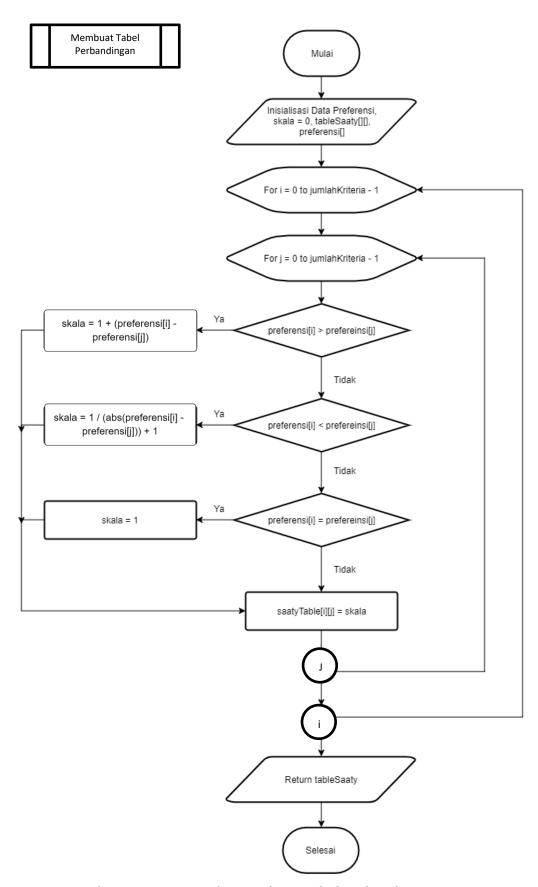

BAB 4 PERANCANGAN

Penelitian bab perancangan ini akan dibahas mengenai rancangan diagram, manualisasi metode dan perancangan antarmuka. Gambar 4.1 dibawah ini merupakan diagram alir proses pendukung keputusan pemilihan varietas jagung menggunakan metode AHP dan SMART.


Gambar 4.1 Diagram Alir Proses AHP-SMART

4.1 Perhitungan Bobot Kriteria Dengan AHP

Dalam pemilihan varietas unggul jagung dibutuhkan pembobotan kriteria agar hasil yang didapatkan sesuai dengan pendapat para ahli. Dalam penelitian ini untuk mendapatkan nilai pembobotan maka perlu dilakukan perhitungan dengan menggunakan AHP.

1. Membuat Tabel Perbandingan

Melakukan perbandingan setiap kriteria berdasarkan dengan skala nilai perbandingan berpasangan pada tabel 2.1. Proses membuat tabel perbandingan akan ditunjukkan pada diagram alir gambar 4.2

Gambar 4.2 Diagram Alir Membuat Tabel Perbandingan

Daftar kode kriteria yang berisi umur jagung hingga panen, berat jagung, rata-rata hasil, potensi hasil, dan ketahan terhadap penyakit jagung akan ditunjukkan pada Tabel 4.1 sebagai berikut:

Tabel 4.1 Kode Kriteria

Kode	Keterangan			
K-001	Umur jagung hingga panen			
K-002	Berat jagung per 1000 biji (g)			
K-003	Rata-Rata Hasil Panen Jagung (ton/ha)			
K-004	Potensi Hasil Panen Jagung (ton/ha)			
K-005	Ketahan terhadap penyakit jagung			

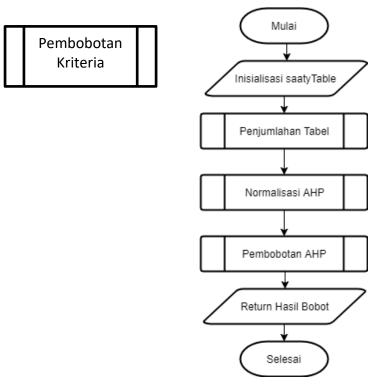
Berikut adalah contoh perhitungan untuk proses pembuatan tabel perbandingan, contoh perhitungan akan ditunjukkan pada perbandingan antara K-001 (baris) dan K-002 (kolom).

K-001 (baris) = 3

K-002 (kolom) = 1

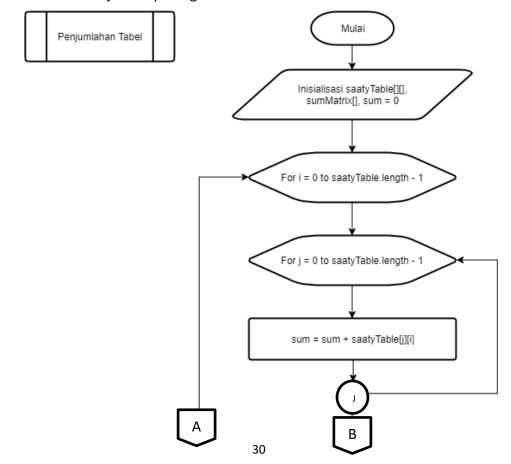
Setelah diketahui nilai-nilai masing-masing kriteria tersebut maka dilakukan perbandingan dengan syarat, jika nilai baris lebih besar dari nilai kolom, maka langkah selanjutnya adalah menghitung nilai tabel perbandingan tersebut.

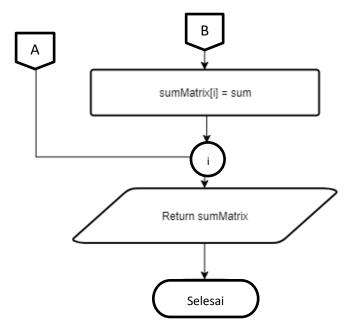
$$K - 001(baris): K - 002(kolom) = 1 + abs(3 - 1) = 3$$


Sedangkan nilai perbandingan dari K-002(baris) dan K-001(kolom) merupakan kebalikan atau disebut *aksioma reciprocal* yang bernilai $\frac{1}{2}$.

Tabel 4.2 Tabel Perbandingan

	K-001	K-002	K-003	K-004	K-005
K-001	1	3	0,333333	0,333333	0,25
K-002	0,333333	1	0,2	0,2	0,166667
K-003	3	5	1	1	0,5
K-004	3	5	1	1	0,5
K-005	4	6	2	2	1


2. Pembobotan Kriteria


Menghitung bobot kriteria dilakukan dengan 3 langkah. Langkah pertama adalah dengan cara menjumlahkan setiap baris dari tabel matriks perbandingan. Langkah kedua adalah dengan membagi setiap elemen dari tabel perbandingan dengan hasil penjumlahan baris pada langkah sebelumnya. Langkah ketiga adalah menghitung rata-rata matriks untuk setiap kolom. Nilai rata-rata setiap kolom itulah yang merupakan hasil pembobotan metode AHP. Diagram alir proses pembobotan kriteria akan ditunjukkan pada gambar 4.3.

Gambar 4.3 Diagram Alir Pembobotan Kriteria

Langkah pertama dalam mendapatkan bobot kriteria adalah penjumlahan tabel untuk setiap kolom. Diagram alir dari proses penjumlahan tabel untu setiap kolom akan ditunjukkan pada gambar 4.4.

Gambar 4.4 Diagram Alir Proses Penjumlahan Tabel

Berikut adalah contoh perhitungan untuk proses penjumlahan tabel untuk setiap baris, contoh perhitungan akan ditunjukkan untuk mendapatkan jumlah baris pada K-001.

 $K-001_{(K-001)} = 1$

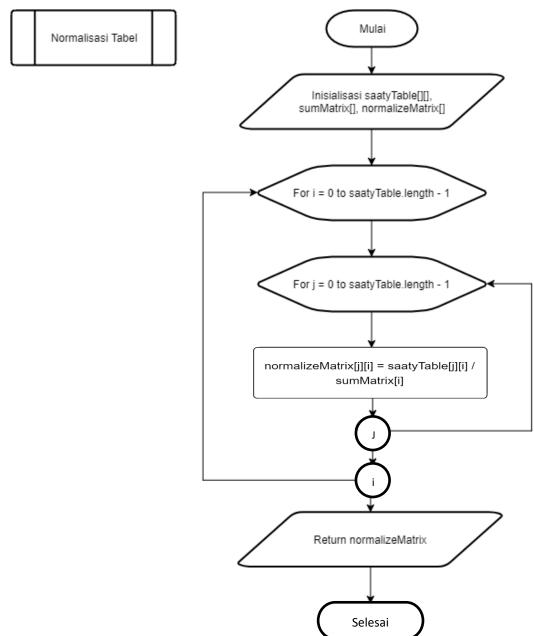
 $K-002_{(K-001)} = 0,3333$

 $K-003_{(K-001)} = 3$

 $K-004_{(K-001)} = 3$

 $K-005_{(K-001)} = 4$

Setelah diketahui nilai-nilai pada tabel perbandingan tersebut, langkah selanjutnya adalah menjumlahkan masing-masing baris.


$$Sum_{(K-001)} = 1 + 0.3333 + 3 + 3 + 4 = 11.3333$$

Hasil seluruh penjumlahan tabel untuk setiap baris akan ditunjukkan pada tabel 4.3.

Tabel 4.3 Hasil Penjumlahan Tabel

	K-001	K-002	K-003	K-004	K-005
K-001	1	3	0,333333	0,333333	0,25
K-002	0,333333	1	0,2	0,2	0,166667
K-003	3	5	1	1	0,5
K-004	3	5	1	1	0,5
K-005	4	6	2	2	1
Sum	11,33333	20	4,533333	4,533333	2,416667

Setelah didapatkan hasil penjumlahan baris, langkah selanjutnya adalah membagi nilai-nilai dari tabel perbandingan dengan hasil penjumlahan setiap baris. Diagram alir pembagian nilai akan ditunjukkan pada gambar 4.5

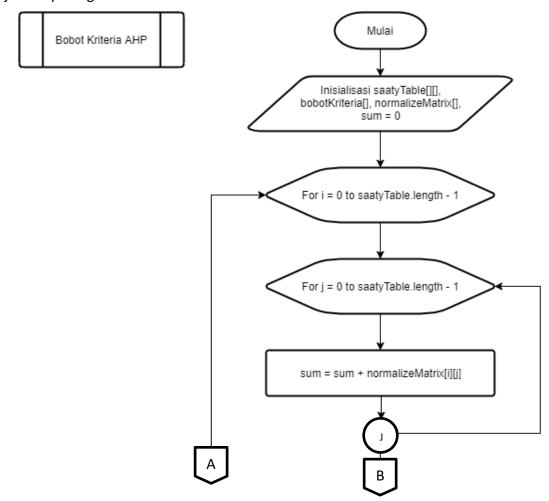
Gambar 4.5 Diagram Alir Normalisasi Tabel

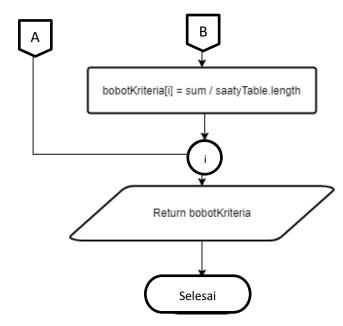
Berikut adalah contoh perhitungan untuk mendapatkan hasil normalisasi. Perhitungan dilakukan pada kolom K-001 dan K-001.

 $K-001_{(K-001)} = 1$

 $Sum_{(K-001)} = 11,33333$

Setelah diketahui nilai penjumlahan baris dan nilai matriks perbandingan. langkah selanjutnya adalah membagi nilai matriks perbandingan dengan hasil penjumlahan yang akan ditunjukkan pada perhitungan berikut.


 $K-001_{(K-001)}' = 1/11,3333 = 0,088235$


Hasil pembagian setiap elemen akan ditunjukkan pada tabel 4.4.

Tabel 4.4 Hasil Pembagian Data

	K-001	K-002	K-003	K-004	K-005
K-001	0,088235	0,15	0,073529	0,073529	0,103448
K-002	0,029412	0,05	0,044118	0,044118	0,068966
K-003	0,264706	0,25	0,220588	0,220588	0,206897
K-004	0,264706	0,25	0,220588	0,220588	0,206897
K-005	0,352941	0,3	0,441176	0,441176	0,413793

Setelah didapatkan nilai dari masing-masing elemen yang telah dilakukan pembagian, langkah selanjutnya adalah menghitung rata-rata dari penjumlahan elemen untuk setiap kolom. Nilai rata-rata ini merupakan hasil akhir dari pembobotan masing-masing kriteria. Diagram alir pembobotan kriteria AHP akan ditunjukkan pada gambar 4.6.

Gambar 4.6 Diagram Alir Pembobotan Kriteria

Berikut ini adalah contoh perhitungan untuk mendapatkan hasil pembobotan Kriteria AHP pada K-001.

$$K-001_{(K-001)} = 0,088235$$

$$K-001_{(K-002)} = 0,15$$

$$K-001_{(K-003)} = 0,073529$$

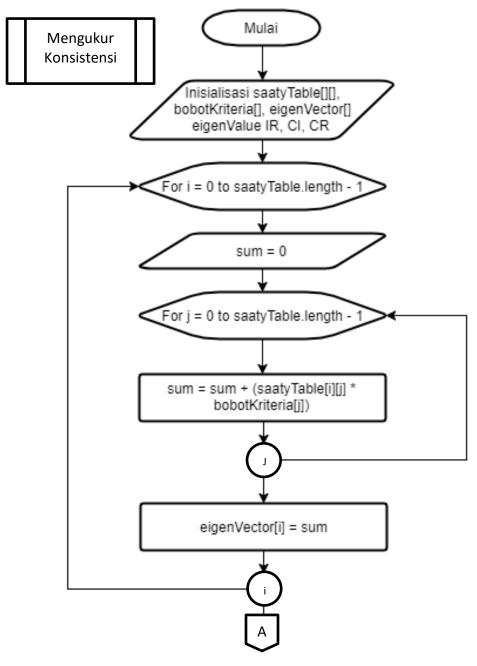
$$K-001_{(K-004)} = 0,073529$$

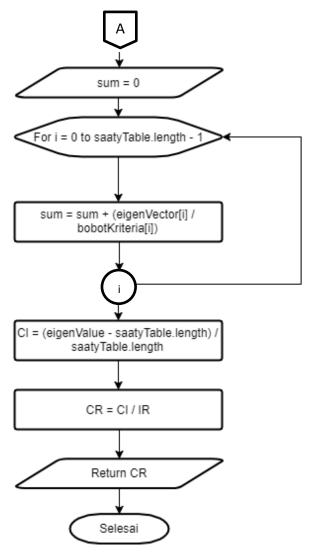
$$K-001_{(K-005)} = 0,103448$$

Setelah diketahui semua nilai K-001 maka langkah selanjutnya adalah menghitung nilai rata-rata dari K-001 tersebut.

$$Average_{(K001)} = \frac{0,088235 + 0,15 + 0,073529 + 0,073529 + 0,103448}{5}$$

$$= 0,097748$$


Tabel perhitungan bobot kriteria akan ditunjukkan pada matriks dengan tabel 4.5


Tabel 4.5 Hasil Pembobotan Kriteria

Nama	Kode	Pembobotan
Kriteria	Kriteria	Kriteria
Umur	K-001	0,097748
Berat	K-002	0,047323
Rata-Rata Hasil	K-003	0,232556
Potensi Hasil	K-004	0,232556
Ketahanan Hama dan Penyakit	K-005	0,389817

3. Mengukur Konsistensi

Pengukuran konsistensi pada AHP dilakukan untuk menentukan apakah preferensi yang diajukan oleh *decision maker* sudah tepat. Dalam melakukan pengukuran konsistensi metode, terdapat 4 langkah yang harus dilakukan. Langkah pertama adalah mencari *eigen vector*. Langkah kedua adalah menghitung nilai *eigen value* yang digunakan untuk menghitung konsistensi indeks. Langkah ketiga adalah menghitung konsistensi indeks AHP. Langkah keempat adalah menghitung nilai konsistensi rasio, nilai konsistensi rasio inilah yang menentukan apakah preferensi sudah sesuai. Diagram alir proses mengukur konsistensi akan ditunjukkan pada gambar 4.7.

Gambar 4.7 Diagram Alir Proses Mengukur Konsistensi AHP

Berikut adalah contoh perhitungan perkalian matriks untuk mendapatkan eigen vector. Perkalian untuk mendapatkan eigen vector didapatkan dari perkalian antara matriks perbandingan dan nilai bobot kriteria.

$$Eigen\ Vector = 1*0,097748 + 3*0,047323 + 0,33*0,232556 + 0,33*0,232556 + 0,25*0,389817 = 0,492208$$

Hasil dari eigen vector akan ditunjukkan pada tabel 4.6.

Tabel 4.6 Hasil Eigen Vector

	Eigen
	Vector
(0,492208
(0,237897
	1,189878
	1,189878
	1,99497

Setelah mendapatkan nilai *eigen vector*, langkah selanjutnya adalah mendapatkan nilai *lamda max*. Contoh perhitungan *lamda* akan ditunjukkan pada perhitungan berikut ini sesuai dengan persamaan 2.20.

$$\lambda_{max} = average\left(\frac{0,492208}{0,097748}, \frac{0,237897}{0,047323}, \frac{1,189878}{0,232556}, \frac{1,189878}{0,232556}, \frac{1,994970}{0,389817}\right)$$

$$= 5,082671$$

Langkah selanjutnya adalah menghitung nilai konsistensi indeks. Perhitungan nilai konsistensi indeks dilakukan sesuai pada persamaan 2.21. Contoh perhitungan konsistensi indeks akan ditunjukkan pada perhitungan dibawah ini.

$$CI = \frac{5,082671}{5-1} = 0,020668$$

Langkah terakhir dari pengecekan konsistensi pada AHP adalah dengan menghitung nilai konsistensi Rasio. Perhitungan nilai konsistensi rasio dilakukan sesuai pada persamaan 2.22. Contoh perhitungan konsistensi rasio akan ditunjukkan pada perhitungan berikut ini.

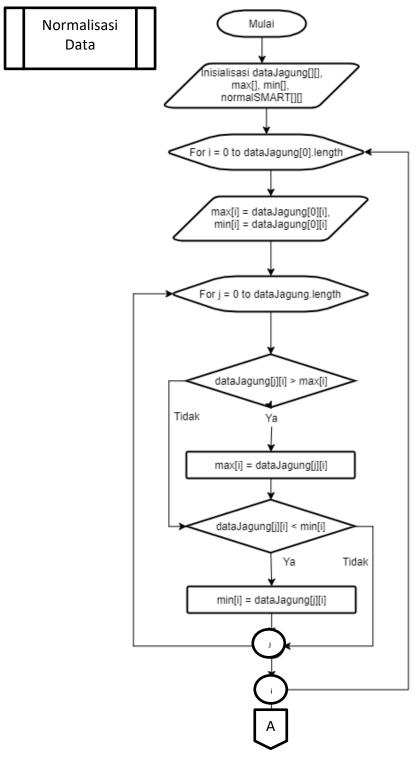
$$CR = \frac{0,020668}{1.12} = 0,018453$$

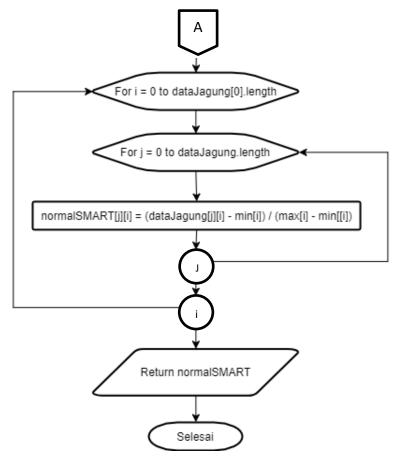
Jika nilai nilai CR kurang dari 0.1 maka hasil pembobotan kriteria menggunakan AHP sudah benar. Hasil pembobotan AHP dapat ditunjukkan pada tabel 4.7.

Hasil Nama Kode **Bobot** Kriteria Kriteria Kriteria Umur K-001 0,097748 0,047323 Berat K-002 Rata-Rata K-003 0,232556 Hasil Potensi K-004 0,232556 Hasil Ketahanan Hama dan K-005 0,389817 Penyakit

Tabel 4.7 Hasil Pembobotan Kriteria

4.2 Penyelesaian Masalah Menggunakan Metode SMART


Pemilihan varietas jagung dilakukan dengan memilih kriteria yang akan digunakan. Pemilihan kriteria tersebut berdasarkan kriteria yang dipilih oleh ahli. Daftar kode kriteria ditunjukkan pada tabel 4.1. Pada studi kasus ini, digunakan data varietas jagung yang didapatkan dari aplikasi data pertanian pemerintahan Indonesia pada laman aplikasi.pertanian.go.id/varietas/tamu/utama.asp yang akan ditunjukkan pada tabel 4.8.


Tabel 4.8 Data Jagung

No Data	Nama Jagung	K-001	K-002	K-003	K-004	K-005
1	Semar-3	94	280	5,3	9	0
2	Semar-4	90	275	5,9	8,5	13
3	Semar-5	98	285	6,8	9	21
4	Semar-6	98	300	6,8	9	21
5	Semar-7	98	300	6,8	8,9	21
6	Semar-8	94	275	6,9	8,9	21
7	Semar-9	95	280	6,6	8,5	21
8	Semar-10	97	310	7,2	9	18
9	Bima-1	97	310	7,2	9	18
10	Bima-2 Bantimurung	100	378	8,51	11	4
11	Bima-3 Bantimurung	100	359	8,27	10	5
12	Bima-4	102	256,6	9,6	11,7	16
13	Bima-5	103	270	9,3	11,4	15
14	Bima-6	104	277,9	9,36	10,59	0
15	Bima-7	89	316	10	12,1	18
16	Bima-8	88	316	10,1	11,7	15
17	Bima-9	95	337	11,2	13,4	16
18	Bima-10	100	414	11,3	13,1	12
19	Bima-11	94	352	11,5	13,2	12
20	Bima-12Q	98	264	6,9	9,3	11
21	Bima-13Q	103	263,8	6,9	9,8	14
22	Bima-14 Batara	95	356,5	10,1	12,9	7
23	Bima-15 Sayang	100	404,97	10,9	13,2	6
24	Bima-16	98	338	9,6	12,4	21
25	Bima-17	95	325	10,8	13,6	21
26	Bima-18	95	325	10,7	13,6	17
27	Bima-19 URI	102	343	9,7	12,5	14
28	Bima-20 URI	102	339	10	12,8	14
29	Bima-Putih-1	100	263	8,1	10,3	3
30	Bima-Putih-2	100	313	7,9	10,4	2
31	HJ 21 Agritan	82	421,2	11,4	12,2	14
32	HJ 22 Agritan	80	393,1	10,9	12,1	14
33	Pulut URI 3 H	85	316,3	8,57	10,68	7
34	JH 27	98	313	9,9	12,6	14
35	JH 234	98	316	10,1	12,6	14

1. Normalisasi Data

Proses normalisasi merupakan proses yang dilakukan agar data yang akan digunakan memiliki nilai yang setara dengan rentang 0 sampai 1. Pada perhitungan normalisasi, nilai range didapat dari nilai maksimum dikurangi nilai minimum. Berikut merupakan hasil normalisasi data yang akan digunakan untuk pemilihan jagung. Diagram alir proses normalisasi akan ditunjukkan pada gambar 4.8.

Gambar 4.8 Diagram Alir Proses Normalisasi

Contoh perhitungan normalisasi akan ditunjukkan pada Kode Jagung HTJ-001 dan Kriteria K-001 sebagai berikut:

$$X = 94$$
$$X_{min} = 80$$

$$X_{max} = 104$$

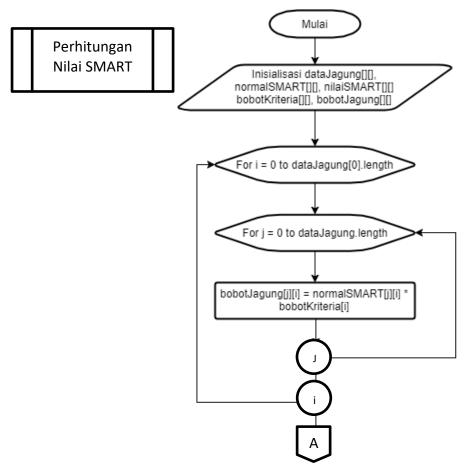
Setelah diketahui nilai minimum, maksimum dan data yang akan dinormalisasi maka langkah selanjutnya adalah dilakukan perhitungan normalisasi data menggunakan persamaan 2.23

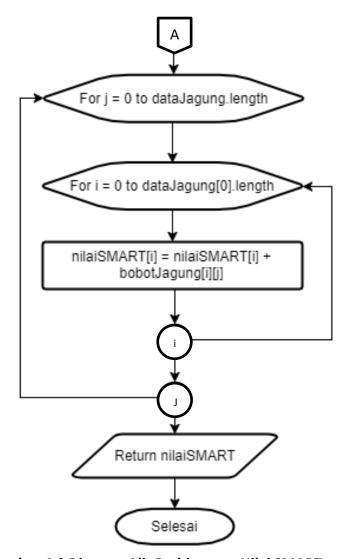
$$X' = \frac{94 - 80}{104 - 80} = 0,583333$$

Tabel data jagung hibrida yang telah dilakukan proses normalisasi akan ditunjukkan pada tabel 4.9

Tabel 4.9 Normalisasi Data Jagung

No Data	Nama Jagung	K-001	K-002	K-003	K-004	K-005
1	Semar-3	0,583333	0,142163	0	0,098039	0
2	Semar-4	0,416667	0,111786	0,096774	0	0,61904762
3	Semar-5	0,75	0,172539	0,241935	0,098039	1
4	Semar-6	0,75	0,26367	0,241935	0,098039	1
5	Semar-7	0,75	0,26367	0,241935	0,078431	1
6	Semar-8	0,583333	0,111786	0,258065	0,078431	1
7	Semar-9	0,625	0,142163	0,209677	0	1
8	Semar-10	0,708333	0,324423	0,306452	0,098039	0,85714286
9	Bima-1	0,708333	0,324423	0,306452	0,098039	0,85714286
10	Bima-2 Bantimurung	0,833333	0,737546	0,517742	0,490196	0,19047619
11	Bima-3 Bantimurung	0,833333	0,622114	0,479032	0,294118	0,23809524
12	Bima-4	0,916667	0	0,693548	0,627451	0,76190476
13	Bima-5	0,958333	0,081409	0,645161	0,568627	0,71428571
14	Bima-6	1	0,129405	0,654839	0,409804	0
15	Bima-7	0,375	0,360875	0,758065	0,705882	0,85714286
16	Bima-8	0,333333	0,360875	0,774194	0,627451	0,71428571
17	Bima-9	0,625	0,488457	0,951613	0,960784	0,76190476
18	Bima-10	0,833333	0,956258	0,967742	0,901961	0,57142857
19	Bima-11	0,583333	0,579587	1	0,921569	0,57142857
20	Bima-12Q	0,75	0,044957	0,258065	0,156863	0,52380952
21	Bima-13Q	0,958333	0,043742	0,258065	0,254902	0,66666667
22	Bima-14 Batara	0,625	0,606926	0,774194	0,862745	0,33333333
23	Bima-15 Sayang	0,833333	0,901397	0,903226	0,921569	0,28571429
24	Bima-16	0,75	0,494532	0,693548	0,764706	1
25	Bima-17	0,625	0,415553	0,887097	1	1
26	Bima-18	0,625	0,415553	0,870968	1	0,80952381
27	Bima-19 URI	0,916667	0,524909	0,709677	0,784314	0,66666667
28	Bima-20 URI	0,916667	0,500608	0,758065	0,843137	0,66666667
29	Bima-Putih-1	0,833333	0,038882	0,451613	0,352941	0,14285714
30	Bima-Putih-2	0,833333	0,342649	0,419355	0,372549	0,0952381
31	HJ 21 Agritan	0,083333	1	0,983871	0,72549	0,66666667
32	HJ 22 Agritan	0	0,829283	0,903226	0,705882	0,66666667
33	Pulut URI 3 H	0,208333	0,362697	0,527419	0,427451	0,33333333
34	JH 27	0,75	0,342649	0,741935	0,803922	0,66666667
35	JH 234	0,75	0,360875	0,774194	0,803922	0,66666667


2. Pembobotan Kriteria


Proses pembobotan merupakan teknik pengambilan keputusan. Pembobotan ini mempertimbangkan kriteria yang digunakan berdasarkan pertimbangan ahli. Kriteria-kriteria tersebut akan ditentukan mana yang lebih penting dengan menggunakan prosentase. Pembobotan ini diolah dengan metode AHP. Pembobotan kriteria akan ditunjukkan pada tabel 4.10.

Tabel 4.10 Hasil Pembobotan Kriteria

Nama	Kode	Bobot	
Kriteria	Kriteria	Kriteria	
Umur	K-001	0,097748	
Berat	K-002	0,047323	
Rata-Rata	K-003	0,232556	
Hasil	K-005	0,232330	
Potensi	K-004	0,232556	
Hasil	K-004	0,232330	
Ketahanan			
Hama dan	K-005	0,389817	
Penyakit			

Proses pembobotan data merupakan proses yang dilakukan sebelum menghitung akhir dari masing-masing jagung. Diagram alir proses perhitungan jagung akan ditunjukkan pada diagram alir 4.9

Gambar 4.9 Diagram Alir Perhitungan Nilai SMART

Contoh perhitungan pembobotan akan ditunjukkan pada Kode Jagung HTJ-001 dan Kriteria K-001 sebagai berikut:

X = 0.58333

K-001 = 0,097748

Setelah diketahui bobot kriteria dan data yang akan dilakukan pembobotan maka langkah selanjutnya adalah dilakukan perhitungan pembobotan data.

$$X^{\prime\prime} = 0,58333 * 0,09775 = 0,05702$$

Tabel data jagung hibrida yang telah dilakukan proses pembobotan akan ditunjukkan pada tabel 4.11

Tabel 4.11 Pembobotan Data Jagung

No Data	Nama Jagung	K-001	K-002	K-003	K-004	K-005
1	Semar-3	0,05702	0,006728	0	0,0228	0
2	Semar-4	0,040729	0,00529	0,022505	0	0,24131556
3	Semar-5	0,073311	0,008165	0,056263	0,0228	0,38981744
4	Semar-6	0,073311	0,012478	0,056263	0,0228	0,38981744
5	Semar-7	0,073311	0,012478	0,056263	0,01824	0,38981744
6	Semar-8	0,05702	0,00529	0,060014	0,01824	0,38981744
7	Semar-9	0,061093	0,006728	0,048762	0	0,38981744
8	Semar-10	0,069239	0,015353	0,071267	0,0228	0,33412924
9	Bima-1	0,069239	0,015353	0,071267	0,0228	0,33412924
10	Bima-2 Bantimurung	0,081457	0,034903	0,120404	0,113998	0,07425094
11	Bima-3 Bantimurung	0,081457	0,02944	0,111402	0,068399	0,09281368
12	Bima-4	0,089603	0	0,161289	0,145917	0,29700377
13	Bima-5	0,093676	0,003853	0,150036	0,132238	0,27844103
14	Bima-6	0,097748	0,006124	0,152287	0,095302	0
15	Bima-7	0,036656	0,017078	0,176292	0,164157	0,33412924
16	Bima-8	0,032583	0,017078	0,180043	0,145917	0,27844103
17	Bima-9	0,061093	0,023115	0,221303	0,223436	0,29700377
18	Bima-10	0,081457	0,045253	0,225054	0,209756	0,22275283
19	Bima-11	0,05702	0,027428	0,232556	0,214316	0,22275283
20	Bima-12Q	0,073311	0,002128	0,060014	0,036479	0,20419009
21	Bima-13Q	0,093676	0,00207	0,060014	0,059279	0,2598783
22	Bima-14 Batara	0,061093	0,028721	0,180043	0,200636	0,12993915
23	Bima-15 Sayang	0,081457	0,042656	0,21005	0,214316	0,11137641
24	Bima-16	0,073311	0,023403	0,161289	0,177837	0,38981744
25	Bima-17	0,061093	0,019665	0,206299	0,232556	0,38981744
26	Bima-18	0,061093	0,019665	0,202549	0,232556	0,3155665
27	Bima-19 URI	0,089603	0,02484	0,16504	0,182397	0,2598783
28	Bima-20 URI	0,089603	0,02369	0,176292	0,196076	0,2598783
29	Bima-Putih-1	0,081457	0,00184	0,105025	0,082079	0,05568821
30	Bima-Putih-2	0,081457	0,016215	0,097523	0,086638	0,03712547
31	HJ 21 Agritan	0,008146	0,047323	0,228805	0,168717	0,2598783
32	HJ 22 Agritan	0	0,039244	0,21005	0,164157	0,2598783
33	Pulut URI 3 H	0,020364	0,017164	0,122654	0,099406	0,12993915
34	JH 27	0,073311	0,016215	0,172541	0,186957	0,2598783
35	JH 234	0,073311	0,017078	0,180043	0,186957	0,2598783

3. Perhitungan SMART

Perhitungan SMART ini merupakan hasil akhir dari proses pemilihan jagung sebelum dilakukan perangkingan dari varietas jagung yang memiliki nilai SMART tertinggi hingga terendah.

Contoh perhitungan SMART akan ditunjukkan pada Kode Jagung HTJ-001 sebagai berikut:

 $X''_{(K-001)} = 0,05702$

 $X''_{(K-001)} = 0,00673$

 $X''_{(K-001)} = 0$

 $X''_{(K-001)} = 0,0228$

 $X''_{(K-001)} = 0$

Setelah diketahui nilai data dari seluruh kriteria bobot kriteria, maka langkah selanjutnya adalah dilakukan perhitungan SMART menggunakan persamaan 2.24

$$SMART = 0.05702 + 0.00673 + 0 + 0.0228 + 0 = 0.08655$$

Tabel data jagung hibrida yang telah dilakukan proses perhitungan SMART akan ditunjukkan pada tabel 4.12

Tabel 4.12 Nilai Masing-Masing Varietas Jagung

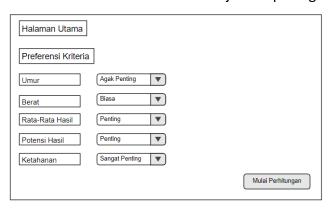
No Data	Nama	SMART
NO Data	Jagung	SIVIANI
1	Semar-3	0,08655
2	Semar-4	0,309839
3	Semar-5	0,550357
4	Semar-6	0,554669
5	Semar-7	0,550109
6	Semar-8	0,530381
7	Semar-9	0,506399
8	Semar-10	0,512787
9	Bima-1	0,512787
10	Bima-2	0,425012
	Bantimurung	0,423012
11	Bima-3	0,383511
	Bantimurung	0,000011
12	Bima-4	0,693813
13	Bima-5	0,658243
14	Bima-6	0,351461
15	Bima-7	0,728312
16	Bima-8	0,654062
17	Bima-9	0,825951
18	Bima-10	0,784273
19	Bima-11	0,754072

No Data	Nama	SMART	
No Data	Jagung	51417 (111	
20	Bima-12Q	0,376123	
21	Bima-13Q	0,474917	
22	Bima-14	0,600433	
	Batara	0,000433	
23	Bima-15	0,659856	
	Sayang	0,000000	
24	Bima-16	0,825657	
25	Bima-17	0,909431	
26	Bima-18	0,831429	
27	Bima-19 URI	0,721757	
28	Bima-20 URI	0,74554	
29	Bima-Putih-1	0,326089	
30	Bima-Putih-2	0,318959	
31	HJ 21	0,712868	
	Agritan	0,7 12000	
32	HJ 22	0,673329	
	Agritan	0,073329	
33	Pulut URI 3	0,389528	
	H		
34	JH 27	0,708903	
35	JH 234	0,717267	

Hasil perangkingan hasil SMART untuk varietas jagung akan ditunjukkan pada tabel 4.13.

Tabel 4.13 Hasil Perangkingan Varietas Jagung Terbaik

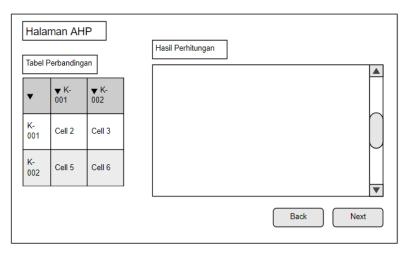
Peringkat	SMART	Nama Jagung
1	0.909431	Bima-17
2	0.831429	Bima-18
3	0.825951	Bima-9
4	0.825657	Bima-16
5	0.784273	Bima-10
6	0.754072	Bima-11
7	0.74554	Bima-20 URI
8	0.728312	Bima-7
9	0.721757	Bima-19 URI
10	0.717267	JH 234
11	0.712868	HJ 21 Agritan
12	0.708903	JH 27
13	0.693813	Bima-4
14	0.673329	HJ 22 Agritan
15	0.659856	Bima-15 Sayang
16	0.658243	Bima-5
17	0.654062	Bima-8
18	0.600433	Bima-14 Batara


Peringkat	SMART	Nama Jagung
19	0.554669	Semar-6
20	0.550357	Semar-5
21	0.550109	Semar-7
22	0.530381	Semar-8
23	0.512787	Semar-10
24	0.512787	Bima-1
25	0.506399	Semar-9
26	0.474917	Bima-13Q
27	0.425012	Bima-2 Bantimurung
28	0.389528	Pulut URI 3 H
29	0.383511	Bima-3 Bantimurung
30	0.376123	Bima-12Q
31	0.351461	Bima-6
32	0.326089	Bima-Putih-1
33	0.318959	Bima-Putih-2
34	0.309839	Semar-4
35	0.086547	Semar-3

4.3 Perancangan User Interface

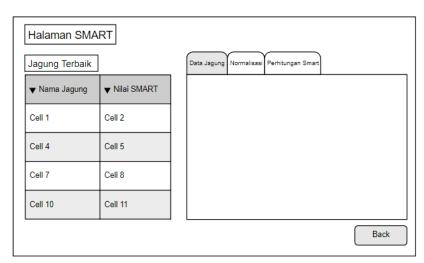
Pada perancangan user interface, aplikasi akan dibuat 3 halaman yaitu: halaman utama, halaman AHP dan halaman SMART.

1. Halaman Utama


Pada perancangan user interface untuk halaman utama berisi halaman untuk mengisi preferensi kriteria yang dinginkan. Setelah mengisi preferensi kriteria yang diinginkan, terdapat tombol Mulai Perhitungan untuk masuk kedalam halam AHP. Halaman utama akan ditunjukkan pada gambar 4.12

Gambar 4.10 Halaman Utama Program

2. Halaman AHP


Pada perancangan user interface untuk halaman AHP berisi hasil perhitungan bobot yang kemudian dilakukan cek konsistensi untuk memastikan bahwa bobot layak digunakan pada metode SMART. Halaman utama akan ditunjukkan pada gambar 4.13.

Gambar 4.11 Halaman Perhitungan AHP

3. Halaman SMART

Pada perancangan user interface untuk halaman SMART berisi hasil perhitungan hasil perangkingan varietas jagung yang digunakan sebagai pilihan varietas jagung terbaik. Halaman utama akan ditunjukkan pada gambar 4.14.

Gambar 4.12 Halaman Perhitungan SMART