dengan meminimumkan fungsi biaya input dengan kendala fungsi produksi sehingga diperoleh fungsi biaya *dual frontier*.

$$C = f(Y, X1, X2, X3, ..., Xn)$$

Umumnya kelemhan dari fungsi Cobb-Douglas terletak pada permasalahan pendugaan yang melibatkan kaidah metode kuadrat terkecil (MKT), misalnya spesifikasi variabel yang keliru, kesalahan pengukuran variabel, bias terhadap variabel manajemen, multikolinearitas, dan asumsi yang perlu diikuti tidak selalu mudah berlaku begitu saja.

2.6 Konsep Efisiensi

Efisiensi dalam produksi merupakan ukuran perbandingan antara output dan input. Konsep efisiensi diperkenalkan oleh Michael Farrell dengan mendefinisikan sebagai kemampuan organisasi produksi untuk menghasilkan produksi tertentu pada tingkat biaya minimum (Kopp dalam Kusumawardani, 2001). Farrel dalam Indah Susantun (2000) membedakan efisiensi menjadi tiga yaitu efisiensi teknik, efesiensi alokatif (harga) dan efisiensi ekonomis. Efisiensi teknik mengenai hubungan antara input dan output. Efisiensi alokatif tercapai jika penambahan tersebut mampu memaksimumkan keuntungan yaitu menyamakan produk marjinal setiap faktor produksi dengan harganya. Sedangkan efisiensi ekonomi dapat dicapai jika kedua efisiensi yaitu efisiensi tehnik dan efisiensi harga dapat tercapai. Efisiensi ekonomi akan tercapai jika terpenuhi dua kondisi berikut:

- 1. Proses produksi harus berada pada tahap kedua yaitu pada waktu $0 \le Ep \le 1$
- 2. Kondisi keuntungan maksimum tercapai, dimana *value marginal product* sama dengan *marginal cost resource*. Jadi *efisiensi* ekonomi tercapai jika tercapai keuntungan maksimum.

Asumsi perusahaan memaksimumkan keuntungan, tercapai apabila nilai marjinal produk sama dengan harga input variabel yang bersangkutan. Menurut Nicholson (1995) dalam Warsana (2007) efisiensi ekonomi digunakan untuk menjelaskan situasi sumber-sumber dialokasikan secara optimal. Efisiensi ekonomi terdiri atas dua komponen yaitu efisiensi teknis (technical efficiency) dan efisiensi harga atau efisiensi alokatif (price efficiency or allocative efficiency.) Efisiensi teknis mengukur berapa produksi yang dapat dicapai suatu set input tertentu. Besarnya produksi tersebut menjelaskan keadaan pengetahuan teknis dan modal tetap yang dikuasai oleh petani atau produsen. Suatu usaha dikatakan lebih efisien secara teknis jika dengan menggunakan set input yang sama produk yang dihasilkan lebih tinggi. Efisiensi teknis juga sering disebut efisiensi jangka panjang. Sedangkan efisiensi harga (alokatif) berhubungan dengan keberhasilan petani dalam mencapai keuntungan maksimum. Efisiensi ini disebut juga efisiensi jangka pendek.

Efisiensi pada dasarya merupakan alat pengukur untuk menilai pemilihan kombinasi input-output. Menurut Soekartawi (1993) ada tiga kegunaan mengukur efisiensi : (1) sebagai tolak ukur untuk memperoleh efisiensi relatif, mempermudah perbandingan antara unit ekonomi satu dengan lainnya. (2) apabila terdapat variasi tingkat efisiensi dari beberapa unit ekonomi yang ada maka dapat dilakukan penelitian untuk menjawab faktor-faktor apa yang menentukan perbedaan tingkat efisiensi. (3) informasi mengenai efisiensi memiliki implikasi kebijakan karena manajer dapat menentukan kebijakan perusahaan secara tepat.

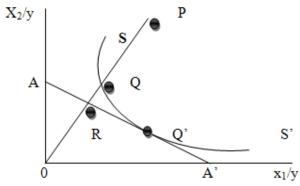
Dalam ekonomi produksi, efisiensi ekonomi dapat dicapai jika dipenuhi dua kriteria (Doll & Orazen *dalam* Kusumawardhani, 2002), yaitu:

 a. Syarat keharusan (necessary condition), yaitu suatu kondisi dengan produksi dalam jumlah yang sama tidak mungkin dihasilkan dengan menggunakan

- sejumlah input yang lebih sedikit dan produksi dalam jumlah yang lebih besar tidak mungkin dihasilkan dengan menggunakan jumlah *input* yang sama.
- b. Syarat kecukupan (sufficiency condition), yaitu syarat yang diperlukan untuk menentukan letak efisiensi ekonomi yang terdapat pada daerah rasional, karena dengan hanya mengetahui fungsi produksi saja maka letak efisiensi ekonomi yang terdapat pada daerah rasional tidak bisa ditentukan. Untuk menentukan letak efisiensi ekonomi diperlukan suatu alat yang merupakan indikator pilihan yaitu berupa input dan harganya.

Soekartawi (1993) dalam terminologi ilmu ekonomi, mengemukakan bahwa efisien dapat digolongkan menjadi 3 (tiga) macam, yaitu : efisiensi teknis, efisiensi alokatif (efisiensi harga) dan efisiensi ekonomi. Suatu penggunaan faktor produksi yang dipakai menghasilkan produksi yang maksimum. Dikatakan efisiensi harga atau efisiensi alokatif kalau nilai dan produk marginal sama dengan harga faktor produksi yang bersangkutan dan dikatakan efisiensi ekonomi kalau usaha pertanian tersebut mencapai efisiensi teknis dan sekaligus juga mencapai efisiensi alokatif/harga.

Seorang petani secara teknis dikatakan lebih efisien (efisiensi teknis) dibandingkan dengan yang lain bila petani itu dapat berproduksi lebih tinggi secara fisik dengan rnenggunakan faktor produksi yang sama. Sedangkan efisiensi harga dapat dicapai oleh seorang petani bila ia mampu memaksimumkan keuntungan (mampu menyamakan nilai marginal produk setiap faktor produksi variabel dengan harganya).


Efisiensi alokatif digunakan untuk mengukur tingkat keberhasilan petani dalam usahanya untuk mencapai keuntungan maksimal, di mana efisiensi harga dicapai pada saat nilai produk dari masing-masing input sama dengan biaya marginalnya. Secara umum, efisiensi didekati dari dua sisi pendekatan yaitu alokasi pendekatan penggunaan input dan alokasi output yang dihasilkan.

2.6.1 Pendekatan dari Sisi Input

Pendekatandari sisi input membutuhkan ketersediaan harga input dan kurva *isoquant* yangmenunjukkan kombinasi input yang digunakan untuk menghasilkan

BRAWIJAYA

output secara maksimal. Untuk mengetahui keadaan petani pada kondisi efisien secara alokatif dari sisi input dapat dilihat Pada gambar 2.

Gambar 2. Pengukuran efisiensi dari Sisi Input

Keterangan:

P = Input

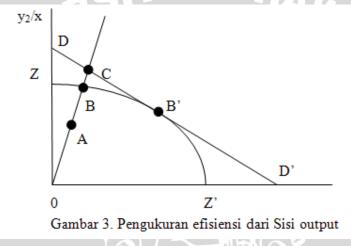
Q = Efisiensi teknis dan inefisiensi alokatif

Q' = Efisiensi teknis dan efisieni alokatif

R = Inefisiensi teknis dan efisiensi alokatif

AA' = Kurva ratio harga input

SS' = isoquant fully efficient


Pada gambar 2 kondisi pendekatan berorientasi input, *isoquant* yang menunjukkan kondisi yang efisien penuh (*fully efficient*) digambarkan oleh kurva SS'. Jika perusahaan mengunakan input sejumlah P untuk memproduksi 1 unit output, maka nilai inefisiensi teknis dicerminkan oleh jarak QP. Pada ruas garis QP jumlah input yang digunakan dapat dikurangi tanpa harus mengurangi jumlah output yang dihasilkan.Rasio harga input ditunjukkan oleh kurva biaya AA', maka nilai efisiensi alokatif dipresentasikan dalam bentuk:

$$AEi = 0R/0Q$$

Ruas garis RQ menunjukkan biaya produksi yang dapat dikurangi yang memungkinkan perusahaan mencapai kondisi efisien secara alokatif dan teknis pada titik Q', sedangkan titik Q meskipun efisien secara teknis namun inefisiensi secara alokatif.

2.6.2. Pendekatan dari Sisi Output

Metode pendekatan yang didasarkan pada orientasi output dengan menggunakan kurva kemungkinan produksi ZZ', sementara titik A menunjukkan petani berada dalam kondisi inefisien. Pada gambar yang sama, ruas garis AB menggambarkan kondisi yang inefisien secara teknis dengan ditunjukkan adanya tambahan output tanpa membutuhkan input tambahan. Untuk mengetahui keadaan petani pada kondisi efisien secara alokatif dari sisi output dapat dilihat pada gambar 3.

Keterangan:

ZZ' = kurva kemungkinan produksi

DD' = isorevenue

Dengan adanya informasi harga output yang digambarkan oleh garis isorevenue DD', maka efisiensi alokatif ditulis sebagai berikut :

AE0 = 0B / 0C

2.7 Konsep Biaya, Penerimaan, dan Pendapatan Usahatani

1. Biaya Usahatani

Menurut Soekartawi (1995) biaya usahatani biasanya diklasifikasikan menjadi dua yaitu biaya tetap dan biaya tidak tetap/variabel. Biaya tetap ini didefinisikan sebagai biaya yang relatif tetap jumlahnya, dan terus dikeluarkan walaupun produksi yang diperoleh banyak atau sedikit. Jadi besarnya biaya tetap ini tidak bergantung pada besar kecilnya produksi yang diperoleh. Contoh biaya tetap adalah pajak, sewa tanah, penyusutan alat pertanian, dan iuran irigasi. Cara menghitung biaya tetap adalah:

$$FC = \sum_{i=1}^{n} Xi \ Pxi$$

Dimana:

FC: biaya tetap

Xi : jumlah fisik dari input yang mebentuk biaya tetap

Pxi : harga input

: banyaknya input

Apabila biaya tetap ini tidak dapat dihitung dengan rumus, maka sekaligus ditetapkan nilainya saja. Sedangkan biaya tidak tetap atau biaya variabel didefinisikan sebagai biaya yang besar kecilnya dipengaruhi oleh produksi yang diperoleh. Contoh dari biaya variabel adalah biaya untuk sarana produksi diantaranya tenaga kerja, biaya bibit, biaya pupuk.

2. Penerimaan Usahatani

Shinta (2005) menjelaskan bahwa penerimaan usahatani diperoleh dengan mengalikan jumlah produksi yang dihasilkan dengan harga jual produk tersebut. Secara matematis pengertian tersebut dapat ditulis sebagai berikut :

$$TRi = Yi \times Pyi$$

Dimana:

TRi : total penerimaan usahatani komoditas i

Yi : jumlah produksi komoditas i

Pyi : harga tiap satu satuan komoditas i

Untuk komoditas yang diusahakan lebih dari satu maka persamaan penerimaan total dapat dirumuskan sebagai berikut :

$$TR = \sum_{i=1}^{n} Y. Py$$

Dimana:

TR: total penerimaan usahatani

n : banyaknya komoditas yang diusahakanY : jumlah produksi komoditas yang dihitungPy : harga tiap satuan komoditas yang dihitung

C. Pendapatan Usahatani

Pendapatan usahatani merupakan ukuran perolehan total sumberdaya yang digunakan dalam usahatani. Selisih antara penerimaan usahatani dengan biaya total usahatani merupakan pendapatan bersih atau keuntungan usahatani. Shinta (2005) menjelaskan bahwa pendapatan usahatani merupakan selisih antara penerimaan usahatani dengan semua biaya yang dikeluarkan. Rumus untuk menghitung pendapatan usahatani adalah sebagai berikut:

$$\pi = TR - TC$$

dimana:

 π : pendapatan usahatani

TR : total penerimaan usahatani

TC: total biaya usahatani

Soekartawi (1990) memberikan definisi mengenai pendapatan usahatani sebagai berikut:

BRAWIN

- a. Pendapatan kotor usahatani (*gross farm income*) merupakan nilai produk total usahatani dalam jangka waktu tertentu, baik yang dijual maupun tidak dijual. Produk total usahatani tersebut mencakup semua produk yang dijual, dikonsumsi rumah tangga petani, digunakan dalam usahatani untuk bibit atau makanan ternak, untuk pembayaran maupun produk yang disimpan di gudang pada akhir tahun. Istilah lain untuk pendapatan usahatani adalah nilai produksi (*value of production*) atau penerimaan faktor usahatani (*gross return*).
- b. Pendapatan kotor usahatani adalah ukuran hasil perolehan total sumberdaya yang digunakan dalam produksi.
- c. Pengeluaran total usahatani (*total farm expenses*) didefinisikan sebagai nilai suatu masukan yang habis terpakai atau dikeluarkan di dalam produksi, tetapi tidak termasuk tenaga kerja keluarga petani.
- d. Pengeluaran tidak tetap (*variabel cost*) didefinisikan sebagai pengeluaran yang digunakan untuk tanaman atau ternak tertentu dan jumlahnya berubah sebanding dengan besarnya produksi tanaman atau ternak itu.
- e. Pengeluaran tetap (*fixed cost*) didefinisikan sebagai pengeluaran usahatani yang tidak tergantung pada besarnya produksi.

f. Pendapatan bersih usahatani (net farm income) didefinisikan sebagai selisih antara pendapatan kotor usahatani dan pengeluaran total usahatani. Pendapatan bersih usahatani ini dapat digunakan untuk mengukur imbalan yang diperoleh tingkat keluarga petani dan penggunaan faktor-faktor produksi kerja, pengelolaan dan modal.

Besarnya pendapatan petani dalam menjalankan usahataninya dipengaruhi oleh beberapa faktor antara lain:

- a. Harga sarana produksi
 - Dalam kaitannya dengan produksi, petani sangat bergantung pada besarnya harga sarana produksi seperti bibit, pupuk, pestisida yang digunakan dalam usahataninya.
- b. Harga hasil produksi Harga hasil produksi yang akan diterima petani sangat tergantung dari hukum penawaran ekonomi. Semakin tinggi penawaran suatu komoditi pertanian maka harganya makin tinggi pula, demikian pula sebaliknya.
- c. Biaya tenaga kerja Semakin sulit mencari tenaga kerja dibidang pertanian maka biaya (ongkos) tenaga kerja akan semakin mahal.

III. KERANGKA TEORITIS 3.1 Kerangka Pemikiran

Usahatani merupakan kegiatan menggunakan sumber daya secara efisien dan efektif pada suatu usaha pertanian agar diperoleh hasil maksimal. Sumber daya yang dimaksud adalah lahan, tenaga kerja, modal dan manajemen. Salah satu komoditas yang memiliki potensi dan prospek untuk dibudidayakan adalah jagung mengingat semakin meningkatnya jumlah penduduk di Indonesia serta ditunjang dengan program swasembada jagung yang dicanangkan oleh pemerintah pada tahun 2014 mendatang.

Desa Sukolilo merupakan salah satu desa di Kecamatan Wajak yang berpotensi untuk dijadikan daerah pengembangan usahatani jagung mengingat 52,42 % dari luas lahan desa tersebut adalah ladang dan sebagian besar digunakan untuk budidaya komoditas jagung (BPMKM 2010). Hal ini sangat cocok untuk budidaya jagung dikarenakan jagung dapat tumbuh dan berkembang dengan baik di lahan kering. Banyaknya perusahaan yang bergerak di bidang pembenihan jagung tertarik untuk menjalin kemitraan dengan petani setempat mencerminkan bahwa kondisi lahan di Desa Sukolilo sangat berpotensi untuk usahatani jagung.

Kendala yang dihadapi pada usahatani jagung di Desa Sukolilo adalah masih rendahnya produktivitas yang dihasilkan apabila dibandingkan dengan ratarata produktivitas jagung di Kecamatan Wajak. Selisih produktivitas Kecamatan Wajak dengan Desa Sukolilo sebesar 12,73 kw/ha. Tingginya angka tersebut mengindikasikan bahwa petani memiliki keterbatasan dalam memanfaatkan segala faktor produksi dalam pembudidayaan jagung dan berakibat pada belum maksimalnya hasil produksi yang didapat. Apabila tingkat produktivitas Desa Sukolilo yang sebesar 37,50 kw/ha dapat ditingkatkan minimal mencapai 50,23 kw/ha sesuai dengan tingkat produktivitas Kecamatan Wajak maka akan semakin menguntungkan dikarenakan berdampak pada semakin tinggi pendapatan yang akan diterima oleh petani.

Keterbatasan modal yang dimiliki petani juga merupakan kendala yang dihadapi dalam usahatani jagung di Desa Sukolilo. Oleh karena itu, petani

memiliki keterbatasan dalam pengkombinasian berbagai macam input sehingga berdampak pada produksi yang kurang maksimal. Dengan demikian, ketidakpastian petani di daerah penelitian dalam melakukan pengelolaan usahataninya akan berdampak pada produksi jagung dikarenakan minimnya nutrisi yang dibutuhkan oleh tanaman jagung. Selain itu berdasarkan penelitian pendahuluan di Desa Sukolilo petani setempat tidak menggunakan pestisida dan hanya sebagian petani yang menggunakan furadan di awal penanaman. Hal ini, tentu sangat berdampak pada tanaman jagung dikarenakan rentan terhadap serangan hama dan penyakit tanaman.

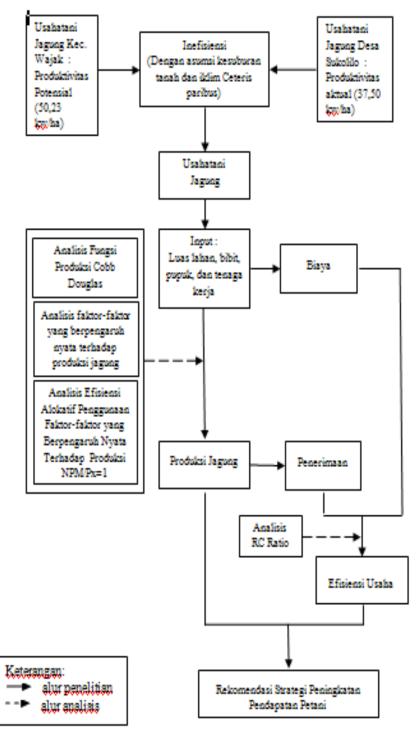
Tingginya produktivitas tanaman jagung dapat dihasilkan apabila faktor produksi usahatani jagung dapat dikelola dengan baik. Faktor produksi yang diduga berpengaruh terhadap produksi jagung di daerah penelitiaan meliputi luas kepemilikkan lahan yang berbeda, benih jagung yang kualitasnya beragam, penggunaan pupuk yang tidak sesuai anjuran dengan kebutuhan tanaman, dan jumlah tenaga kerja yang digunakan dalam usahatani jagung.

Jenis jagung yang dibudidayakan di daerah penelitiaan adalah jagung hibrida dan jagung lokal dimana masing-masing jenis memiliki perlakuan yang berbeda-beda guna memperoleh hasil yang maksimal. Begitu pula dalam hal penggunaan pupuk harus sesuai dosis anjuran yang dibutuhkan oleh tanaman. Menurut Suwalan et al (2004) *dalam* Sahara dan Idris (2010) respon tanaman terhadap pemberian pupuk akan meningkat apabila pupuk yang digunakan tepat jenis, dosis, waktu dan cara pemberian.

Faktor produksi yang digunakan dalam usahatani meliputi lahan, modal, tenaga kerja, dan manajemen harus dikelola secara efisien dan efektif agar diperoleh hasil maksimal (Wijaya, 2007). Benih yang digunakan petani setempat terdiri dari benih hibrida dan non hibrida. Sedangkan pupuk yang digunakan oleh petani di daerah penelitian terdiri dari dua macam pupuk yaitu urea dan Za. Menurut Prihatman (2000) jenis pupuk yang digunakan dalam kegiatan usahatani jagung antara lain urea, TSP, dan KCL. Berdasarkan literatur tersebut penggunaan pupuk Za tidak sesuai anjuran pupuk yang digunakan dalam usahatani jagung. Sedangkan pengamatan pada penggunaan tenaga kerja, penggunaan tenaga kerja

non keluarga memiliki proporsi lebih dominan daripada tenaga kerja yang berasal dari keluarga. Apabila dua jenis tenaga kerja tersebut dibandingkan, tenaga kerja keluarga lebih memperhatikan kualitas teknis budidaya usahataninya guna memperoleh hasil yang diharapkan. Menurut penelitian Riyadi (2007), faktor yang berpengaruh nyata terhadap produksi jagung yaitu luas lahan, tenaga kerja, bibit, urea, TSP, KCL, dan pestisida. Berdasarkan ulasan di atas diduga lahan, tenaga kerja, dan pupuk berpengaruh nyata terhadap produksi jagung di daerah penelitian.

Untuk meningkatkan produktivitas usahatani jagung, dibutuhkan pengalokasian faktor produksi yang efisien agar output yang dihasilkan efisien. Wijaya (2007) mengemukakan bahwa efisiensi dapat dicapai dengan tiga cara yaitu efisiensi teknis, alokatif, dan ekonomis. Dalam penelitian ini, pendekatan yang digunakan untuk mengukur tingkat efisiensi petani yaitu dengan efisiensi alokatif. Tujuan utamanya adalah untuk mengukur tingkat keberhasilan petani dalam usahanya mencapai keuntungan maksimal, dimana efisiensi harga dicapai pada saat nilai produk dari masing-masing input sama dengan biaya marginalnya. Efisiensi alokatif penggunaan faktor-faktor produksi yang mempengaruhi usahatani jagung di Desa Sukolilo di duga belum efisien dikarenakan dalam kenyataanya petani bekerja dalam ketidakpastian mengenai harga input dan faktor ekstern lainnya.


Tujuan yang ingin dicapai dalam usahatani adalah tingkat pendapatan yang tinggi dan penggunaan input yang efisien dan efektif. Dikatakan efektif bila petani dapat mengalokasikan sumberdaya yang dimiliki sebaik-baiknya, dan dapat dikatakan efisien bila pemanfaatan sumberdaya tersebut mengeluarkan output yang melebihi input. Kondisi usahatani yang menghasilkan keuntungan yang optimal diharapkan dapat menjaga petani jagung di Desa Sukolilo untuk terus melanjutkan usahataninya. Berdasarkan ulasan tersebut diduga usahatani jagung di Desa Sukolilo sudah mengguntungkan.

Efisiensi alokatif merupakan rasionalitas petani dalam melakukan kegiatan usahatani dengan tujuan mencapai keuntungan maksimal. Berdasarkan penelitian terdahulu secara empiris menyatakan bahwa metode yang dapat digunakan untuk

mengetahui faktor-faktor produksi yang berpengaruh nyata terhadap produksi jagung yaitu menggunakan fungsi produksi Cobb Douglas meliputi analisis faktor-faktor yang berpengaruh nyata terhadap produksi jagung. Sedangkan analisis efisiensi penggunaan faktor-faktor produksi yang berpengaruh nyata terhadap produksi jagung digunakan untuk mengetahui apakah usahatani jagung sudah efisien dalam penggunaan faktor produksinya. Selanjutnya digunakan analisis pendapatan usahatani jagung untuk mengetahui besarnya pendapatan yang diterima oleh petani jagung. Apabila sudah diketahui faktor-faktor produksi yang berpengaruh terhadap produktivitas dan juga penggunaanya sudah efisien. Maka petani diharapkan mampu menggunakan faktor produksi yang dmilikinya secara efisien sehingga peningkatan pendapatan petani dapat tercapai.

Berdasarkan Uraian di atas, maka secara ringkas kerangka pemikiran dari penelitian ini dapat dilihat pada gambar 4.

Gambar 4. Skema Kerangka Pemikiran Analisis efisiensi Alokatif Input Usahatani Jagung.

3.2 Hipotesis Penelitian

Berdasarkan kerangka konsep penelitian yang telah dikemukakan sebelumnya, maka dalam penelitian ini diajukan beberapa hipotesis sebagai berikut:

- 1. Diduga penggunaan faktor-faktor produksi luas lahan, benih, pupuk dan tenaga kerja berpengaruh nyata terhadap produksi usahatani jagung.
- 2. Diduga tingkat efisiensi alokatif faktor-faktor produksi luas lahan, benih, pupuk dan tenaga kerja yang berpengaruh terhadap produksi jagung belum efisien.
- 3. Diduga usahatani jagung menguntungkan.

3.3 Batasan Masalah

Untuk menghindari luasnya pokok batasan dalam penelitian ini, maka perlu batasan masalah sebagai berikut:

- Keadaan iklim dan Kesuburan tanah di Kecamatan Wajak dan Desa Sukolilo diasumsikan sama, sehingga penelitian ini hanya terbatas pada menganalisis efisiensi alokatif pada usahatani jagung di Desa Sukolilo, Kecamatan Wajak, Kabupaten Malang.
- 2. Usahatani yang dimaksud yaitu usahatani jagung yang dilaksanakan mulai Januari 2010 Juni 2010 dengan pertimbangan banyaknya petani yang memiliki lahan dengan irigasi sistem tadah hujan yang bergantung sepenuhnya pada musim hujan.
- 3. Penelitian ini dilakukan pada petani yang mengusahakan tanaman jagung.

3.4 Definisi operasional

Variabel yang diamati yaitu data dan informasi mengenai usahatani jagung yang diusahakan oleh petani. Variabel tersebut didefinisikan terlebih dahulu untuk mempermudah pengumpulan data yang mengacu pada konsep dibawah ini:

 Efisisensi alokatif adalah efisiensi yang dicapai apabila petani memperoleh keuntungan dari usahataninya akibat dari harga, untuk pengukuran efisiensi penggunaan faktor-faktor produksi usahatani jagung yang dihitung dari nilai NPMx/Px.

- Luas lahan adalah sebidang tanah yang digunakan petani jagung untuk melakukan kegiatan usahatani jagung setiap satu kali musim tanam, dinyatakan dalam m².
- 3. Benih jagung adalah jumlah benih jagung yang digunakan petani setiap satu kali musim tanam yang dinyatakan dalam kg.
- 4. Jumlah pupuk adalah total penggunaan pupuk dalam usahatani jagung setiap satu kali musim tanam yang diukur dalam satuan kg.
- 5. Jumlah tenaga kerja adalah total tenaga kerja yang berasal dari keluarga maupun diluar keluarga yang melakukan kegiatan usahatani jagung yang dihitung dalam HOK (Hari Orang Kerja).
- 6. Produksi jagung adalah hasil tanaman jagung yang dihasilkan selama satu musim tanam dengan satuan kg.
- 7. Harga jual jagung adalah harga jual jagung yang diterima petani pada saat dijual, diukur dengan satuan rupiah tiap satuan berat (Rp/kg).
- 8. Biaya sewa lahan adalah biaya yang dikeluarkan untuk pembayaran sewa lahan bagi petani yang menyewa lahan dalam kegiatan usahatani jagung per satu kali musim tanam dengan satuan Rp/m².
- 9. Biaya pajak lahan adalah Biaya yang dikeluarkan untuk pembayaran lahan bagi petani yang memiliki lahan sendiri dalam kegiatan usahatani jagung per satu kali musim tanam dengan satuan Rp/m².
- 10. Biaya penyusutan peralatan adalah Biaya penyusutan atas peralatan yang digunakan dalam kegiatan usahatani jagung. Penyusutan dihitung dari selisih antara harga beli peralatan dengan harga jual atau harga sisa peralatan dibagi nilai ekonomis peralatan tersebut dengan satuan Rp.
- 11. Biaya tetap adalah Biaya yang dikeluarkan dalam kegiatan usahatani jagung yang besar kecilnya tidak dipengaruhi dengan besar kecilnya output yang diperoleh per satu kali musim tanan dengan satuan Rp.
- 12. Biaya bibit adalah Biaya yang digunakan membeli bibit dalam kegiatan usahatani jagung per satu kali musim tanam dengan satuan Rp/kg.

- 13. Biaya tenaga kerja adalah Biaya yang digunakan untuk membayar tenaga kerja manusia baik laki-laki maupun perempuan menurut Hari Orang Kerja (HOK) yang dalam kegiatan usahatani jagung dengan satuan Rp/HOK.
- 14. Biaya pupuk adalah biaya yang digunakan membeli pupuk dalam kegiatan usahatani jagung per satu kali musim tanam dengan satuan Rp/kg.
- 15. Biaya lain-lain adalah biaya yan dikeluarkan untuk membeli furadan dalam usahatani dengan satuan Rp/kg.
- 16. Biaya variabel adalah biaya yang dikeluarkan dalam kegiatan usahatani jagung yang besar kecilnya dipengaruhi oleh jumlah produksi yang dihasilkan per satu kali musim tanam dengan satuan Rp.
- 17. Total penerimaan adalah hasil perkalian antara jumlah produksi jagung dengan harga jual jagung dengan satuan Rp.
- 18. Total biaya adalah biaya total yang dikeluarkan dalam kegiatan usahatani jagung yang meliputi penjumlahan antara biaya tetap yaitu: biaya sewa lahan, biaya pajak lahan, dan biaya penyusutan peralatan dengan biaya variabel yaitu: biaya bibit, biaya pupuk, biaya tenaga kerja per satu kali musim tanam dan biaya lain-lain dengan satuan Rp.
- 19. Pendapatan usahatani adalah Selisih antara total penerimaan dan total biaya yang dikeluarkan dalam usahatani jagung per satu kali musim tanam dengan satuan Rp.

IV. METODE PENELITIAN

4.1 Lokasi Penelitian

Penentuan lokasi dilakukan secara *purposive* di Desa Sukolilo, Kecamatan Wajak, Kabupaten Malang. Lokasi penelitian ditentukan berdasarkan pertimbangan bahwa Kecamatan Wajak merupakan salah satu daerah sentra produksi jagung di Kabupaten Malang. Sedangkan Desa Sukolilo dipilih dengan pertimbangan tingkat produktivitas jagung yang berada di bawah rata-rata tingkat produktivitas di Kecamatan Wajak. Oleh karena itu, mendorong penulis untuk menganalisis efisiensi alokatif input usahatani jagung di Desa Sukolilo, Kecamatan Wajak, Kabupaten Malang dengan tujuan dapat meningkatkan kesejahteraan petani setempat. Penelitian ini dilaksanakan mulai bulan Oktober-November 2010.

4.2 Teknik Penentuan Sample

Populasi dalam penelitian ini adalah petani jagung di Desa Sukolilo Total populasi petani jagung di Desa Sukolilo adalah 259 orang. Penentuan sampel menggunakan metode *simple random sampling* yakni proses pemilihan sampel dimana seluruh anggota populasi mempunyai kesempatan yang sama untuk dipilih. Anggota dari populasi dipilih satu persatu secara random (semua mendapatkan kesempatan yang sama untuk dipilih) dimana jika sudah dipilih tidak dapat dipilih lagi.

Untuk mendapatkan sampel yang menggambarkan populasi, maka dalam penentuan sampel penelitian ini digunakan rumus slovin sebagai berikut :

$$n = \frac{N}{1 + N e^2}$$

Dimana:

n = ukuran sampel

N = ukuran populai

e = derajat kesalahan

Dari jumlah populasi tersebut dengan tingkat kesalahan sebesar 15 %, maka dengan menggunakan rumus di atas diperoleh sampel sebesar :

$$n = \frac{259}{1 + 259 (0,15)^2} = 37,94 = 38 \text{ Orang}$$

Berdasarkan perhitungan di atas, jumlah petani yang dijadikan sample dalam penelitian ini sebanyak 38 orang.

4.3 Teknik Pengumpulan Data

Metode pengumpulan data yang digunakan dalam penelitian ini meliputi :

1. Data Primer

Data primer adalah data yang diperoleh secara langsung dari responden penelitian yaitu petani jagung dengan menggunakan daftar pertanyaan yang telah disusun sebelumnya (kuisioner). Metode pengambilan data primer ini dilakukan dengan cara:

- **a.** Observasi digunakan untuk mengetahui fakta yang terjadi di daerah penelitian berdasarkan pengamatan peneliti. Data yang diperoleh yaitu mengenai proses produksi dalam kegiatan usahatani jagung.
- **b.** Wawancara merupakan kegiatan mencari data melalui tanya jawab dengan responden menggunakan kuisioner. Data yang diambil dari responden meliputi data karakteristik responden dan jumlah produksi per tahunnya, jumlah penggunaan dan harga masing-masing faktor produksi, serta biaya-biaya yang dikeluarkan selama satu kali musim tanam.

2. Data Sekunder

Data sekunder adalah data yang diperoleh dari pustaka, peneliti terdahulu dan lembaga atau instansi terkait yang berguna untuk mendukung data primer untuk melengkapi penulisan laporan. Metode yang digunakan untuk mengambil data dan informasi dari instansi terkait yaitu Balai Desa Sukolilo, Kantor Kecamatan Wajak, Dinas Pertanian dan Perkebunan dan Kabupaten Malang.

4.4 Teknik Analisis Data

4.4.1 Analisis fungsi Produksi Usahatani Jagung

Untuk menguji hipotesis pertama tentang faktor produksi apa saja yang mempengaruhi produksi jagung, maka digunakan analisis fungsi produksi Cobb-Douglas dengan menggunakan SPSS versi 17.

Model fungsi produksi Cobb-Douglas yang digunakan dalam penelitian ini :

$$Y = b0 X1^{b1} X2^{b2} X3^{b3} X4^{b4} e^{u}$$

BRAWIN

Dimana:

B0 = intersep/konstanta

B1,...,b4 = elastisitas produksi dari X1,...,X4

Y = produksi jagung (kg)

X1 = luas lahan (m²)

X2 = benih jagung (kg)

X3 = pupuk (kg)

X4 = tenaga kerja (HOK)

e = logaritma natural

u = kesalahan

Untuk mempermudah pendugaan hasil fungsi, fungsi Cobb-Douglas diturunkan menjadi bentuk logaritma sebagai berikut :

$$Log Y = Log b_0 + b_1 Log X1 + b_2 log x2 + b3 Log X3 + b4 Log X4 + u$$

Pertimbangan yang digunakan dalam menganalisis fungsi produksi *Cobb Douglas* yaitu umum digunakan dalam penelitian empiris di bidang pertanian, memiliki penyelesaian relatif lebih mudah dibandingkan dengan fungsi produksi lain dan dapat ditransfer ke dalam bentuk linier dengan mudah. Hasil pendugaan fungsi *Cobb Douglas* akan menghasilkan koefisien regresi yang sekaligus juga menunjukkan besaran elastisitas serta jumlah besaran elastistas tersebut sekaligus menunjukkan tingkat besaran *return to scale* (Soekartawi, 1990).

4.4.2 Uji Asumsi Klasik

Persamaan regresi yang dihasilkan melalui proses perhitungan tidak selalu merupakan model yang baik untuk melakukan estimasi terhadap variabel independennya. Model regresi yang baik harus bebas dari penyimpangan asumsi klasik, yang terdiri dari asumsi kenormalan, multikolinearitas, heteroskedasitas,dan autokorelasi.

1. Uji Normalitas

Gujarati (1997) mengemukakan bahwa regresi linear membutuhkan asumsi kenormalan data dengan beberapa alasan sebagai berikut :

- Data berdistribusi normal akan menghasilkan model prediksi yang tidak bias serta memiliki varians yang minimum.
- b. Data berdistribusi normal akan menghasilkan model yang konsisten yaitu dengan meningkatnya jumlah sampel ke jumlah yang tidak terbatas, maka penaksir mengarah ke nilai populasi yang sebenarnya.

Berdasarkan dua alasan di atas maka sebelum melakukan analisis dan dilanjutkan dengan uji regresi, terlebih dahulu dilakukan uji normalitas terhadap nilai *unstandardized residual*. Apabila asumsi ini tidak terpenuhi, baik uji F maupun uji-t, dan estimasi nilai variabel menjadi tidak valid. Uji normalitas dapat dilihat dengan nilai statistik dari uji dengan menggunakan kolmogrov Smirnov.

2. Heteroskedastisitas

Hetersoskedasitas terjadi apabila variasi u_t tidak konstan atau berubah-ubah secara sistematik seiring dengan berubahnya nilai variabel independen (Gujarati, 1997). Ada beberapa cara untuk mendeteksi ada tidaknya heteroskedasitas. Uji Glejser dilakukan dengan membuat model regresi yang melibatkan nilai mutlak residu sebagai variabel terikat terhadap semua variabel bebas. Jika semua variabel bebas signifikan secara statistik maka dalam regresi terdapat heteroskedastiitas (Iqbal, 2008).

3. Multikolinearitas

Masalah multikolinearitas muncul jika terdapat hubungan yang sempurna atau pasti di antara satu atau lebih variabel independen dalam model. Dalam kasus terdapat multikolinearitas yang serius, koefisien regresi tidak lagi menunjukkan pengaruh murni dari variabel independen dalam model. Dengan demikian, bila tujuan dari penelitian adalah mengukur arah besarnya pengaruh variabel independen secara akurat, masalah multikolinearitas penting untuk diperhatikan.

Multikolinearitas dapat dideteksi dengan melihat serius atau tidaknya hubungan antar variabel independen (X) yang dianalisis. Jika terjadi multikolinear yang serius di dalam model maka masing-masing variabel independen (luas lahan, benih, pupuk, dan tenaga kerja) terhadap variabel dependennya (y) tidak dapat dipisahkan, sehingga estimasi yang diperoleh akan menyimpang atau bias.

Selain itu, multikolinearitas dapat dilihat dari nilai R² yang tinggi, teteapi tidak atupun atau sangat sedikit koefisien regresi yang ditaksir yang berpengaruh signifikan secara statistik pada saat dilakukan uji-t dan nilai VIF (*Variance Inflation Factor*) pada masing-masing variabel bebasnya lebih dari 10.

4. Autokorelasi

Uji autokorelasi yang dilakukan pada penelitian ini menggunakan Uji *Durbin Watson*. Uji autokorelasi bertujuan untuk mengetahui apakah dalam suatu model regresi linear ada korelasi antara kesalahan pengganggu dengan kesalahan sebelumnya. Apabila hal ini terjadi maka terdapat masalah autokorelasi. Adapun kritik pengujiannya adalah jika du < d < 4—du maka Ho ditolak yang berarti tidak ada autokorelasi baik positif maupun negatif.

Untuk mengetahui ketepatan model regresi sampel dalam menaksir nilai aktualnya dapat diukur dari *goodness of fit*-nya. *goodness of fit* dalam model regresi dapat diukur dari nilai koefisien determinasi, nilai statistik F, dan uji statistik t.

a. Koefisien Determinasi (R²)

Koefisien determinasi pada dasarnya digunakan untuk mengukur seberapa besar kemampuan model menjelaskan variabel dependen. Jadi, koefisien determinasi sebenarnya mengukur besarnya presentase pengaruh semua variabel independen yang berupa luas lahan, benih, pupuk dan tenaga kerja dalam model regresi terhadap variabel dependennya (produksi jagung). Besarnya nilai koefisien determinasi berupa presentase yang menunjukkan presentase variasi nilai variabel dependen yang dapat dijelaskan oleh model regresi.

b. Uji – F

Uji F digunakan untuk melihat apakah keseluruhan variabel *independen* (luas lahan, benih, pupuk dan tenaga kerja) yang dimasukkan dalam persamaan/model regresi secara bersamaan berpengaruh terhadap variabel *dependen* (produksi jagung).

Uji terhadap nilai statistik t merupakan uji signifikansi parameter individual. Uji t dilakukan untuk mengetahui keberartian variabel *independen* secara individual terhadap variabel dependennya. Uji t merupakan pengujian bertujuan mengetahui signifikansi atau tidaknya koefisien regresi atau agar dapat diketahui variabel independen (X) yang berpengaruh signifikansi terhadap variabel dependen (Y) secara parsial.

4.4.3 Analisi Efisiensi Alokatif penggunaan faktor-faktor Produksi

Untuk mengukur tingkat efisiensi alokatif penggunaan tiap-tiap faktor produksi usahatani digunakan rasio antara nilai produk marjinal (NPM_x) dengan harga faktor produksi per satuan (P_x) dengan rumus sebagai berikut :

$$\frac{\text{NPMx}}{\text{Px}} = 1 \text{ atau Xi} = \frac{b_i \text{ Y } P_y}{P_x}$$

Dimana:

NPM_x = Nilai produk marjinal faktor produksi x

 b_1 = Elastisitas produksi xi

Xi = Rata-rata penggunaan faktor produksi ke-i

Y = Rata-rata produksi per satuan luas

P_x = Harga per satuan faktor produski

 P_y = Harga satuan hasil produksi

Kriteria pengujiannya adalah sebagai berikut :

- a) $\frac{NPMx}{Px} 1$, maka penggunaan faktor produksi ke-i pada tingkat harga yang berlaku sudah optimum atau secara ekonomi sudah efisien.
- b) $\frac{NPMx}{Px} > 1$, maka penggunaan faktor produksi ke-i pada tingkat harga yang berlaku, belum berada pada tingkat optimum atau secara ekonomi belum efisien sehingga untuk membuat efisien maka input X harus ditambah.
- c) NPMx < 1 maka penggunaan faktor produksi ke-i pada tingkat harga yang berlaku, sudah terlampaui atau secara ekonomi tidak efisien lagi sehingga penggunaannya harus dikurangi

4.4.4 Analisis Biaya, Penerimaan, dan Keuntungan Usahatani Jagung

1. Analisis Biaya Usahatani Jagung

Perhitungan biaya dilakukan dengan menghitung semua pengeluaran selama proses produksi berlangsung. Besarnya biaya produksi dapat dihitung dengan menggunakan rumus sebagai berikut :

Keteragan:

TC = Biaya Total

TFC = Total Biaya Tetap
TVC = Total Biaya Variabel

2. Analisis Penerimaan

Penerimaan usahatani adalah perkalian antara jumlah produk dengan harga jualnya. Besarnya penerimaan dipengaruhi oleh besarnya produk yang dihasilkan, dimana semakin besar jumlah produk yang dihasilkan maka penerimaan semakin besar. Selain itu penerimaan juga dipengaruhi oleh harga produk tersebut, semakin tinggi harga jual produk tersebut maka penerimaan akan semakin tinggi. Penerimaan dihitung:

$$TR = Y.Py$$

Keterangan:

TR = Total Penerimaan

Py = Harga per satuan produksi jagung

Y = Jumlah produksi Jagung

3. Analisis Keuntungan

Keuntungan usahatani adalah mengurangi penerimaan usahaani sesuai total biaya yang dikeluarkan. Besarnya keuntungan dapat dihitung dengan menggunakan rumus sebagai berikut :

$$\Pi = TR - TC$$

Keterangan:

 Π = Keuntungan

TR = Penerimaan

4.4.5 Analisis RC ratio

Analisis RC Ratio (*Return Cost Ratio*), yaitu perbandingan antara total penerimaan dengan total biaya produksi atau analisis imbangan biaya dan penerimaan.

RC ratio =
$$\frac{TR}{TC}$$

Analisis ini menunjukkan tingkat efisiensi ekonomi dari usahatani yang dilakukan, dengan kriteria efisiensi dari perbandingan ini akan dicapai apabila :

- RC ratio > 1 berarti usahatani menguntungkan
- RC ratio = 1 berarti usahatani tidak rugi atau tidak untung
- RC ratio < 1 berarti usahatani tidak mengguntungkan

V. HASIL DAN PEMBAHASAN

5.1 Gambaran Umum Daerah Penelitian

5.1.1 Letak Geografis

Desa Sukolilo secara administratif termasuk ke dalam wilayah kecamatan Wajak, Kabupaten malang, Jawa Timur. Desa Sukolilo mempunyai wilayah seluas 627,407 ha. Adapun batas-batas administratif Desa Sukolilo Kecamatan Wajak adalah sebagai berikut:

Sebelah Utara : Desa Wajak Kecamatan Wajak

Sebelah Selatan : Desa Tumpuk renteng Kecamatan Turen

Sebelah Barat : Desa Kidangbang

Desa Timur : Desa Blayu Kecamatan Wajak Peta Kecamatan Wajak dapat dilihat pada lampiran 1.

5.1.2 Penggunaan Lahan

Dari data statisistik Desa Sukolilo dapat diketahui bahwa sebagian besar wilayahnya berupa ladang dengan luas 328,870 ha. Secara keseluruhan keadaan geografis Desa Sukolilo disajikan pada Tabel 3.

Tabel 3. Prosentase Luas Lahan Berdasarkan Penggunaan Tanah di Desa Sukolilo, kecamatan Wajak. Kabupaten Malang tahun 2009

Jenis Penggunaan Tanah	Luas lahan (ha)	Prosentase (%)
Pemukiman	38,455	6,13
Sawah	107,001	17,05
Ladang	328, 870	52,42
Bangunan	1,6	0.26
Lain-lain	151,481	24.14
Jumlah	627,407	100

Sumber: Data Primer Diolah (2010)

Berdasarkan Tabel 3 penggunaan tanah di Desa Sukolilo mayoritas (52,42%) adalah Ladang . Dari data dapat diketahui bahwa ketergantungan penduduk Desa Sukolilo pada pertanian cukup besar, sehingga tidak sedikit penduduknya berkecimpung dalam bidang pertanian khususnya budidaya tanaman palawija. Jagung adalah salah satu tanaman palawija yang paling banyak ditanam

dibanding tanaman lainnya. Dengan gambaran bahwa prosentase ladang lebih besar di daerah penelitian maka sangat cocok sebagai tempat untuk pengembangan budidaya jagung. Terbukti dari banyaknya petani setempat yang menjalin kemitraan dengan salah satu perusahaan benih jagung yang berada di Jawa Timur yang telah berjalan selama bertahun-tahun.

5.1.3 Distribusi Penduduk Berdasarkan Jenis Kelamin

Penduduk adalah salah satu sumber daya yang merupakan potensi utama suatu wilayah. Jumlah penduduk di Desa Sukolilo sebanyak 6.591 jiwa terdiri dari 3.275 orang laki-laki dan 3.316 orang perempuan dengan jumlah 1.770 kepala keluarga (KK). Prosentase jumlah penduduk Desa Sukolilo Berdasarkan Jenis kelamin dapat dilihat pada Tabel 4.

Tabel 4. Prosentase Jumlah Penduduk Berdasarkan Jenis Kelamin di Desa Sukolilo, Kecamatan Wajak, Kabupaten Malang Tahun 2009

Jenis Kelamin	Jumlah (jiwa)	Prosentase (%)
Laki-laki	3.275	49,69
Perempuan	3.316	50,31
Jumlah	6591	100

Sumber: Data Primer Diolah (2010)

Berdasarkan Tabel 4 dapat diketahui bahwa perbandingan jumlah penduduk laki-laki dan perempuan, dimana penduduk laki-laki hampir sebanding dengan jumlah penduduk perempuan. Selisih Jumlah penduduk laki-laki dan perempuan adalah 41 jiwa. Dengan gambaran jumlah penduduk laki-laki dan perempuan tersebut maka potensi tenaga kerja di Desa Sukolilo khususnya di bidang pertanian cukup tersedia. Hal ini sangat menguntungkan bagi usahatani jagung di Desa Sukolilo dikarenakan dalam pengelolaanya membutuhkan tenaga kerja laki-laki maupun perempuan dalam membudidayakan tanaman jagung.

5.2 Karakteristik Petani Responden

5.2.1 Usia Petani Responden

Faktor usia berkaitan dengan kemudahan petani dalam menerima atau mengadopsi teknologi dan pengetahuan baru serta pengalaman petani dalam

berusahatani jagung. Distribusi petani responden berdasarkan kelompok usia di daerah penelitian dapat dilihat pada Tabel 5

Ditinjau dari usia responden dapat diketahui bahwa prosentase terbesar berada pada kisaran umur 41-60 tahun. Hal ini mencerminkan bahwa pada kisaran umur tersebut petani jagung memiliki pola pikir yang cukup matang dalam melakukan kegiatan usahatani walaupun mengalami sedikit kesulitan untuk menerima pengetahuan dan teknologi baru.

Tabel 5. Prosentase Jumlah Responden Berdasarkan Golongan Usia di Desa Sukolilo, kecamatan Wajak, Kabupaten Malang Tahun 2009

	No.	Umur (Tahun)	Jumlah (orang)	Prosentase (%)
	1.	20-30	2	5,26
4	2.	31-40	5	13,15
	3.	41-50	Δ	28,95
	4.	51-60		28,95
	5.	61-70	S-6	15,79
	6.	71-80	3 ()	7,90
		Jumlah	38	100

Sumber: Data Primer Diolah (2010)

5.2.2 Tingkat Pendidikan Petani Responden

Tingkat pendidikan memegang peranan penting dalam berusahatani. Pendidikan yang dimiliki seorang petani akan mempengaruhi petani dalam manajemen usahataninya disamping pengalaman yang dimilikinya terutama dalam mengambil keputusan atau resiko yang akan diambil. Dengan dimilikinya pendidikan yang layak, maka kemampuan petani untuk menyerap informasi akan lebih baik termasuk dalam mengenal teknologi dan inovasi baru dalam dunia pertanian. Berikut ini merupakan Tabel karakteristik petani responden berdasarkan tingkat pendidikan.

Tabel 6. Prosentase Jumlah Petani Responden Berdasarkan Tingkat Pendidikan Formal di Desa Sukolilo, Kecamatan Wajak, Kabupaten Malang Tahun 2009

No.	Tingkat Pendidikan	Jumlah (orang)	Prosentase (%)
1.	Tidak Sekolah	8	21.05
2.	SD/sederajat	21	55.26
3.	SMP/sederajat	7	18.43
4.	SMA/sederajat	2	5.26
0124	Jumlah	38	100

Sumber: Data Primer Diolah (2010)

Dari Tabel 6 dapat diketahui bahwa sebagian besar petani responden memiliki tingkat pendidikan SD kebawah (76,31%). Sedangkan yang berhasil menyelesaikan tingkat pendidikan SMP-SMA sebesar (23,69%). Hal ini memberikan gambaran bahwa rendahnya tingkat pendidikan diantara petani responden dapat memberikan dampak pada pengelolaan usahatani yang dilakukan mengingat kecenderungan petani yang memiliki tingkat pendidikan yang rendah sulit beradaptasi terhadap teknologi dan inovasi baru dalam dunia pertanian.

5.2.3 Luas Lahan Petani Responden

Luas kepemilikan lahan usahatani juga dapat mempengaruhi produktivitas petani dalam mengelola usahataninya, tetapi hal tersebut juga tidak menutup kemungkinan mendapat pengaruh dari faktor-faktor lainnya. Luas lahan pengusahaan pertanian juga dapat memicu petani untuk lebih produktif dalam mengelola suatu kegiatan usahatani. Berikut merupakan Tabel distribusi luas lahan yang digunakan petani responden untuk usahatani jagung.

Tabel 7. Prosentase Jumlah Responden Berdasarkan Golongan Usia di Desa Sukolilo, Kecamatan Wajak, Kabupaten Malang Tahun 2009

No.	Luas Lahan (ha)	Jumlah (orang)	Prosentase (%)
1.	0,2-0,1	9 6	23,68
2.	0,11-0,3	20	52,64
3.	0,31-0,5	6	15,79
4.	0,51-0,8	3	7, 89
	Jumlah	38	100

Sumber: Data Primer Diolah (2010)

Dari Tabel 7 dapat diketahui bahwa rata-rata luas kepemilikan lahan di desa Sukolilo paling banyak berada pada kisaran 0,11ha - 0,3ha dari luas lahan 0,8 ha yang terbesar yang dimiliki oleh petani responden. Sedangkan jumlah petani yang memiliki luas lahan terbesar yaitu antara 0,51 - 0,8 ha berjumlah 3 orang atau 7,89%. Hal ini dapat disimpulkan bahwa mayoritas kecilnya rata-rata kepemilikan lahan di Desa Sukolilo menyebabkan petani responden mengalami kesulitan jika melakukan kegiatan usahataninya jika menerapkan pengelolaan secara modern.

5.2.4 Status Kepemilikan Lahan

Status kepemilikan lahan dapat memberikan keleluasaan untuk melakukan tindakan penerapan teknologi dibandingkan dengan status sebagai penyewa ataupun penyakap.Selain itu, memberikan pengaruh pada penerimaan petani karena petani tidak perlu mengeluarkan biaya tambahan untuk menyewa lahan sehingga dapat dialokasikan pada lainnya. Berikut merupakan Tabel distribusi status kepemilikan luas lahan yang digunakan petani responden untuk usahatani jagung.

Berdasarkan Tabel 8, mayoritas status kepemilikan lahan di Desa Sukolilo adalah milik sendiri (84,22%). Sedangkan petani yang menyewa atau menyakap masing-masing prosentase sebanding (7,89%). Dengan banyaknya status kepemilikan lahan yang merupakan milik sendiri mengindikasikan bahwa petani di Desa Sukolilo bebas mengelola lahan dan menanam jenis komoditas sesuai teknis budidaya yang dikuasai. Hal ini berlaku juga pada tanah sewa dikarenakan petani mempunyai kewenangan seperti tanah milik di luar jangka waktu sewa yang disepakati hanya saja penyewa tidak boleh menjual dan menjadikan sebagai agunan. Sedangkan dalam pengelolaan tanah sakap petani cenderung mengkonsultasikan usahataninya dengan pemilik lahan. Dengan banyaknya petani jagung jagung yang memiliki lahan sendiri maka akan mengguntungkan bagi petani dikarenakan tidak perlu menambah biaya tambahan untuk usahatani jagung.

Tabel 8. Distribusi Responden Berdasarkan Status Kepemilikan Lahan

No.	Status Kepemilikan Lahan	Jumlah (orang)	Prosentase (%)
1.	Milik	32	84.22
2.	Sewa	3	7.89
3.	Sakap	3	7.89
	Jumlah	38	100

Sumber: Data Primer Diolah (2010)

5.2.5 Jumlah Tanggungan Keluarga

Jumlah tanggungan keluarga merupakan banyaknya tanggungan keluarga yang menjadi tanggunjawab petani terhadap kelangsungan hidup dan berpengaruh pada penerimaan dan pengeluaran petani. Semakin banyaknya jumlah keluarga

akan menjadi aset tersendiri bagi petani dikarenakan tenaga kerja dari keluarga lebih besar dalam mengelola usahataninya. Hal ini akan menambah pendapatan yang diterima oleh petani mengingat petani tidak perlu lagi menyewa tenaga kerja dari luar.

Tabel 9 menunjukkan rata-rata jumlah tanggungan keluarga petani jagung responden antara 2-5 orang dalam satu keluarga. Hal ini mengindikasikan bahwa rata-rata petani di Desa Sukolilo memiliki keluarga kecil yang terdiri dari 2 orangtua dan 1-3 orang anak. Semakin banyak jumlah tanggungan keluarga berdampak pada semakin tinggi biaya yang harus ditanggung oleh kepala keluarga. Namun hal ini dapat diimbangi dengan ketersediaan tenaga kerja yang dimiliki yang bersumber dari dalam keluarga sehingga dapat mengalokasikan biaya tenaga kerja dari non keluarga ke kebutuhan yang lain. Dengan penambahan tenaga kerja dari keluarga akan menambah pendapatan yang diterima petani.

Tabel 9. Distribusi Responden Berdasarkan Jumlah Tanggungan Keluarga

No.	Jumlah Tanggungan	Jumlah (orang)	Prosentase (%)
	Keluarga		
1.	0-1	E JEON	0
2.	2 -3	16	42,1
3.	4-5	16 20 8	42.1
4.	6-7	5	13,2
5.	8-9	7201 M-73	2,7
	Jumlah	38	100

Sumber: Data Primer Diolah (2010)

5.3 Analisis Fungsi Produksi Usahatani Jagung

Pengertian fungsi produksi menyangkut dua hal utama yaitu spesifikasi model yang sesuai dan data yang dapat dipercaya. Fungsi produksi yang digunakan dalam penelitian ini adalah fungsi produksi Cobb-douglas untuk mengetahui faktor-faktor yang berpengaruh secara nyata terhadap produksi jagung. Untuk mengetahui faktor-faktor yang berpengaruh secara nyata atau signifikan tersebut maka dilakukan analisis regresi berganda dengan menggunakan program SPSS17.

Pengujian statistik dengan menggunakan model regresi berganda metode kuadrat terkecil biasa (Ordinary least Squares), akan menghasilkan sifat Best Linier Unbiased Estimator (BLUE) (Gujarati, 1997). Serangkaian uji dapat dilakukan agar persamaan regresi yang terbentuk dapat memenuhi persyaratan BLUE ini, yaitu uji normalitas data, uji gejala multikolinearitas, uji gejala heteroskedasitas, dan uji gejala autokorelasi.

1. Uji Normalitas

Uji normalitas dilakukan dengan tujuan untuk menguji apakah data berdistribusi normal atau tidak. Uji normalitas dapat dilihat dari *Asymtotic Sicnificance*. Berdasarkan hasil uji normalitas terhadap kenormalan data pada model regresi menghasilkan nilai *Asymtotic Significance* sebesar 0,473 yang lebih besar daripada 0,05. Berdasarkan hasil tersebut maka dapat disimpulkan bahwa data berdistribusi normal. Hasil uji normalitas dapat dilihat pada lampiran 9.

2. Uji Heteroskedasitas

Uji heteroskedastisitas dilakukan dengan tujuan untuk menguji apakah dalam model regresi terjadi ketidaksamaan varian dari residual satu pengamatan ke pengamatan yang lain. Jika varian dari residual satu pengamatan ke pengamatan yang lain tetap, maka disebut homoskedastisitas dan jika berbeda disebut heteroskedastisitas. Hasil pengujian terhadap gejala heteroskedasitas dengan menggunakan Uji Glejser dapat dilihat pada Tabel 10.

Tabel 10. Hasil Uji Heteroskedasitas.

Variabel	Koefisien	Sig.t
Luas lahan	-0,110	0,185
Bibit	0,138	0,145
Pupuk	-0,005	0,930
Tenaga Kerja	-0,009	0,890

Sumber: data diolah, lampiran 9

Berdasarkan Tabel 10, Pengujian terhadap model regresi yang digunakan menghasilkan sig.t lebih besar dari 0,05. Berdasarkan hasil uji tersebut dapat

disimpulkan bahwa variabel pada model regresi yang digunakan tidak terjadi gejala heteroskedasitas.

3. Uji Multikolinearitas

Uji multikolinearitas dimaksudkan untuk mengetahui apakah terjadi hubungan antar variabel independen dengan variabel independen lainnya. Apabila hal ini terjadi, maka terjadi masalah multikolinearitas. Model regresi yang baik seharusnya tidak terjadi korelasi diantara variabel independennya. Gejala multikolinearitas di antara variabel-variabel independen dalam model regresi dapat dideteksi dengan cara melihat nilai *Variance Inflation Factor* (VIF) model tersebut. Nilai VIF yang menunjukkan angka lebih kecil dari 10 menunjukkan tidak adanya gejala multikolinearitas pada model regresi. Hasil pengujian terhadap multikolinearitas dapat dilihat pada Tabel 11 berikut ini.

Tabel 11. hasil Uii Multikolinearitas

Variabel	VIF
Luas lahan	6,803
Bibit	3,884
Pupuk	3,753
Tenaga Kerja	2,033

Sumber: data diolah, lampiran 9

4. Uji Autokorelasi

Uji autokorelasi yang dilakukan pada penelitian ini menggunakan Uji *Durbin Watson*. Uji autokorelasi bertujuan untuk mengetahui apakah dalam suatu model regresi linear ada korelasi antara kesalahan pengganggu dengan kesalahan sebelumnya. Apabila hal ini terjadi maka terdapat masalah autokorelasi. Adapun kritik pengujiannya adalah jika du < d < 4—du maka Ho ditolak yang berarti tidak ada autokorelasi baik positif maupun negatif. Pengujian terhadap model regresi yang digunakan menghasilkan nilai DW 1,874 lebih besar dari batas atas (du) 1,2164 dan kurang dari 4 - 1,2164 (4 - du), maka dapat disimpulkan bahwa tidak terdapat autokorelasi. Hasil uji autokorelasi dapat dilihat pada lampiran 9.

Hasil analisis regresi variabel-variabel yang berpengaruh terhadap produksi usahatani jagung disajikan pada Tabel 12 Berikut ini :

Tabel 12. Hasil Uji Regresi

Variabel	Koefisien Regresi	t	Statistic-t
Konstanta	1,777	8,040	0.000
Luas lahan	0,886	6,665	0.000
Bibit	0,153	1,009	0.320
Pupuk	- 0,043	- 0,462	0.647
Tenaga Kerja	0,021	0,208	0.836
$R^2 = 0.913$			4
Statistic-F =	150 (A	ab) Rb	_
86.154			

Sumber: data diolah, lampiran 9

Berdasarkan hasil pada Tabel 12, persamaan regresi yang terbentuk adalah sebagai berikut :

$$Y = 1,777 X_1^{0,886} X_2^{0,153} X_3^{-0,043} X_4^{0,021} e^v$$

1. Analisis Uji Keragaman (Uji F)

Hasil uji F yang telah dilakukan melalui pengolahan data menggunakan SPSS versi 17 dalam penelitian ini, diperoleh nilai F_{hitung} sebesar 86,154. Sedangkan nilai F_{Tabel} , dengan tingkat kepercayaan 99% (α = 0,01) untuk df N1 = 4 dan df N2 = 33 maka nilai F_{Tabel} sebesar 3,95. Dari hasil tersebut dapat diambil kesimpulan bahwa nilai F_{hitung} (86,154) > F_{Tabel} (3,95). F_{hitung} yang lebih besar dari F_{Tabel} mempunyai arti bahwa secara bersama-sama dari semua variabel bebas luas lahan, bibit, pupuk dan tenaga kerja berpengaruh terhadap variabel terikat yaitu produksi usahatani jagung.

2. Uji Koefisien Determinasi (R²)

Sesuai dengan ketentuan uji koefisien determinasi bahwa apabila nilai $R^2 = 1$, maka pengaruh variabel bebas terhadap naik turunnya variabel terikat adalah 100%, sehingga tidak ada faktor lain yang mempengaruhi variabel terikat tersebut selain variabel bebas yang telah dimasukkan dalam model. Dalam

penelitian ini, nilai R² sebesar 0,913 atau mencapai 91,3%, maka dapat dikatakan bahwa kemampuan variabel bebas dalam memberikan informasi yang dibutuhkan untuk menjelaskan keragaman variabel terikat relatif tinggi. Sehingga dapat disimpulkan bahwa variabel bebas seperti luas lahan, bibit, pupuk dan tenaga kerja mempunyai pengaruh yang sangat besar terhadap peningkatan maupun penurunan produksi usahatani jagung dan sisanya 8,7% dijelaskan oleh faktor lain yang tidak dijelaskan oleh model.

Analisis Koefisien Regresi

Pada penelitian ini faktor yang berpengaruh terhadap produksi jagung dianalisis dengan regresi linear berganda dengan jumlah sampel 38. Uji statistik pada model persamaan regresi linear berganda dalam penelitian ini adalah uji t yang merupakan pengujian secara individual (parsial). Uji t dilakukan dengan membandingkan nilai t_{hitung} dengan nilai t_{tabel} , dengan tingkat kepercayaan 99% (α = 0.01) dan degree of freedom (df) dengan rumus n-1 sebesar 37, diperoleh nilai t_{tabel} sebesar 2,43.

a. Luas Lahan

Nilai koefisien regresi pada luas lahan adalah sebesar 0,886 dengan nilai thitung sebesar 6,665 yang lebih besar dari ttabel 2,43. Secara statistik luas lahan yang dialokasikan untuk usahatani jagung berpengaruh nyata terhadap produksi jagung di daerah penelitian. Nilai koefisien regresi sebesar 0,886 menunjukkan bahwa peningkatan luas lahan sebesar 1 % akan menaikkan produksi rata-rata sebesar 0,886%. Hal ini dapat diartikan bahwa penggunaan luas lahan yang berbeda akan menghasilkan produksi jagung yang berbeda pula. Semakin besar luas lahan yang digunakan dalam usahatani jagung maka akan menghasilkan produksi yang semakin tinggi. Adanya pengaruh luas lahan terhadap produksi jagung disebabkan oleh kondisi lahan di daerah penelitian yang sangat cocok untuk budidaya tanaman jagung sehingga membuat beberapa perusahaan yang bergerak di bidang pembenihan jagung tertarik menjalin kemitraan dengan petani setempat.

b. Bibit

Nilai koefisien regresi pada bibit adalah sebesar 0,153 dengan nilai t_{hitung} sebesar 1,009 lebih kecil dari t_{tabel} 2,43. Dapat disimpulkan bahwa bibit yang dialokasikan dalam usahatani jagung di daerah penelitian secara statistik tidak berpengaruh nyata terhadap produksi jagung. Hal ini dapat diartikan bahwa penggunaan bibit dalam jumlah yang berbeda memiliki kemungkinan untuk menghasilkan jumlah produksi yang sama. Fenomena yang terjadi dimungkinkan karena tanaman jagung selama fase pertumbuhan menyerap asupan air yang kurang atau lebih sehingga tanaman jagung tidak tumbuh dengan baik. Selain itu, dimungkinkan petani responden dalam menanam bibit tidak memperhatikan jarak tanamnya. Semakin rekat jarak tanam akan berdampak pada perkembanganya, dikarenakan akar dari masing-masing tanaman saling berebut nutrisi yang terkandung di dalam tanah. Menurut Prihatman (2000) jarak tanam yang ideal untuk bibit jagung yaitu 75 x 25 cm. Nilai koefisien regresi sebesar 0,153 menunjukkan bahwa peningkatan pengalokasian bibit sebesar 1% akan menaikkan produksi sebesar 0,153% dengan asumsi faktor yang lain dalam keadaan konstan. Namun pernyataan ini tidak terlalu mengikat karena uji statistiknya tidak nyata.

c. Pupuk

Nilai koefisien regresi pada pupuk adalah - 0,043 dengan nilai thitung sebesar - 0,462 lebih kecil dari ttabel 2,43. Dapat disimpulkan bahwa pupuk yang dialokasikan dalam usahatani jagung di daerah penelitian secara statistik tidak berpengaruh nyata terhadap produksi jagung. Hal ini dapat diartikan bahwa penggunaan pupuk dalam jumlah yang berbeda memiliki kemungkinan untuk menghasilkan jumlah produksi yang sama. Fenomena yang terjadi di mungkinkan petani responden dalam pemberian pupuk melebihi dosis anjuran sehingga berdampak pada produksi jagung. Hal ini dicerminkan dari rata-rata pengunaan pupuk urea sebesar 59,34 kg untuk lahan seluas 2168,55 m². Dengan luas lahan tersebut idealnya penggunaan pupuk urea sebesar 32,59 kg (DEPTAN). Penggunaan pupuk urea harus memperhatikan dosis anjuran dan waktu pemberian dikarenakan sifat pupuk urea yang mudah terurai baik oleh penguapan maupun pencucian. Selain pupuk urea, petani responden juga memakai pupuk ZA dalam melakukan kegiatan usahataninya. Penggunaan pupuk ini tidak tepat jenis

dikarenakan tidak sesuai anjuran. Menurut Prihatman (2000) dalam kegiatan usahatani jagung jenis pupuk yang digunakan adalah Urea, TSP, dan KCL. Menurut Suwalan et al (2004) dalam Sahara dan Idris (2010) respon tanaman terhadap pemberian pupuk akan meningkat apabila pupuk yang digunakan tepat jenis, dosis, waktu dan cara pemberian. Nilai koefisien regresi sebesar -0,043 menunjukkan bahwa peningkatan pengalokasian pupuk sebesar 1% akan menurunkan produksi sebesar 0,043% dengan asumsi faktor yang lain dalam keadaan konstan. Namun pernyataan ini tidak terlalu mengikat karena uji statistiknya tidak nyata.

d. Tenaga kerja

Nilai koefisien regresi pada tenaga kerja adalah 0,021 dengan nilai thitung sebesar 0,208 lebih kecil dari t_{tabel} 2,43. Dapat disimpulkan bahwa tenaga kerja yang dialokasikan dalam usahatani jagung di daerah penelitian secara statistik tidak berpengaruh nyata terhadap produksi jagung. Hal ini dapat diartikan bahwa penggunaan tenaga kerja dalam jumlah yang berbeda memiliki kemungkinan untuk menghasilkan jumlah produksi yang sama. Fenomena yang terjadi dimungkinkan karena tenaga kerja yang digunakan di daerah penelitian kebanyakan berasal dari non keluarga untuk pengolahan lahan, penanaman dan pemanenan. Pemeliharan tanaman jagung lahan kecil dilakukan oleh tenaga kerja keluarga sedangkan petani yang memiliki lahan yang agak besar dibantu oleh tenaga kerja non keluarga. Penggunaan tenaga kerja keluarga memiliki kecenderungan lebih baik dibanding non keluarga dikarenakan sangat memperhatikan kualitas pemeliharaan tanaman jagung agar memperoleh produksi yang tinggi. Hal ini berbeda dengan tenaga kerja non keluarga yang kurang memperhatikan kualitas pemeliharaan dikarenakan hanya berorientasi untuk mendapatkan upah. Nilai koefisien regresi sebesar 0,021 menunjukkan bahwa peningkatan pengalokasian pupuk sebesar 1% akan menaikkan produksi sebesar 0,021 % dengan asumsi faktor yang lain dalam keadaan konstan. Namun pernyataan ini tidak terlalu mengikat karena uji statistiknya tidak nyata.

Dalam penggunaan fungsi produksi Cobb-Douglas, berlaku asumsi bahwa suatu usahatani berada pada kondisi *increasing, constant atau decreasing return*

to scale yang ditunjukkan oleh jumlah besaran elastisitas dari koefisien regresi (bi) (Soekartawi, 1995). Sehubungan dengan hal tersebut, diperoleh nilai return to scale pada usahatani jagung di daerah penelitian sebesar 1,017 dimana jumlah elastisitas produksi lebih besar dari 1 yang berarti bahwa kondisi usahatani jagung di daerah penelitian berada pada kondisi increasing return to scale. Hal ini berarti bahwa proporsi penambahan faktor produksi (input) akan menghasilkan tambahan produksi (output) dengan proporsi yang lebih besar dari penambahan input.

Dari nilai koefisien regresi diketahui bahwa nilai elastisitas input produksi tertinggi adalah variabel luas lahan yang dialokasikan yaitu sebesar 0,886 . hal ini menunjukkan bahwa penambahan faktor produksi luas lahan berpengaruh lebih besar terhadap peningkatan produksi jagung dibandingkan dengan penambahan faktor produksi lainnya.

5.4 Analisis Efisiensi Penggunaan Input Usahatani Jagung

Analisis Efisiensi Alokatif Faktor Produksi

Efisiensi alokatif faktor-faktor produksi diukur dengan asumsi bahwa petani dalam melakukan usahataninya bertujuan untuk mencapai keuntungan maksimal, di mana petani mampu mengkombinasikan faktor-faktor produksi guna mencapai output jagung yang optimal sehingga akan diperoleh keuntungan yang maksimal.

Efisiensi faktor produksi pada usahatani jagung dapat diketahui dengan menghitung rasio NPM suatu input dengan harga masing-masing input produksi NPM_x/P_x. Perumusan yang digunakan dalam analisis efisiensi faktor-faktor ini melibatkan nilai koefisien regresi yang berasal dari fungsi produksi Cobb-Douglas. Berdasarkan hasil analisis fungsi produksi Cobb-Douglas, diketahui bahwa tidak semua variabel bebas dimasukkan ke dalam model berpengaruh secara nyata terhadap produksi jagung, hanya terdapat satu variabel yang berpengaruh terhadap usahatani jagung yaitu luas lahan (X1). Dengan mengasumsikan variabel seperti bibit, pupuk, dan tenaga kerja konstan, maka faktor produksi yang dianalisis hanya faktor produksi yang berpengaruh secara nyata terhadap produksi jagung yaitu luas lahan.

Efisiensi Alokatif Lahan

Dari hasil analisis diketahui bahwa nilai NPM_x/P_x alokasi lahan sebesar 1,77 dimana angka tersebut lebih besar dari satu, sehingga alokasi lahan di daerah penelitian belum efisien. Dengan nilai rasio tersebut menunjukkan bahwa alokasi lahan seluas 2168,55 m² di daerah penelitian masih belum efisien. Dengan demikian penambahan alokasi penggunaan luas lahan usahatani jagung dapat dilakukan jika petani jagung di daerah penelitian masih menginginkan keuntungan yang lebih besar lagi. Agar penggunaan alokasi luas lahan dapat optimal maka perlu dilakukan penambahan luas lahan, sehingga dari penambahan tersebut penggunaan luas lahan optimal mencapai 3836,89 m². Hasil analisis efisiensi alokatif faktor-faktor produksi usahatani jagung dapat dilihat pada lampiran 10.

5.5 Analisis Pendapatan Usahatani Jagung

5.5.1 Biaya Usahatani Jagung

Biaya merupakan pengorbanan yang harus dikeluarkan dalam suatu usaha dalam bentuk uang. Biaya dibagi menjadi dua kelompok utama yaitu biaya variabel dan biaya tetap. Biaya variabel adalah biaya yang besarnya tergantung atau dipengaruhi oleh besarnya input yang digunakan dan output yang dihasilkan. Sedangkan biaya tetap adalah biaya yang jumlahnya tidak dipengaruhi oleh besarnya output yang dihasilkan.

Berikut merupakan komponen biaya dalam usahatani jagung yang dilakukan oleh petani responden:

1. Komponen Biaya Variabel

Biaya variabel dalam usahatani jagung meliputi pembelian bibit, pupuk, upah tenaga kerja, dan biaya lain-lain. Komponen biaya variabel usahatani jagung di daerah penelitian disajikan dalam Tabel 13 berikut :

Tabel 13. Rata-Rata Biaya Variabel Usahatani Jagung Per Luas Lahan Selama 1 Musim Tanam Januari - Juni 2010 di Desa Sukolilo, Kecamatan Wajak, Kabupaten Malang

Uraian Penggunaan Biaya	Nilai (Rp)	Prosentase (%)
Bibit	181.263,16	19,3
Pupuk	142.289,47	24,7
Tenaga kerja	396.657,11	54

Lain-lain	14.368,42	2
Total Biaya Variabel	734.488,16	100

Sumber: Data primer tahun 2010 diolah, lampiran 5

a. Biaya untuk Pembelian bibit

Bibit yang digunakan oleh petani responden adalah jenis hibrida dan non hibrida. Kebutuhan bibit di daerah penelitian rata-rata sebesar 6,65 kg, yang dapat dilihat pada lampiran 5. Diketahui bahwa rata-rata pembelian bibit adalah sebesar Rp 181.263 Biaya untuk pembelian bibit masing-masing responden dapat dilihat pada lampiran 5.

b. Biaya untuk Pembelian pupuk.

Pupuk yang digunakan oleh petani responden adalah pupuk urea dan Za. Kebutuhan pupuk di daerah penelitian rata-rata sebesar 93,16 kg, yang dapat dilihat pada lampiran 5. Diketahui bahwa rata-rata pembelian pupuk adalah sebesar Rp 142.289,47 Biaya untuk pembelian pupuk masing-masing responden dapat dilihat pada lampiran 5.

c. Biaya Tenaga Kerja

Biaya rata-rata tenaga kerja yang dikeluarkan petani jagung per hektar per musim tanam dihitung berdasarkan Hari Orang Kerja (HOK) dengan jam kerja efektif selam 8 jam. Rata-rata penggunaan biaya tenaga kerja pada usahatani jagung per hektar per musim tanam di Desa Sukolilo kecamatan Wajak disajikan pada Tabel 14 berikut.

Tabel 14. Rata-rata Biaya Tenaga Kerja Usahatani Jagung Per Luas Lahan Selama 1 Musim Tanam Januari - Juni 2010 di Desa Sukolilo, Kecamatan Wajak, Kabupaten Malang.

wajak, ikabapaten watang.	
Kegiatan	Jumlah (Rp)
Pengolahan lahan	228.815,79
Penanaman	34.263,16
Penyulaman	6.210,526
Pemupukkan 1	24068,4
Pembubunan	39.305,26

Pemupukkan 2	19.331,6
Panen	44.572,4
Total	396.567,105

Sumber: Data primer tahun 2010 diolah, lampiran 8

1). Pengolahan lahan

Pengolahan lahan dikerjakan oleh tenaga kerja pria dengan upah sebesar Rp.35.000 per HOK. Rata-rata biaya untuk pengloahan lahan adalah Rp.228.815,79 dengan jumlah rata-rata tenaga kerja yang digunakan sebesar 6,54 HOK. Biaya pengolahan lahan untuk masing-masing responden dapat dilihat pada lampiran 8.

2). Penanaman

Penanaman jagung dikerjakan oleh tenaga kerja wanita dengan upah sebesar Rp 16.000 per HOK. Rata-rata biaya tenaga kerja penanaman jagung adalah sebesar Rp 34.263,16 dengan rata-rata jumlah tenaga kerja 2,14 HOK. Biaya Penanaman untuk masing-masing responden dapat dilihat pada lampiran 8.

3). Penyulaman

Penyulaman dilakukan untuk mengganti bibit jagung yang sudah ditanam tetapi mati, sehingga perlu dilakukan penanaman ulang. Penyulaman jagung dikerjakan oleh tenaga kerja wanita dengan upah sebesar Rp 16.000 per HOK. Rata-rata biaya tenaga kerja penyulaman jagung adalah sebesar Rp 6.210,526 dengan rata-rata jumlah tenga kerja 0,39 HOK. Biaya Penyulaman untuk masing-masing responden dapat dilihat pada lampiran 8.

4) Pemupukan

Pemupukan untuk usahatani jagung di daerah penelitian biasanya dilakukan dua kali selama satu kali musim tanam. Jenis pupuk yang digunakan adalah urea dan Za. Pemupukan jagung dikerjakan oleh tenaga kerja wanita dan pria dengan upah sebesar Rp 16.000 per HOK untuk wanita dan Rp 20.000 per HOK untuk pria. Rata-rata biaya tenaga kerja pada pemupukkan I adalah 24068,4 dengan rata-rata penggunaan tenaga kerja sebanyak 1,23 HOK.

Sementara itu, untuk biaya pemupukan II jumlahnya sebesar Rp. 19.331.6 dengan rata-rata penggunaan tenaga kerja sebanyak 0,99 HOK. Biaya Pemupukan untuk masing-masing responden dapat dilihat pada lampiran 8.

5). Pembubunan

Pembubunan adalah pembersihan gulma dan peninggian bedengan pada tanaman jagung. Pembubunan dikerjakan oleh tenaga kerja pria dengan upah sebesar Rp 20.000 per HOK. Rata-rata biaya untuk ndangir adalah Rp 39.305,26 dengan jumlah rata-rata tenaga kerja yang digunakan sebesar 1,97 HOK. Biaya Pembubunan untuk masing-masing responden dapat dilihat pada lampiran 8.

6). Tanam

Tanam jagung dikerjakan oleh tenaga kerja pria dengan upah sebesar Rp 20.000 per HOK. Rata-rata biaya tenaga kerja pemanenan jagung adalah sebesar Rp 44.572,4 dengan rata-rata jumlah tenga kerja 2,23 HOK. Biaya Pemanenan untuk masing-masing responden dapat dilihat pada lampiran 8.

d. Biaya lain-lain

Biaya lain-lain yang dimaksud dalam penelitian ini adalah biaya pemakaian furadan. Kebutuhan furadan di daerah penelitian sebesar 2,97 kg. Diketahui bahwa rata-rata pembelian furadan adalah sebesar Rp 14.368,42 Biaya untuk pembelian furadan masing-masing responden dapat dilihat pada lampiran 8.

2. Komponen Biaya Tetap

Biaya tetap merupakan biaya yang besarnya tidak tergantung pada besar kecilnya output yang diperoleh. Pada usahatani jagung, yang termasuk biaya tetap adalah biaya sewa lahan, pajak tanah, dan biaya penyusutan. Biaya tetap yang dikeluarkan oleh petani responden di Desa Sukolilo dapat dilihat pada Tabel 15 berikut:

Tabel 15. Rata-Rata Biaya Tetap Usahatani Jagung Per Luas lahan Selama 1 Musim Tanam Januari - Juni 2010 di Desa Sukolilo, Kecamatan Wajak, Kabupaten Malang

Uraian Penggunaan Biaya	Nilai (Rp)	Prosentase (%)
Pajak	21.685,5	52,3
Sewa lahan	25.000	45,3
Biaya Penyusutan	1.105,26	2,4
Total Biaya Tetap	47.790,8	100

Sumber: Data primer tahun 2010 diolah, lampiran 4

a) Pajak lahan

Biaya pajak lahan adalah nilai uang yang dikeluarkan petani untuk membayar pajak lahan. Rata-rata besarnya pajak lahan adalah Rp 21.685,5 dan rasionya terhadap total biaya tetap hanya 6,39 %

b) Sewa lahan

Sewa lahan adalah nilai yang dikeluarkan untuk menyewa lahan selama satu kali musim tanam. Rata-rata biaya sewa sebesar Rp. 25.000 dan rasionya terhadap total biaya tetap sebesar 45,3 %.

c) Biaya Penyusutan

Biaya Penyusutan adalah biaya yang dikeluarkan oleh masing-masing petani tergantung pada jumlah kepemilikan alat dan jangka waktu penggunaan alat. Rata-rata biaya penyusutan sebesar Rp 1.105,26.

Dengan diketahui komponen biaya tersebut, maka rata-rata biaya total pada usahatani jagung tersebut dapat diperoleh dengan menjumlahkan total biaya variabel dan biaya tetap

Tabel 16. Rata-rata Biaya Total Usahatani Jagung Per Luas Lahan Selama 1 Musim Tanam Januari - Juni 2010 di Desa Sukolilo, Kecamatan Wajak, Kabupaten Malang.

Komponen Biaya	Nilai (Rp)	Prosentase (%)
Biaya Variabel	734.488,16	93,9
Biaya Tetap	47.790,8	6,1
Total Biaya	782.278,96	100

Sumber: Data primer tahun 2010 diolah, lampiran 6

Dari dua komponen biaya tersebut (biaya variabel dan biaya tetap) terlihat bahwa proporsi biaya variabel adalah lebih besar dari pada biaya tetapnya. Hal ini berarti bahwa besarnya pendapatan yang diperoleh dari usahatani jagung dipengaruhi biaya variabel.

5.5.2 Penerimaan Usahatani Jagung

Penerimaan untuk petani jagung responden merupakan hasil dari perkalian antara jumlah produksi jagung dengan harga jagung. Rata-rata harga jual sebesar Rp. 3.148/kg. Dengan demikian dapat diketahui bahwa rata-rata penerimaan petani responden adalah sebesar Rp. 3.542.489,47 Besarnya penerimaan untuk masing-masing responden dapat dilihat di lampiran 6.

5.5.3 Pendapatan Usahatani Jagung

Pendapatan usahatani jagung adalah selisih antara penerimaan usahatani jagung dengan total biaya dalam usahatani jagung tersebut. Rata-rata pendapatan usahatani jagung di daerah penelitian disajikan pada Tabel 17 berikut:

Tabel 17. Rata-rata Pendapatan Usahatani Jagung Per Luas Lahan Selama Musim Tanam Januari – Juni 2010 di Desa Sukolilo Kecamatan Wajak Kabupaten Malang.

No.	Keterangan	Jumlah (Rp)
1.	Penerimaan	3.542.489,47
2.	Biaya total	782.278,96
	Pendapatan	2.760.210,51

Sumber: Data primer tahun 2010 diolah, lampiran 6.

5.5.4 Analisis Efisiensi Usaha (RC Ratio)

Suatu usahatani efisien atau tidak efisien ditentukkan oleh besar kecilnya hasil yang diperoleh dan besar kecilnya biaya yang dikeluarkan untuk usahatani tersebut. Efisiensi usahatani dapat dilakukan dengan menghitung *return cost ratio* (Analisis RC), yaitu perbandingan antara total penerimaan dengan total biaya produksi atau analisis imbangan biaya dan penerimaan. Dari hasil penelitian diperoleh bahwa selama satu musim tanam rata-rata total penerimaan petani jagung di daerah penelitian sebesar Rp. 3.542.489,47 dan rata-rata total biaya sebesar Rp. 782.278,96 sehingga diperoleh nilai RC Ratio sebesar 4,53

Nilai RC ratio tersebut berarti bahwa rata-rata usahatani jagung di Desa Sukolilo kecamatan Wajak kabupaten Malang sudah efisien dan mengguntungkan, karena rata-rata nilai RC rationya lebih dari 1. Dalam hal ini setiap Rp. 1,00 yang diinvestasikan akan menghasilkan penerimaan sebesar Rp. 4,53.

5.6 Implikasi Hasil Penelitian

Berdasarkan hasil penelitian diketahui bahwa rata-rata pendapatan petani responden sebesar Rp 2.760.210,51 dan Nilai RC Ratio mencapai 4,53. Hal ini menggambarkan bahwa usahatani jagung di daerah penelitian mengguntungkan dan masih dapat ditingkatkan. Sedangkan dari hasil regresi didapatkan bahwa faktor produksi yang berpengaruh nyata terhadap produksi jagung adalah luas lahan. Dengan gambaran tersebut dapat disimpulkan bahwa dengan adanya penambahan luas lahan akan meningkatkan produksi jagung sehingga keuntungan yang diterima oleh petani semakin besar. Akan tetapi penambahan luas lahan merupakan suatu hal yang sulit untuk dilakukan mengingat keterbatasan modal yang dialami petani jagung didaerah penelitian. Untuk mengatasi kurang optimalnya penggunaan luas lahan salah satu cara yang dapat dilakukan dengan memperbaiki sistem budidaya sehingga akan meningkatkan produktivitas dan berdampak pada semakin tingginya pendapatan yang diterima oleh petani. Sementara itu, faktor produksi luas lahan, penggunaan benih, dan tenaga kerja memiliki hubungan yang positif sedangkan penggunaan pupuk memiliki hubungan yang negatif terhadap produksi jagung yang dihasilkan. Hubungan negatif tersebut mengindikasikan bahwa apabila petani didaerah penelitian terus menambah penggunaan pupuk secara terus menerus maka akan mengakibatkan produksi dan pendapatan yang diterima semakin menurun.

BAB VI KESIMPULAN DAN SARAN

6.1 Kesimpulan

Berdasarkan hasil analisis yang dilakukan maka dapat disimpulkan:

- 1. Faktor-faktor produksi yang digunakan dalam usahatani jagung di daerah penelitian adalah luas lahan, bibit, pupuk, dan tenaga kerja. Dari keempat variabel tersebut yang berpengaruh nyata pada usahatani jagung adalah luas lahan. Hal ini berarti bahwa dengan adanya penambahan luas lahan akan berpengaruh lebih besar terhadap produksi jagung dibandingkan faktor produksi lainnya. Sementara itu, faktor luas lahan, penggunaan benih, dan tenaga kerja memiliki hubungan yang positif sedangkan pupuk memiliki hubungan yang negatif terhadap produksi jagung yang dihasilkan.
- 2. Dari hasil analisis diketahui bahwa nilai NPM_x/P_x alokasi lahan sebesar 1,77 dimana angka tersebut lebih besar dari satu, sehingga alokasi lahan di daerah penelitian belum efisien. Dengan nilai rasio tersebut menunjukkan bahwa alokasi lahan seluas 2168,55 m² di daerah penelitian masih belum efisien. Dengan demikian penambahan alokasi penggunaan luas lahan usahatani jagung dapat dilakukan jika petani jagung di daerah penelitian masih menginginkan keuntungan yang lebih besar lagi. Agar penggunaan alokasi luas lahan dapat optimal maka perlu dilakukan penambahan luas lahan, sehingga dari penambahan tersebut penggunaan luas lahan optimal mencapai 3836,89 m².
- 3. Rata-rata total penerimaan petani jagung di daerah penelitian sebesar Rp. 3.542.489,47 dan rata-rata total biaya sebesar Rp. 782.278,96 sehingga diperoleh nilai R/C Ratio sebesar 4,53. Hal ini menunjukkan bahwa rata-rata usahatani jagung di Desa Sukolilo kecamatan Wajak kabupaten Malang sudah efisien dan mengguntungkan, karena rata-rata nilai RC rationya lebih dari 1. Dalam hal ini setiap Rp. 1,00 yang diinvestasikan akan menghasilkan penerimaan sebesar Rp. 4,53.

6.2 Saran

Beberapa saran yang diajukan dengan hasil penelitian ini adalah sebagai berikut:

- 1. Untuk mengatasi kurang optimalnya penggunaan luas lahan dapat dilakukan perbaikan sistem budidaya dan pengolahan tanah. Hal ini disebabkan karena perluasan lahan pertanian di daerah penelitian sulit dilakukan. Selain itu perluasan lahan tidak akan mampu meningkatkan produksi dan keuntungan petani apabila sistem budidaya dan pengelolaan tanahnya kurang baik.
- 2. Perlu adanya penyuluhan pertanian terkait budidaya tanaman jagung dari instansi terkait agar produksi dan pendapatan petani semakin tinggi menginggat dari faktor-faktor produksi di daerah penelitian hanya luas lahan yang berpengaruh nyata terhadap produksi jagung. Dengan adanya penyuluhan dari instansi terkait diharapkan mampu meningkatkan produksi dan pendapatan petani guna keberlanjutan usahataninya.
- 3. Perlu adanya penelitian terkait kesuburan tanah di daerah penelitian dikarenakan dari hasil regresi menunjukkan bahwa penggunaan pupuk memiliki pengaruh negatif terhadap produksi jagung menginggat mayoritas lahan yang dimiliki oleh petani jagung dalam kategori kecil.

DAFTAR PUSTAKA

- BPTP. 2008. *Teknologi Budidaya Jagung*. Available at http://lampung.litbang.deptan.go.id/ind/images/stories/publikasi/teknologi-budidayajagung.pdf. (Diakses pada 25 sep 2010)
- Gujarati, Damodar.1997. basic Economeric. Diterjemahkan oleh Sumarno Zain. Erlangga. Jakarta.
- Hartono, R., Syafi, R., Mustadjab, MM. 2008. Efisiensi Alokasi Input Usahatani Benih Jagung Hebrida Pola Contract Farming Di Desa Sembung Kecamatan Pare Kabupaten Kediri. Jurnal. AGRITEK VOL. 16 NO. 8 AGUSTUS 2008
- Hasan, Iqbal. 2008. Pokok-pokok materi statistik 2. PT Bumi Aksara. Jakarta
- Hernanto, F. 1998. Ilmu Usahatani. Penebar Swadaya. Jakarta
- Indah Susantun, 2000. Fungsi Keuntungan Cobb Douglas dalam Perdagangan Efisiensi Ekonomi Relatif. Jurnal Ekonomi Pembangunan Vol.5 No. 2, hal 149 161.
- Kusumawardhani, 2002, *Efisiensi Ekonomi Usahatani Kubis (Di Kecamatann Bumaji, Kabupaten Malang)*, Agro Ekonomi Vol. 9 No. 1 Juni 2002. Jurusan Sosial Ekonomi Pertanian Fakultas Pertanian UGM.
- Mangdeska. 2010. Analisis Efisiensi Penggunaan Faktor-Faktor Produksi Pada Usaha tani jagung. Available at http://www.tenangjaya.com/ (Diakses pada 17 Desember 2010)
- Mubyarto. 1989. *Pengantar Ekonomi Pertanian*. Lembaga Penelitian, Pendidikan dan Penerangan Ekonomi dan Sosial, Jakarta.
- Podesta, Rosana. 2009. Pengaruh Penggunaan Benih Sertifikat Terhadap Efisiensi dan Pendapatan Usahatani Pandan Wangi. skripsi.IPB.Bogor.
- Prawirokusumo. 1990. Ilmu Usahatani. BPFE. Yogyakarta.
- Prihatman, Kemal.2000. Sistem Informasi Manajemen Pembangunan di Pedesaan. Jakarta
- Riyadi. 2007. Analisis faktor-faktor yang mempengaruhi Produksi jagung (studi di Kecamatan Wirosari kabupaten Grobogan). Thesis. Ilmu Ekonomi dan Stusi Pembangunan Undip. Semar0ang.
- Sahara, D., Idris. 2010. *Efisiensi Produksi Sistem Usahatani Padi Pada Lahan Sawah Irigasi Teknis*. Available at http://www.scribd.com/. (Diakses pada 13 Desember 2010)
- Soedarsono, 1998, Pengantar Ekonomi Mikro, LP3ES, Jakarta.

Shinta, Agustina. 2005. Ilmu Usahatani. FP UB. Malang.

Soekartawi. 1993. Prinsip Dasar Ekonomi Pertanian - Teori dan Aplikasi, PT.Raja Grafindo, Jakarta.

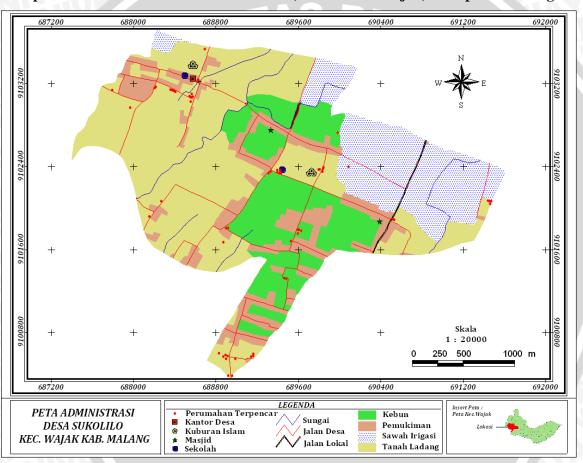
Soekartawi. 1995. Analisis Usahatani. UI Press. Jakarta.

Soekartawi. 1995. Teori Ekonomi Produksi. Raja Grafindo Persada. Jakarta.

Soekartawi. 1990. Teori Ekonomi Produksi. Cv. Rajawali. Jakarta

Sutrisno, Salyo. 1988. Diktat Pengantar Ekonomi Pertanian.FP UB.Malang

Warsana. 2007. Analisis Efisiensi dan Keuntungan Usahatani Jagung (Studi di Kecamatan Randublatung Kabupaten Blora). Thesis. Ilmu Ekonomi dan Studi Pembangunan Undip. Semarang


Wijaya, hesti. 2007. Ilmu Usahatani.FP UB. Malang.

Yulita, 2009. Efisiensi alokatif input tanaman tebu di Kecamatan Gondanglegi kabupaten Malang. Jurusan Sosial Ekonomi Pertanian Universitas Brawijaya.

repos

Lampiran 1. Peta Administrasi Desa Sukolilo, Kecamatan Wajak, Kabupaten Malang

Lampiran 2. Data Karakteristik Responden

NO	Nama	Umur	Pendidikan	Jumlah Tanggungan Keluarga	Status Kepemilikan Lahan
1.	Rohmat arifin	58	SD	3	Sewa
2	Karnawi	80	-	7	milik
3	Hariyono	47	SD	3	milik
4	Saiful	32	SMP	3	milik
5	Basar	47	SD	(5)	Milik
6	Tumbar	59	SMP	4.4	milik
7	Pitono	40	SD	5	Milik
8	Sujoso	51	SMA	5	milik
9	Samsul Arifin	46	SMP	4/1/	Milik
10	Gono	51	SD	4.	sakap
11	Mustolifa	58	SD	3	milik
12	Abdul salam	52	SD	6	milik
13	Misdi	74	SD	3	milik
14	Marsiah	80		27	Milik
15	Sahlan	70	SD	2	milik
16	Satuji	60	SD	932	milik
17	Karno	67	SD		milik
18	Asbali	40	SMP	3	sewa
19	Sunarlis	50	SD	4.3	milik
20	Kuswadi	57	ag (2	milik

NO	Nama	Umur	Pendidikan	Jumlah Tanggungan Keluarga	Status Kepemilikan Lahan
21	Kusen	48	SMP	15 B 4 5 4 M	sakap
22	Rusmiani	36	SD	5	milik
23	Ahmad	65	-	7	Milik
24	Sri Bati	42	SMA	5	milik
25	Rokim	55	SD	7	milik
26	Asia	70		2	Milik
27	Salami	70		7	sewa
28	Misiri	50	-M- K1	3^	Milik
29	Supadi	49	SD	55	Milik
30	Pitono	36	SD		sakap
31	Sutini	59		3	Milik
32	Sugeng	28	SMP	K A TOTAL TOTAL	milik
33	Piati	50	SD	E J E X X X	Milik
34	Baia	66	SD	5	milik
35	Jayat	55	SD	(表) (2) (4)	milik
36	Sumini	46	SD	5	Milik
37	Fitria	27	SMP	4	milik
38	Abdul ghofur	45	SD	2 2	milik

Lampiran 3. Data Penggunaan Faktor Produksi Luas Lahan, Benih, Pupuk, dan Produksi Jagung

No.	Total Produksi (kg)	$LL(m^2)$	Benih (kg)	Urea (kg)	ZA (kg)	TK (HOK)
1	600	2400	8	65	100	19,5
2	1750	3000	10	95	180	26
3	250	400	4	10	0	3,5
4	2400	4500	12	140	0	26,25
5	780	1200	V16	42	0	14
6	250	1000	4	25)	0	8,5
7	600	1500	6	40	75	14
8	467	1000	5	25	0	8,5
9	1300	3000	8	75	100	25,5
10	787	1200	4	35	(0.)	13,5
11	170	375	4	10	0	10
12	360	500	350	15	_ 50	14
13	864	1600	5	50	50	28,5
14	1000	2000	5	50	0	8,5
15	2000	6000	15	175	0	27,29
16	3400	8000	18	200	150	28,5
17	2900	4500	13	125	0	29
18	600	2400	8	65	100	19,5
19	1750	3000	10	95	180	26
20	250	400	T 42.51	J (10 T	0	3,5

Lanjutan..... (Lampiran 3)

No.	Total Produksi (kg)	$LL(m^2)$	Benih (kg)	Urea (kg)	ZA (kg)	TK (HOK)
21	4000	4500	13	120	0	120
22	1300	2000	8	65	0	65
23	150	350	4	10	30	40
24	350	500	2	15	20	35
25	463	1100	4	35	40	75
26	200	200	4	10	0	10
27	1400	3000	8	75	40	115
28	1250	2500	7	65	\bigcirc 0	65
29	2500	4800	13	125	200	325
30	400	750	2.//	20	\bigcirc 0	20
31	400	780	2 4	20	50	70
32	525	1000	3	25	40	65
33	840	1500	4	40	0	40
34	1100	2000	5	55	0	55
35	125	250	2	8	0	8
36	850	1500	4	40	0	40
37	2500	4500	13	120	0	120
38	2400	4000	11	110	0	110
Jumlah	42761	82405	253	2255	1285	588,165
Rata-rata	1125,28	2168,55	6,65	59,34	33,81	15,47

Lampiran 4. Rincian Biaya Tetap Usahatani Jagung

No	Biaya Sewa	Biaya Pajak	Biaya Penyusutan	TFC
1	250000	24000	0	274000
2	0	30000	0	30000
3	0	4000	0	4000
4	0	45000	0	45000
5	0	12000	0	12000
6	0	10000	16800	26800
7	0	15000	0	15000
8	0	10000	15 o B E	10000
9	0	30000	0	30000
10	0	12000	0	12000
11	0	3750	0	3750
12	0	5000	8400	13400
13	0	16000	(20,0)	16000
14	0	20000	0	20000
15	0	60000		60000
16	0	80000	0	80000
17	0 /	45000	0	45000
18	500000	45000	0	545000
19	0	20000		20000
20	0	3500	0	3500
21	0	5000	0	5000
22	0	11000	[20]	11000
23	0	2000	0	2000
24	0	30000	0 0	30000
25	0	25000	0/3/17	25000
26	0	48000	0 0	48000
27	200000	7500	0	207500
28	0	7800	TELLO // C	7800
29	0	10000		10000
30	0	15000	0	15000
31	0	20000	0	20000
32	0	2500	0	2500
33	0	15000	16800	31800
34	0	45000	0	45000
35	0	40000	0	40000
36	0	12000	0	12000
37	0	14000	0	14000
38	0	24000	0	24000
Jumlah	950000	824050	42000	1816050

Lampiran 5. Rincian Biaya Variabel Usahatani Jagung

Lampi	ran 5. Rincian <mark>Bi</mark>	aya variabei	Usanatani Ja	igung								
No.	Nama		B. Pupuk			B. Bi	bit			B. Tenaga	B.lain-	TVC
		4			Hibirida	Hibirida	Hibirida	7		1		
		ZA	Urea	Total	A	В	C	Lokal	Total	kerja	lain	
1	rohmat arifin	140000	104000	244000	352000	0	0	0	352000	560000	0	1156000
2	karnawi	252000	152000	404000	0	510000	0	0	510000	736000	0	1650000
3	hariyono	0	16000	16000	0	204000	0	0	204000	80000	0	300000
4	saiful b	0	224000	224000	0	612000	0	ϕ 0	612000	732000	0	1568000
5	Basar	0	67200	67200	0	0	18000	~ 10	18000	388000	0	473200
6	tumbar	0	40000	40000	0	$\mathcal{C} \setminus 0$	12000	0,4	12000	206000	12000	270000
7	pitono	105000	64000	169000	0	0	18000	0	18000	392000	0	579000
8	sujoso	0	40000	40000	0	0	15000	0	15000	206000	6000	267000
	Samsul						VARIO	9	Ĵ			
9	Arifin	140000	120000	260000	0	0	24000	0	24000	717000	12000	1013000
10	Gono	0	56000	56000	0	0	12000	0	12000	303000	36000	407000
11	Mustolifa	0	16000	16000	0	0	12000	60	12000	220000	0	248000
12	abdul salam	70000	24000	94000	0	0	9000	0	9000	287000	24000	414000
13	Misdi	70000	80000	150000	0	0	15000	0	15000	668000	36000	869000
14	marsiah	0	80000	80000	0.	-0	15000	0	15000	226000	0	321000
15	sahlan	0	280000	280000	0	0	45000	0	45000	747800	48000	1120800
16	satuji	210000	320000	530000	0	0 \	54000	0	54000	790000	48000	1422000
17	karno	0	200000	200000	0	0	39000	0	39000	672000	0	911000
18	asbali	0	192000	192000	0	0	39000	0	39000	624000	120000	975000
19	Sunarlis	0	104000	104000	0	0	0	80000	80000	592000	0	776000
20	kuswadi	42000	16000	58000	0	0	0	40000	40000	80000	0	178000

Lanjutan (lampiran 5)

No.	Nama		B. Pupuk			В.	Bibit	RA		B. Tenaga	B.lain-	TVC
		ZA	Urea	Total	Hibirida A	Hibirida B	Hibirida C	Lokal	Total	kerja	lain	iii
21	Kusen	2 8000	24000	52000	0	0	0	20000	20000	91750	0	163750
22	Rusmiani	<mark>5</mark> 6000	56000	112000	0	0	0	40000	40000	422000	0	574000
23	Ahmad	0	16000	16000	0		0	40000	40000	139000	0	195000
24	Sri Bati	5 6000	120000	176000	0			// 80000	80000	698000	12000	966000
25	Rokim	0	104000	104000	0			70000	70000	468000	0	642000
26	Asia	<mark>28</mark> 0000	200000	480000	/0	0	/0	130000	130000	628000	36000	1274000
27	salami	0	32000	32000	C 0	_0	0	20000	20000	556000	0	608000
28	misiri	70000	32000	102000	0	0		20000	20000	74000	0	196000
29	Supadi	5 6000	40000	96000	0			30000	30000	198000	0	324000
30	pitono	0	64000	64000	0	0	0	40000	40000	129000	0	233000
31	sutini	0	88000	88000	0	JUL 10		50000	50000	161000	0	299000
32	sugeng	0	12800	12800	0	4 1 1 0	7 O	20000	20000	226000	0	258800
33	piati	0	64000	64000	0	0	120000	0	40000	178000	12000	374000
34	baia	0	192000	192000	0	0	390000		130000	326000	0	908000
35	jayat	0	176000	176000	0	0 \\\	330000	0	110000	537000	12000	1055000
36	sumini	0	48000	48000	0	b d 0	90000	75 0	30000	343000	0	481000
37	fitria	84000	48000	132000	0	0	120000	0	40000	447000	120000	819000
38	abdul	<mark>14</mark> 0000	96000	236000	0	0	210000	0	70000	221000	12000	679000
,	Гotal	17 <mark>99</mark> 000	3608000	5407000	352000	1326000	4530000	680000	6888000	15069550	546000	27910550
Ra	ita-rata	4 <mark>73</mark> 42,1	94947,3	142289,4	9263,1	34894,7	119210,5	17894,7	181263,1	396567,1	14368,4	734488,1

Lampiran 6. Biaya, Penerimaan dan Pendapatan Usahatani Jagung

Lam	Jii ali <mark>u.</mark> Diaya,	I ellei illiaali ua	in Pendapatan C	Sanatam Jagun	g	
No	TFC	TVC	TC	TR	PROFIT	R/C
	AUI				DA.	
1	2 <mark>74</mark> 000	1156000	1430000	2100000	670000	1,468531469
2	3 <mark>00</mark> 00	1650000	1680000	6125000	4445000	3,645833333
3	<mark>40</mark> 00	300000	304000	875000	571000	2,878289474
4	4 <mark>5</mark> 000	1568000	1613000	7680000	6067000	4,761314321
5	1 <mark>2</mark> 000	635200	647200	2496000	1848800	3,856613103
6	2 <mark>6</mark> 800	378000	404800	800000	395200	1,976284585
7	1 <mark>5</mark> 000	741000	756000	1920000	1164000	2,53968254
8	1 <mark>00</mark> 00	402000	412000	1494400	1082400	3,627184466
9	3 <mark>00</mark> 00	1229000	1259000	4160000	2901000	3,30420969
10	12000	515000	527000	2518400	1991400	4,778747628
11	<mark>37</mark> 50	356000	359750	544000	184250	1,512161223
12	13400	495000	508400	1152000	643600	2,265932337
13	1 <mark>6</mark> 000	1004000	1020000	2764800	1744800	2,710588235
14	2 <mark>00</mark> 00	456000	476000	3200000	2724000	6,722689076
15	6 <mark>00</mark> 00	1525800	1585800	6400000	4814200	4,035817884
16	8 <mark>00</mark> 00	1908000	1988000	10880000	8892000	5,472837022
17	4 <mark>5</mark> 000	1262000	1307000	-9280000	7973000	7,100229533
18	5 <mark>45</mark> 000	1326000	1871000	12000000	10129000	6,413682523
19	20000	776000	796000	3900000	3104000	4,899497487
20	<mark>35</mark> 00	178000	181500	450000	268500	2,479338843

Lanjutan (lampiran 6)

No	TFC	TVC	TC	TR	PROFIT	R/C
				FAGE		
21	5000	163750	168750	1050000	881250	6,22222222
22	11000	574000	585000	1389000	804000	2,374358974
23	2000	195000	197000	600000	403000	3,045685279
24	30000	966000	996000	4200000	3204000	4,21686747
25	25000	642000	667000	3750000	3083000	5,622188906
26	48000	1274000	1322000	7500000	6178000	5,67322239
27	207500	608000	815500	1200000	384500	1,471489884
28	7800	196000	203800	1200000	996200	5,888125613
29	10000	324000	334000	1575000	1241000	4,715568862
30	15000	233000	248000	2520000	2272000	10,16129032
31	20000	299000	319000	3300000	2981000	10,34482759
32	2500	258800	261300	375000	113700	1,435132032
33	31800	374000	405800	2720000	2314200	6,702809266
34	45000	908000	953000	8000000	7047000	8,394543547
35	40000	1055000	1095000	7680000	6585000	7,01369863
36	12000	481000	493000	1440000	947000	2,920892495
37	14000	819000	833000	2240000	1407000	2,68907563
38	24000	679000	703000	3136000	2433000	4,460881935

Lampiran 7. Data Penggunaan Tenaga Kerja Usahatani Jagung

No					VI	T-F			KEC	SIATA	N PR	ODUKS	I			14.5	U				
	Pengo	lahan	l <mark>ah</mark> an	Per	nanama	n	Pe	nyulaı	nan	Per	nupul	an I	Per	nbubı	ınan	Pen	upuk	an II		Paner	1
		Jml	HOL		jml	TTOTT		jml	TIOT.		jml	TIOT.	4.	jml	11017		jml	***		jml	***
	Hari	org	HOK	Hari	org	HOK	Hari	org	HOK	Hari	org	HOK	Hari	org	HOK	Hari	org	HOK	Hari	org	HOK
1	6	2	12	0,5	3	1,5	0	0	0	0,5	3	1,5	0,5	3	1,5	0,5	3	1,5	0,5	3	1,5
2	8	2	16	2	3	6	0	0	0	1	\neg 1	1	0,5	3	1,5	1	1	1	0,5	1	0,5
3	1	1	1	0,5	2	1	0,25	1	0,25	0,25	1.	0,25	0,25	1	0,25	0,25	1	0,25	0,5	1	0,5
4	5	3	15	0,5	6	3	0,5	3	1,5	0,5	3	1,5	0,5	3	1,5	0,5	3	1,5	0,75	3	2,25
5	4	2	8	0,5	3	1,5	0,5	1	0,5	0,5	2	1.41	0,5	2	1	0,5	2	1	0,5	2	1
6	3	1	3	0,5	3	1,5	0,75	1	0,75	0,75	1	0,75	0,75	1	0,75	0,75	1	0,75	0,5	2	1
7	4	2	8	0,5	3	1,5	0,5	/1	0,5	0,5	2		0,5	2	1	0,5	2	1	0,5	2	1
8	3	1	3	0,5	3	1,5	0,75		0,75	0,75	. /1:	0,75	0,75	1	0,75	0,75	1	0,75	0,5	2	1
9	5	3	15	0,75	6	4,5	0	0	0	0,5	2	1	0,5	2	1	0,5	2	1	0,75	4	3
10	3	2	3	0,5	4	2	0,5	2		0,5	2	1	3,5	1	3,5	0,5	2	1	0,5	4	2
11	1	2	2	0,5	3	1,5	0,5	2		0,5	2	1	1	2	2	0,5	2	1	0,5	3	1,5
12	1	1	1	0,5	4	2	0	0	10	0,5	1	0,5	7 4	2	8	0,5	1	0,5	0,5	4	2
13	4	2	8	0,5	8	4	1,5	1	1,5	1,5	2	3	1	6	6	1,5	2	3	0,5	6	3
14	4	1	4	0,5	2	1	0	0	0	0,5	2	13/1	0,5	1	0,5	0,5	2	1	0,5	2	1
15	3	5	15	0,5625	4	2,25	0,5	2	1 1 1	0,56	3	1,68	0,56	3	1,68	0,56	3	1,68	1	4	4
16	4	4	16	1	4	4	0,5	2	\ 11/	0,5	1	0,5	0,5	1	0,5	0,5	1	0,5	1	6	6
17	4	2	8	0,5	8	4	0,5	1	0,5	1	10	10	0,5	1	0,5	1	1	1	0,5	10	5
18	4	2	8	0,5	8	4	0	0	0	0,5	4	2	2	4	6	0,5	4	2	1	4	4
19	6	2	12	0,5	5	2,5	0	0	0	1	2	2	0,5	2	1	1	2	2	0,5	4	2
20	1	1	1	0,5	2	1	0,25	1	0,25	0,25	1	0,25	0,25	1	0,25	0,25	1	0,25	0,5	1	0,5

Lanjutan..... (Lampiran 7)

	KEGIATAN PRODUKSI																				
No.	Pengo	lahan	<mark>l</mark> ahan	Per	nanam	an	Per	nyulaı	man	Pen	nupuk	an I	Pen	nbubı	ınan	Pen	ıupuk	an II		Panen	1
	Hari	jml org	нок	Hari	jml org	нок	Hari	jml org	нок	Hari	jml org	нок	Hari	jml org	нок	Hari	jml org	нок	Hari	jml org	нок
21	1,3125	1	1,3125	0,4375	2	0,875	0,25	1	0,25	0,25	1	0,25	0,25	1	0,25	0,25	1	0,25	0,4375	1	0,4375
22	5	2	10	0,5	3	1,5	0,5	1	0,5	0,5	\sim 1	0,5	0,5	1	0,5	0,5	1	0,5	0,5	1	0,5
23	0,5	2	1	0,5	3	1,5	0	0	_0	0,5	1	0,5	1,5	1	1,5	0,5	2	1	0,5	3	1,5
24	7	2	14	1,5	2	3	0	0	0		2	2	1	2	2	1	2	2	0,5	4	2
25	4	3	4	0,5	6	3	0	0	0	0,5	2	1	0,5	8	4	0,5	2	1	1	8	8
26	4	2	8	1	3	3	0	0	>> 0°	0,5	3	1,5	2,5	3	7,5	0,5	3	1,5	1,5	3	4,5
27	4	2	8	0,5	2	1	0	\wedge 0	0.0	0,5	2	17/17	3,5	2	7	0,5	2	1	0,5	8	4
28	1	1	1	0,25	1	0,25	0	€0	0.	0,25	//1	0,25	0,25	1	0,25	0,25	1	0,25	0,5	2	1
29	2	1	2	0,5	2	1	0,5	2	1	0,5	2	7	0,5	2	1	0,5	2	1	0,5	4	2
30	1	1	1	1	4	4	0	0	0	0,25	2	0,5	0,5	1	0,5	0,25	2	0,5	0	8	0
31	3	1	3	0,5	1	0,5	0,5	1	0,5	0,5	_1	0,5	0,5	1	0,5	0,5	1	0,5	0,5	1	0,5
32	2	2	4	0,5	2	1	0	0	J30	0,5	2	月灯	0,5	2	1	0,5	1	0,5	0,5	1	0,5
33	1	2	2	0,5	2	1	0,5	2	111	0,5	2		_0,5	2	1	0,5	2	1	0,5	2	1
34	3	2	6	0,5	1	0,5	0,5	1	0,5	0,5	1	0,5	0,5	2	1	0,5	1	0,5	1	3	3
35	3	3	9	1,5	3	4,5	0	0	0	0,5	3	1,5	0,5	3	1,5	0,5	3	1,5	1	3	3
36	3	1	3	0,5	4	2	0	0	0	0,5	1 1	0,5	3	1	3	0,5	1	0,5	2	3	6
37	3	3	9	0,5	3	1,5	0,5	1	0,5	0,5	2	// 4	1	1	1	0,5	2	1	0,5	4	2
38	3	1	3	0,5	2	1	0	0	0	0,5	O1	0,5	0,5	4	2	0,5	1	0,5	0,5	4	2

	4110	Pengolahan	Lahan	AS PER	2RA	Pena	naman	
No			11014	11124	KC K	jumlah		TIVE
	hari	jumlah orang	HOK	Biaya	hari	orang	HOK	biaya
1	6	2	12	420000	0,5	3	1,5	24000
2	8	2	16	560000	2	3	6	96000
3	1	1	1	35000	0,5	2	11.	16000
4	5	3	15	525000	0,5	6	3	48000
5	4	2	8	280000	0,5	3	1,5	24000
6	3	1	3	105000	0,5	3	1,5	24000
7	4	2	8	280000	0,5	3	1,5	24000
8	3	1	3	105000	0,5	3	1,5	24000
9	5	3	15	525000	0,75	6	4,5	72000
10	3	2	3	105000	0,5	4	2	32000
11	1	2	2	70000	0,5	1//3	1,5	24000
12	1	1	1	35000	0,5	4	2	32000
13	4	2	8	280000	0,5	8	4	64000
14	4	1	4. /	140000	△0,5	2	1	16000
15	3	5	15	525000	0,57	4	2,25	36000
16	4	4	16	560000	//1/	4	4	64000
17	4	2	8	280000	0,5	8	4	64000
18	4	2 ^	8	280000	0,5	8	4	64000
19	6	2	12	420000	0,5	5	2,5	40000
20	1	1	(121	35000	0,5	2 2	1	16000
21	1,313	1	1,313	50000	0,44	2	0,875	14000
22	5	2	10	350000	0,5	3	1,5	24000
23	0,5	2	坟 狐/1	35000	0,5	3	1,5	24000
24	7	2	14	490000	1,5	2	3	48000
25	4	3	4	140000	0,5	6	3	48000
26	4	2	8	280000		3	3	48000
27	4	2	8/	280000	0,5	2	1	16000
28	1	1	OT.	35000	0,25	1	0,25	4000
29	2	1	2	70000	0,5	2	1	16000
30	1	1	1	35000	1	4	4	64000
31	3	1	3	105000	0,5	1	0,5	8000
32	2	2	4	140000	0,5	2	1	16000
33	1	2	2	70000	0,5	2	1	16000
34	3	2	6	210000	0,5	1	0,5	8000
35	3	3	9	315000	1,5	3	4,5	72000
36	3	1	3	105000	0,5	4	2	32000
37	3	3	9	315000	0,5	3	1,5	24000
38	3		3	105000	0,5	2	1	16000
Total	124,8	73	248,3	8695000	24	130	81,375	130200
Rata-rata	3,29	1,92	6,54	228815,79	0,63	3,42	2,1	34263,1

	410	peny	yulaman	LA	AS		38	per	nupukai	n I	YAH	TUN
No	hari	\sum_{Org}	НОК	biaya total	hari	\sum_{Org}	НОК	\sum_{wanita}	\sum_{pria}	Biaya TK Wanita	Biaya TK Pria	Total
1	0	0	0	0	0,5	3	1,5	1	2	8000	20000	28000
2	0	0	0	0	1	1	1,3	0	1	0	20000	20000
3	0,25	1	0,25	4000	0,25	1	0,25	0	3	0	5000	5000
4	0,25	3	1,5	24000	0,25	3	1,5	0	1	0	30000	30000
5	0,5	1	0,5	8000	0,5	2	1	1	1	8000	10000	18000
6	0,75	1	0,75	12000	0,75	1	0,75	0	1	0	15000	15000
7	0,5	1	0,5	8000	0,5	2	1	0	1	0	20000	20000
8	0,75	1	0,75	12000	0,75	1	0,75	0	1	0	15000	15000
9	0	0	0	0	0,5	2	1	0	0	0	20000	20000
10	0,5	2	1	16000	0,5	2	1	0	2	0	20000	20000
11	0,5	2	1	16000	0,5	2	1	0	2	0	20000	20000
12	0	0	0	0	0,5	1	0,5	0	0	0	10000	10000
13	1,5	1	1,5	24000	1,5	2	3	0	1	0	60000	60000
14	0	0	0	0	0,5	2	1 0	0,0	0	0	20000	20000
15	0,5	2	1	16000	0,56	3	1,68	3	0	28600	0	28600
16	0,5	2	1	16000	0,5	î.	0,5	0	1	0	10000	10000
17	0,5	1	0,5	8000	1/	10	10	0-1	10	0	200000	200000
18	0	0	0	0.5	0,5	4	2	1/10	4	0	40000	40000
19	0	0	0	0	a in	2	2	0	< 0	16000	20000	36000
20	0,25	1	0,25	4000	0,25	$ abla 1 \hat{h}$	0,25	0	1	0	5000	5000
21	0,25	1	0,25	4000	0,25		0,25	-0	1	0	5000	5000
22	0,5	1	0,5	8000	_0,5		0,5	60	1	0	10000	10000
23	0	0	0	0	0,5	1	0,5	0	1	0	10000	10000
24	0	0	0	0	40	2	2	0	2	0	40000	40000
25	0	0	0	0	0,5	2	17	101	2	0	20000	20000
26	0	0	0	0	0,5	3	1,5	0	3	0	30000	30000
27	0	0	0	0	0,5	2	1	0	2	0	20000	20000
28	0	0	0	0	0,25	~ 1	0,25	0,	1	0	5000	5000
29	0,5	2	1	16000	0,5	2	1	1	1	8000	10000	18000
30	0	0	0	0	0,25	2	0,5	0	2	0	10000	10000
31	0,5	1	0,5	8000	0,5	1	0,5	0	1	0	10000	10000
32	0	0	0	0	0,5	2	1	0	2	0	20000	20000
33	0,5	2	1	16000	0,5	2	1	1	1	8000	10000	18000
34	0,5	1	0,5	8000	0,5	1	0,5	0	1	0	10000	10000
35	0	0	0	0	0,5	3	1,5	0	3	0	30000	30000
36	0	0	0	0	0,5	1	0,5	\1	0	8000	10000	8000
37	0,5	1	0,5	8000	0,5	2	1	0	2	-0	20000	20000
38	0	0	0	0	0,5	1	0,5	0	1	0	10000	10000
Total	10,75	26	14,75	236000	21,31	76	46,68	8	59	84600	840000	914600
Rata- rata	0,28	0,70	0,38	6210,5	0,56	2	1,22	0,21	1,56	2226,3	22105,2	24068,4

		A.HT.	1:67	pem	upukan II		MAG	HIT
No		jumlah	101=	jumlah	jumlah	biaya tk	Biaya tk	
	hari	orang	HOK	Pria	wanita	Pria	Wanita	tota
1-	0,5	3	1,5	1	2	8000	20000	2800
2	1	1	1	0	1	0	20000	2000
3	0,25	1 .	0,25	0	3	0	5000	500
4	0,5	3	1,5	0	1	0	30000	3000
5	0,5	2	1	1	1	8000	10000	1800
6	0,75	1	0,75	0	1	0	15000	1500
7	0,5	2	1	0	1	0	20000	2000
8	0,75	1	0,75	0	1	0	15000	1500
9	0,5	2	21	0	-0	0	20000	2000
10	0,5	2	1	0	2	0//	20000	2000
11	0,5	2	1	0	2	0	20000	2000
12	0,5	1	0,5	0	0	0	10000	1000
13	1,5	2	3	0_	\ 1_	0	60000	6000
14	0,5	2	15		0	0	20000	2000
15	0,56	3	1,68	3	0//	28600	0	2860
16	0,5	1	0,5		169	0	10000	1000
17	1	1	7.1	0		0	10000	1000
18	0,5	4 🔊	2	0	4	0	40000	4000
19	1	2	2	3 0/4	$\sqrt{0}$	16000	20000	3600
20	0,25	1	0,25	0	1	(0	5000	500
21	0,25	1	0,25	0		0	5000	500
22	0,5	1	0,5	0	引到信	0	10000	1000
23	0,5	1	0,5	100	41	0	10000	1000
24	1	2	2	0	2	0	40000	4000
25	0,5	2	12	0	2 2	0	20000	2000
26	0,5	3	1,5	0	3	0	30000	3000
27	0,5	2	ard.	0=	///2 °b	0	20000	2000
28	0,25	1	0,25	0	1	0	5000	500
29	0,5	2	1	1	1	8000	10000	1800
30	0,25	2	0,5	0	2	0	10000	1000
31	0,5	1	0,5	0	1	0	10000	1000
32	0,5	2	1	0	2	0	20000	2000
33	0,5	2	1	1	1	8000	10000	1800
34	0,5	1	0,5	0	-1	0	10000	100
35	0,5	3	1,5	0	3	0	30000	300
36	0,5	1	0,5	1	0	8000	10000	180
37	0,5	2	1	0	2	0	20000	200
38	0,5	1	0,5	0	1	0	10000	1000
Total	21,31	67	37,68	8	50	84600	650000	7346
ata-Rata	0,5608	1,7632	0,992	0,210526	1,32	2226,3	17105,26	1933

	VAH	PEMBU	BUNA	N	CI		panen	
No		jumlah	3134	total		jumlah		
	hari	orang	HOK	biaya	hari	orang	HOK	Total
1	0,5	3	1,5	30000	0,5	3	1,5	30000
2	0,5	3	1,5	30000	0,5	1.	0,5	10000
3	0,25	1	0,25	5000	0,5	1	0,5	10000
4	0,5	3	1,5	30000	0,75	3	2,25	45000
5	0,5	2	1	20000	0,5	2	1	20000
6	0,75	1	0,75	15000	0,5	2	1	20000
7	0,5	2	1	20000	0,5	2	1	20000
8	0,75	1	0,75	15000	0,5	2	1	20000
9	0,5	2	1	20000	0,75	4	3	60000
10	3,5	1	3,5	70000	0,5	4	2	40000
11	1	2	2	40000	0,5	3	1,5	30000
12	4	2	8	160000	0,5	4	2	40000
13	1	6	6	120000	0,5	6	3	60000
14	0,5	1	0,5	10000	0,5	\wedge 2	1	20000
15	0,56	3	1,68	33600) i	7 4	4	80000
16	0,5	1	0,5	10000	1λ	^6	6	120000
17	0,5	1	0,5	10000	0,5	10	5	100000
18	2	4 ∧	60	120000	$/\langle 1 \rangle$	774	4	80000
19	0,5	2 🕤	1	20000	0,5	4	\sim 2	40000
20	0,25	1	0,25	5000	0,5	1 /	0,5	10000
21	0,25	1	0,25	5000	0,44	16	0,4375	8750
22	0,5	1	0,5	10000	0,5		0,5	10000
23	1,5	1	1,5	30000	0,5	3	1,5	30000
24	1	2	2	40000	0,5	4-1	2	40000
25	0,5	8	4	80000	1	8	8	160000
26	2,5	3	7,5	150000	1,5	3	4,5	90000
27	3,5	2	7	140000	0,5	8	4	80000
28	0,25	1	0,25	5000	0,5	02	1	20000
29	0,5	2	1	20000	0,5	4	2	40000
30	0,5	1	0,5	10000	0	8	0	0
31	0,5	1	0,5	10000	0,5	1	0,5	10000
32	0,5	2	1	20000	0,5	1	0,5	10000
33	0,5	2	1	20000	0,5	2	1	20000
34	0,5	2	1	20000	1	3	3	60000
35	0,5	3	1,5	30000	117	3	3	60000
36	3	1	3	60000	2	3	6	120000
37	1	1	1	20000	0,5	4	2	40000
38	0,5	4	2	40000	0,5	4	2	40000
Total	37,06	80	74,68	1493600	24,4	131	84,6875	1693750
Rata- Rata	0,9753	2,1053	1,965	39305,26	0,64	3,4474	2,228618	44572,4

BRAWIJAX

Lampiran 9. Uji Asumsi Klasik dan Hasil Regresi Fungsi Produksi Cobb-Douglas

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	hok, pupuk, benih, luas ^a		Enter

a. All requested variables entered.

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.955ª	.913	.902	.12402

a. Predictors: (Constant), hok, pupuk, benih, luas

ANOVA^b

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	5.300	4	1.325	86.154	.000ª
	Residual	.508	33	.015		
	Total	5.808	37			

a. Predictors: (Constant), hok, pupuk, benih, luas

Coefficients^a

		Unstandardized Coefficients		Standardized Coefficients		
Model		В	Std. Error	Beta	t	Siq.
1	(Constant)	1.777	.221		8.040	.000
	luas	.886	.133	.895	6.665	.000
	benih	.153	.152	.102	1.009	.320
	pupuk	043	.094	046	462	.647
	hok	.021	.100	.015	.208	.836

a. Dependent Variable: produksi

b. Dependent Variable: produksi

BRAWIJAY

One-Sample Kolmogorov-Smirnov Test

		Unstandardiz ed Residual
N		38
Normal Parameters ^{a.,b}	Mean	.0000000
	Std. Deviation	.11712240
Most Extreme Differences	Absolute	.137
	Positive	.078
	Negative	137
Kolmogorov-Smirnov Z		.845
Asymp. Sig. (2-tailed)		.473

- a. Test distribution is Normal.
- b. Calculated from data.

Coefficients^a

Γ			Unstandardized Coefficients		Standardized Coefficients			Collinearity	Statistics
L	Model		В	Std. Error	Beta	t	Siq.	Tolerance	VIF
- [1	1	(Constant)	1.777	.221		8.040	.000		
1		VAR00002	.886	.133	.895	6.665	.000	.147	6.803
1		VAR00003	.153	.152	.102	1.009	.320	.257	3.884
1		VAR00004	043	.094	046	462	.647	.266	3.753
L		VAR00005	.021	.100	.015	.208	.836	.492	2.033

a. Dependent Variable: VAR00001

Coefficients^a

		Unstandardized Coefficients		Standardized Coefficients		
LMo	odel	В	Std. Error	Beta	t	Siq.
1	(Constant)	.164	.135		1.219	.232
	VAR00002	110	.081	588	-1.352	.185
	VAR00003	.138	.093	.491	1.494	.145
	VAR00004	.005	.057	.028	.088	.930
	VAR00005	.009	.061	.033	.140	.890

a. Dependent Variable: abresid

Model Summary^b

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Durbin- Watson
1	.955ª	.913	.902	.12402	1.874

a. Predictors: (Constant), VAR00005, VAR00004, VAR00003, VAR00002

b. Dependent Variable: VAR00001

Lampiran 10. Analisis Efisiensi Alokatif Faktor-faktor Produksi Usahatani Jagung

Secara matematis model fungsi Cobb-Douglas Usahatani jagung selama 1 musim tanam Januari - September 2010 di Desa Sukolilo, Kecamatan Wajak, Kabupaten Malang.

$$Y = 1,777 X_1^{0,886} X_2^{0,153} X_3^{-0,043} X_4^{0,021}$$

BRAWIUAL

$$PM_{xi} = \frac{bi \ \overline{Y}}{\overline{X}i}$$

$$NPM_{xi} = PM_{xi} Py$$

$$NPM_{xi} = \frac{bt \overline{Y}}{\overline{X}i} Py$$

Xi optimal dicapai pada saat $\frac{NPMxi}{Pxi} = 1$

Xi optimal =
$$\frac{bi.Y.Py}{Pxi}$$

Luas lahan (X1)

Diketahui : Rata-rat produksi (Y) = 1125,29 KgHarga Produksi (Py) = Rp. 3.148

Rata-rata penggunaan lahan (Xi) = 2168.55

Rata-rata harga input lahan = Rp. 818

Koefisien regresi bi = 0.886

$$PM_{xi} = \frac{(0,886).(1125,29)}{2168,55} = 0,46$$

$$NPM_{xi} = (0.46).(3.148) = 1.448,06$$

$$\frac{NPMxi}{Pxi} = \frac{1.448,06}{818} = 1,77$$

$$X \ optimal = \frac{(0,886).(1125,29).(3.148)}{818} = 3836,89$$