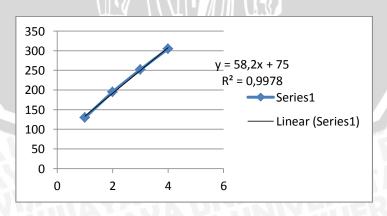

BAB V HASIL PENELITIAN DAN ANALISA DATA

Elektroda selektif ion berbasis kitosan yang akan digunakan untuk mengukur larutan uji Na-Rhodamin B adalah elektroda dengan komposisi optimum yang terdiri dari kitosan 4%: PVC 34%: DOP 61,5%: aliquot-366 CI 0,5%. Harga faktor Nernst yang dihasilkan sebesar 58,2 mv/dekade konsentrasi pada rentang konsentrasi 10⁻¹-10⁻⁴ M dengan kisaran waktu respon 20-80 detik dan usia pakai membran selama 18 hari.

Gambar 5.1 Pengukuran larutan uji Na-rhodamin menggunakan ESI tipe kawat terlapis



Gambar 5.2 Larutan uji Na-Rhodamin konsentrasi 10⁻¹ – 10⁻⁴ M

Sebelum ESI kitosan diaplikasikan pada sampel jajanan, perlu diuji terlebih dahulu beberapa parameter yang dapat mempengaruhi pengukuran ESI rhodamin B. Parameter yang akan diuji yaitu: pH, suhu dan ion asing (klorida dan astetat).

5.1. Pengaruh pH Terhadap ESI Rhodamin B

Pengukuran larutan uji Na-Rhodamin dilakukan pada pH 4, 5, 6, dan 7. Hasil pengukuran yang telah dilakukan menunjukkan bahwa respon potensial ESI rhodamin B yang paling mendekati faktor Nernst teoritis berada pada pH 5.

Gambar 5.3 pengukuran larutan uji Na-Rhodamin B pada pH 5

Gambar 5.3 menunjukkan hasil pengukuran menggunakan empat konsentrasi larutan uji yaitu 10^{-1} , 10^{-2} , 10^{-3} , dan 10^{-4} M. Pengukuran dilakukan berulang sebanyak tiga kali, kemudian dipilih yang paling mendekati harga faktor Nernst. Masing-masing konsentrasi larutan uji memiliki nilai potensial 132 mV, 195 mV, 252 mV, dan 305 mV.

Sedangkan pengukuran pada pH 4, 6, dan 7 harga faktor Nernst yang diperoleh sangat jauh dari harga faktor Nernst teoris. Masing-masing harga faktor Nersnt yang didapat pada pengkuran pH 4, 6, dan 7 adalah -5.2, 12.1, dan -32.3.

5.2 Pengaruh Suhu Terhadap ESI Rhodamin B

Untuk mengetahui adanya pengaruh suhu terhadap kinerja ESI rhodamin B, maka pengukuran potensial larutan uji Na-Rhodamin dilakukan pada rentang suhu 25° C, 30 ° C, 35° C, 40° C, 45° C, dan 50° C. Harga faktor Nernst yang paling mendekati nilai Nernst teoritis adalah pengukuran pada suhu 25° C. Berikut data, pengukuran ESI rhodamin B pada suhu 25° C:

Tabel 5.1 Data pengukuran larutan uji Na-Rhodamin pada suhu 25° C

P(COO ⁻)	E (mV)	E (mV) (pengulangan)	E (mV) (pengulangan)	
10 ⁻¹ M	132	130	139	
I10 ⁻² M	193	195	201	
10 ⁻³ M	242	252	234	
10 ⁻⁴ M	306	305	315	
R ²	0,9976	0,9978	0,976	
Rentang Konsentrasi	INO	10 ⁻¹ -10 ⁻⁴		
Slope	57,1	58,2	56,1	
SD slope		1,05039675		
Rata-rata slope	57,13333333			
CV (%)	CA OFFICE	1,83850073		

Pengukuran dilakukan pada kondisi pH yang sama yaitu pada pH 5.Ketika suhu ditingkatkan untuk pengukuran selanjutnya, harga faktor Nernst yang diperoleh semakin rendah. Semakin suhu ditingkatkan sampai dengan 50 ° C, semakin rendah harga faktor Nernst yang diperoleh.

5.3 Pengaruh Ion Asing Cl⁻ dan Asetat

Perlunya pengukuran terhadap ion asing pada larutan uji sangat penting karena sampel yang akan diuji adalah makanan yang kemungkinan mengandung bahan tambahan lain. Sehingga ion asing yang ada dalam bahan tambahan makanan tersebut perlu diukur untuk mengetahui seberapa besar pengaruhnya terhadap kinerja ESI rhodamin B.

Dalam penelitian ini ion asing yang akan diuji adalah Cl⁻ dan Asetat (CH₃COOH). Pengukurun dilakukan menggunakan empat konsentrasi larutan uji yaitu 10⁻¹ sampai 10⁻⁴ M yang tercampur dengan Cl⁻ dan Asetat.

BRAWIJAY

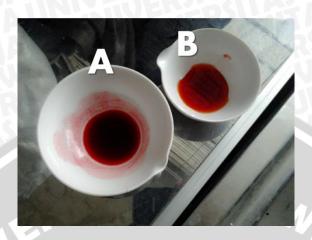
Berikut ini data hasil pengukuran ESI rhodamin B dengan adanya ion asing CI dan asetat: dalam larutan uji rhodamin B:

Tabel 5.2 Pengukuran potensial ESI rhodamin B dengan ion asing Cl

P(COO ⁻)	Pengulangan 1 (mV)	Pengulangan 2 (mV)	Pengulangan 3 (mV)		
1	220	225	221		
2	279	282	280 330 401		
3 0 5	329	330			
4	403	402			
R ²	0,9939	0,9954			
rentang konsentrasi	M. (2)	10 ⁻¹ -10 ⁻⁴			
slope	59,9	57,9	59		
SD slope	以一个	1,001665			
Rata-rata slope	, Fr Line	58,93333	3		
CV(%) /	1,699658				

Tabel 5.3 Pengukuran potensial ESI rhodamin B dengan ion asing asetat

P(COO ⁻)	Pengulangan 1 (mV)	Pengulangan 2 (mV)	Pengulangan 3 (mV)		
1	196	198	195		
2	267	266	264		
3	281	280	283		
4	374	375	374		
R ²	0,9349	0,947			
rentang konsentrasi	10 ⁻¹ -10 ⁻⁴				
slope	54,8	54,5	55,6		
SD slope	0,5686241				
Rata-rata slope	54,966667				
CV (%)		1,0344889			


Slope yang diperoleh pada pengukuran kedua larutan dengan ion asing Cl dan astetat menunjukkan harga faktor Nernst yang masih berada dalam rentang harga faktor Nernst teoritis (54,2 – 64,2 mV/dekade konsentrasi). Dengan demikian, adanya ion asing Cl dan asetat dalam sampel uji rhodamin B tidak memberikan pengaruh yang begitu berarti terhadap pengukuran ESI rhodamin B.

5.4 Pengukuran Sampel Kerupuk Rhodamin B

Sampel yang akan diteliti pada penelitian ini adalah beberapa kerupuk yang diduga mengandung rhodamin B. Sebelum diukur sampel diuji terlebih dahulu menggunakan Testkit rhodamin B untuk menentukan apakah kerupuk yang akan digunakan memang mengandung rhodamin B.

Gambar 5.4 Sampel kerupuk yang telah dihaluskan

Gambar 5.5 Sampel yang telah diuji menggunakan Testkit ET (*Easy Test*) rhodamin

B. Sampel A positif dan sampel B negatif rhodamin B

Terdapat tiga sampel yang positif mengandung rhodamin B yang kemudian diukur menggunakan ESI dan spektrofotometri. Masing-masing sampel yang diuji diberi label Dinoyo I, Dinoyo II, dan Blimbing. Data pengukuran sampel ditunjukkan pada tabel 5.4.

 Tabel
 5.4
 Pengukuran
 Absorbansi
 dan
 Potensial
 Sampel
 Menggunakan

 Spektrofotometri dan ESI

Spektrofotometri								
Sampel absorbansi P(COO) M ppm								
Dinoyo I 0.661		3.7983	1.591x10 ⁻⁴	76.21				
Dinoyo II	0.472	3.953	1.114x10 ⁻⁴	53.36				
Blimbing	0.537	3.9000	1.258x10 ⁻⁴	60.26				

	AL TOP TO							
ESI								
Sampel	potensial (mV)	P(COO ⁻)	M	ppm				
Dinoyo I	298	3.72	1.911 x10 ⁻⁴	91.57				
Dinoyo II	312	3.958	1.1 x10 ⁻⁴	52.69				
Blimbing	306	3.85	1.38 x10 ⁻⁴	66.1				

Hasil pengukuran menggunakan ESI rhodamin B dan spektofotometri kemudian dibandingkan secara statistik menggunakan uji-t dengan SPSS.

BRAWIJAYA

T-Test

[DataSet0]

Paired Samples Statistics

		Mean	N	Std. Deviation	Std. Error Mean
Pair 1	Spektroppm	63.2767	3	11.71989	6.76648
	ESIppm	70.1200	3	19.74928	11.40225

Paired Samples Correlations

		N	Correlation	Sig.	
Pair 1	Spektroppm & ESIppm	3	.999	.030	

Paired Samples Test

				Paired Differen	ces					
		Mean Std. Deviation	9.		7):	95% Confidence Interval of the Difference				
			Std. Error Mean	Lower	Upper	t	df	Sig. (2-tailed)		
Pair 1	Spektroppm - ESIppm	-6.84333	8.06196	4.65458	-26.87036	13.18369	-1.470	2	.279	

AS MANAGED AS

Gambar 5.6 Hasil uji-t menggunakan SPSS